具有传感器致动器反馈的触摸板

申请号 CN201610107870.8 申请日 2010-12-06 公开(公告)号 CN105786180A 公开(公告)日 2016-07-20
申请人 苹果公司; 发明人 J·T·贝尔斯丁; A·西普林斯基; B·W·德格纳; D·克尔; P·凯瑟勒; P·普斯卡里奇; M·H·克埃略; A·潘瑟;
摘要 本 发明 公开了具有 力 传感器 和 致动器 反馈的 触摸板 。 电子 设备可以使用具有触摸传感器阵列、力传感器和用于提供 触觉反馈 的致动器的触摸板。触摸板可以安装在计算机壳体内。触摸板可以具有矩形平坦触摸板部件,该矩形平坦触摸板部件具有被墨 覆盖 的玻璃层并且包含电容触摸传感器阵列。力传感器可以安装在矩形平坦触摸板部件的四个 角 的每个角下面。力传感器可以被用于测量用户向平坦触摸板部件的表面施加了多少力。经处理的力传感器 信号 可以表示存在按钮行为,诸如按压和释放事件。响应于检测到设备中的按钮行为或其它行为,可以产生致动器驱动信号以用于控制致动器。用户可以提供设置来调节 信号处理 和触觉反馈参数。
权利要求

1.一种电子设备,包括:
壳体;
设置在所述壳体的第一开口中的键盘;以及
设置在所述壳体的第二开口中的跟踪板,所述跟踪板包括:
接触表面;
设置在所述接触表面下方并配置成检测所述接触表面上的触摸的位置的电容触摸传感器
设置在所述电容触摸传感器下方并接近所述跟踪板的不同的一组传感器;以及被配置成响应于所述接触表面上的触摸的力超出阈值而输出非视觉反馈的输出设备,其中
所述一组力传感器被配置成产生对应于所述接触表面上的触摸的力的非二进制输出信号
2.根据权利要求1所述的电子设备,其中:
所述输出设备包括扬声器;并且
所述输出设备被配置成响应于所述接触表面上施加的力产生音频输出。
3.根据权利要求1所述的电子设备,其中所述一组力传感器被配置成产生与所述接触表面上的触摸的力成线性比例或非线性比例的输出信号
4.根据权利要求1所述的电子设备,其中所述一组力传感器中的每个力传感器包括至少一个可弯曲部件,其被配置为响应于施加到所述接触表面的力而弯曲并且产生对应于由于所述力而弯曲的量的传感器输出。
5.根据权利要求1所述的电子设备,其中:
所述一组力传感器中的每个力传感器包括设置在所述接触表面下方的基板的表面上形成的金属迹线;并且
所述金属迹线形成响应于所述接触表面上的力而弯曲的交叉指状物。
6.根据权利要求1所述的电子设备,其中:
所述一组力传感器包括具有两个电极的电容传感器;并且
所述力传感器被配置成基于所述两个电极之间的电容变化来测量所述跟踪板的接触表面上的力。
7.根据权利要求1所述的电子设备,其中:
所述跟踪板通过弹簧部件耦合到壳体壁;并且
所述壳体壁耦合到所述壳体。
8.根据权利要求7所述的电子设备,其中:
所述壳体壁由金属板形成;并且
所述弹簧部件与所述壳体壁一体地形成。
9.根据权利要求1所述的电子设备,还包括处理电路,其被配置成:
确定用户输入是否包括手势;
根据用户输入不包括手势的确定,应用与第一输入命令关联的第一力阈值;以及根据用户输入包括手势的确定,应用与第二输入命令关联的第二力阈值,其中所述第一力阈值低于所述第二力阈值。
10.根据权利要求9所述的电子设备,其中所述处理电路还被配置成:
根据用户输入包括手势的确定,禁止对用户按压输入进行响应。
11.根据权利要求10所述的电子设备,其中所述手势包括跨所述接触表面的物体移动。
12.一种便携式计算机,包括:
壳体;
设置在所述壳体中的显示器;
设置在所述壳体中的键盘;以及
设置在所述壳体的开口中并与所述键盘邻近的跟踪板,所述跟踪板包括:
接触表面;
设置在所述接触表面下方并配置成检测所述接触表面上的触摸的位置的电容触摸传感器;
设置在所述电容触摸传感器下方的一组力传感器,其中:
每个力传感器接近所述跟踪板的不同角;并且
所述一组力传感器被配置成产生对应于所述接触表面上的触摸的力的非二进制输出信号。
13.根据权利要求12所述的便携式计算机,其中每个力传感器包括响应于所述接触表面上的力而弯曲的一组交叉指状物。
14.根据权利要求12所述的便携式计算机,还包括:
通过四个弹簧部件耦合到所述跟踪板并且耦合到所述壳体的壳体壁。
15.根据权利要求14所述的便携式计算机,其中所述壳体壁由金属片形成,并且所述四个弹簧部件一体地形成到所述壳体壁的金属片中。
16.根据权利要求12所述的便携式计算机,其中所述跟踪板被配置成在所述键盘在使用中时拒绝来自手掌的输入。
17.一种在跟踪板的表面上接收用户输入的方法,包括:
使用设置在跟踪板的接触表面下方的电容触摸传感器产生对应于所述接触表面上的触摸的位置输出;
使用位于所述电容触摸传感器下方并接近所述跟踪板的各个角的一组力传感器,响应于所述跟踪板的接触表面的触摸区域中的触摸的力而产生非二进制力输出,所述跟踪板配置成将来自所述触摸区域的力传递到所述力传感器;
通过对来自该组力传感器的非二进制力输出进行平均确定平均施加的力;
如果所述平均施加的力超出阈值则触发按钮按压事件;以及
响应于所述按钮按压事件输出非视觉反馈。
18.根据权利要求17所述的方法,其中所述阈值是可变的用户确定的阈值。
19.根据权利要求17所述的方法,还包括:
如果所述触摸跨所述跟踪板的接触表面移动,则识别手势命令;以及
根据所述用户输入包括手势命令的确定,增加所述阈值。
20.根据权利要求17所述的方法,还包括:
如果所述触摸跨所述跟踪板的接触表面移动,则识别手势命令;以及
根据所述用户输入包括手势命令的确定,禁止按钮按压事件。

说明书全文

具有传感器致动器反馈的触摸板

[0001] 本申请是申请日为2010年12月6日、申请号为201080062057.4,发明名称为“具有力传感器和致动器反馈的触摸板”的发明专利申请的分案申请。
[0002] 本申请要求2009年12月10日提交的美国专利申请第12/635,614号的优先权,其全部内容通过引用结合于此。

技术领域

[0003] 本申请一般地涉及触摸敏感输入设备,更具体地,涉及用于电子设备(诸如便携式计算机)的触摸板。

背景技术

[0004] 诸如便携式计算机的电子设备具有用于接收用户输入的触摸板。触摸板还可以以连接至计算机的独立部件的形式提供。
[0005] 触摸板通常具有矩形表面,其监视用户手指或其它外部物体的位置。用户可以通过控制用户指尖在触摸板表面上的位置来与触摸板交互。触摸板可以被用于控制光标在计算机显示屏上的位置或进行其它适当动作。在多点触摸的触摸板布置中,一个或多个手指沿触摸板表面的移动可以被解释为特定命令。例如,用户指尖在触摸板上的滑过可以作为指示计算机在项目列表中前进的手势。
[0006] 触摸板通常设置有相关按钮。在典型布置中,有一个或两个基于开关的按钮位于触摸板前面。用户可以使用触摸板来定位屏幕上的光标。在期望位置定位光标后,用户可以按下一个适当的按钮。例如,在一个按钮的配置中,用户可以按下该按钮来点击对应于当前屏幕上光标位置的屏幕上选项。便携式计算机然后可以相应地响应。在两个按钮的偏置中,右侧按钮可以被用于右击命令。
[0007] 为了改进设备的美观性,并为了进行手势命令提供更大的触摸传感器区域,具有集成按钮功能的触摸板已经被开发出来。在这种类型的布置中,触摸板的后边缘设置有铰链,触摸板的前边缘设置有开关。当用户以足够的力向下按压触摸板时,触摸板以其后边缘为轴枢转,并触发开关。
[0008] 尽管这种类型的触摸板通常是令人满意的,但是在靠近触摸板后边缘按压触摸板时,操作该集成按钮可能是有挑战性的。在满足涉及触摸板灵敏度和操作的各式各样的用户期望方面,也具有挑战性。
[0009] 因此,希望能够提供改进的触摸板。

发明内容

[0010] 诸如便携式计算机和其它设备的电子设备可以设置有包括力传感器的触摸板。也可以提供触觉反馈
[0011] 触摸板,有时被称作跟踪板或计算机跟踪板,可以具有包括触摸传感器的平坦触摸板部件。平坦触摸板部件可以由诸如清澈或不透明玻璃的材料层、可选的在玻璃表面上的不透明墨层、加硬物(stiffener)、印刷电路板结构、粘合层等形成。总之,平坦触摸板部件的结构通常不允许光通过触摸板,从而增强触摸板的美观性,并且阻止可能不悦目的内部结构被看见。然而,如果愿意,显示结构可以被集成在触摸板中(例如,以提供触摸屏功能或增强的触摸板功能)。触摸板不透明的布置有时作为示例在此被描述。
[0012] 触摸传感器可以由电容电极阵列、光检测器阵列(例如对于阴影感测触摸传感器)、电阻传感器阵列、或其它触摸传感器结构形成。使用触摸传感器,一个或多个外部物体(诸如用户手指)的位置可以被检测到。触摸传感器信号可以被用于解释手势型命令。在典型手势中,用户沿触摸板的表面移动一个或多个手指。通过确定在板上移动的手指的数量以及它们的移动位置和方向,可以辨别出手势并采取适当的动作。
[0013] 除了处理触摸传感器信号来确定触摸事件的位置之外,来自力传感器的信号也可以被处理。矩形触摸板可以具有四个。力传感器可以安装在四个角的每个下面。当用户按压触摸板的表面时,力传感器可以拾取四个相应的独立的力信号。这些力信号可以使用力信号处理电路被处理。例如,来自各个力传感器的力信号可以被组合,组合后的信号可以与力阈值进行比较来识别按压和释放事件。
[0014] 可以使用致动器提供触觉反馈。致动器可以被致动器驱动信号控制。当电子设备的用户与触摸板交互时,用户可以进行手势并执行其它触摸相关任务。当用户希望选择屏幕上的对象或执行传统上与按钮致动事件相关联的类型的其它任务时,用户可以向下按压跟踪板的表面。当检测到足够的力时,可以采取适当动作,并且驱动信号可以被应用到致动器。致动器可以向触摸板施加移动。例如,致动器可以驱动耦接部件碰撞平坦触摸板部件的边缘。柔性垫可以形成在力传感器下面,以在致动器操作时有助于允许触摸板部件横向(相对于平坦触摸板部件的平面在平面内)移动。这可以提高致动器的效率。致动器可以响应于按钮按压和释放事件或响应于满足电子设备的其它准则而移动触摸板。
[0015] 默认的和用户定义的设置可以被用于调节触摸传感器和力传感器信号被处理的方式。例如,触摸传感器和力传感器灵敏度平可以被调节。由致动器施加至触摸板部件的触觉反馈的量和类型也可以由默认的和用户定义的设置来控制。例如,用户可以选择多个驱动电流波形中的哪个来用于驱动致动器。驱动电流波形可以用于在移动触摸板时产生基本听不见的共振,从而使得触摸板能够安静地操作。如果愿意,在适当时候,可以使用扬声器或通过改变致动器驱动信号以在适当时候产生触摸板的可听见振动,来提供听得见的反馈。
[0016] 本发明的其它特征,其特性以及各种优点将从附图和下面对优选实施例的具体描述而变得清楚。

附图说明

[0017] 图1是根据本发明的一个实施例的具有触摸板的示例性电子设备的透视图。
[0018] 图2是根据本发明的一个实施例的具有触摸板的示例性电子设备的内部的透视图,示出了触摸板可以如何具有力传感器和用于提供反馈的致动器。
[0019] 图3是根据本发明的一个实施例的示例性触摸板的分解透视图。
[0020] 图4是根据本发明的一个实施例的响应于弯曲而产生力测量信号的示例性力传感器的透视图。
[0021] 图5是根据本发明的一个实施例的响应于传感器挤压而产生力测量信号的示例性力传感器的透视图。
[0022] 图6是根据本发明的一个实施例的在无载状态下的示例性电阻性力传感器的截面侧视图。
[0023] 图7是根据本发明的一个实施例的图6中示出的类型的示例性电阻性力传感器在置于加载状态下之后的截面侧视图。
[0024] 图8是示出了根据本发明的一个实施例的力传感器中的电容器极板之间距离可以如何被用于产生力信号的透视图。
[0025] 图9是根据本发明的一个实施例的可以被用在触摸板中的电阻性力传感器的示意图。
[0026] 图10是根据本发明的一个实施例的可以用于向触摸板施加运动的示例性致动器的截面侧视图。
[0027] 图11是根据本发明的一个实施例的示例性触摸板的顶视图,示出了致动器可以如何使用连接在致动器和触摸板之间的较短的侧耦接部件来向触摸板施加运动。
[0028] 图12是根据本发明的一个实施例的示例性触摸板的顶视图,示出了致动器可以如何使用连接至致动器但是与触摸板稍微分开的较短的耦接部件向触摸板施加运动。
[0029] 图13是根据本发明的一个实施例的示例性触摸板的顶视图,示出了致动器可以如何使用连接在致动器和触摸板之间的较长的耦接部件向触摸板施加运动。
[0030] 图14是根据本发明的一个实施例的示例性触摸板的顶视图,示出了致动器可以如何使用连接在致动器和触摸板之间的具有弯曲的耦接部件向触摸板施加运动。
[0031] 图15是根据本发明的一个实施例的示例性触摸板的顶视图,示出了致动器可以如何使用具有彼此相对移动的耦接结构的连杆向触摸板施加运动。
[0032] 图16是根据本发明的一个实施例的示例性触摸板的顶视图,示出了可以如何使用多个致动器来向触摸板施加运动。
[0033] 图17是根据本发明的一个实施例的示例性触摸板的侧视图,示出了致动器可以如何使用将垂直运动转换为水平运动的连杆向触摸板施加运动。
[0034] 图18是根据本发明的一个实施例的示例性触摸板的侧视图,示出了触摸板可以如何具有拥有轴承磁性保持结构的支撑结构。
[0035] 图19是根据本发明的一个实施例的示例性触摸板的侧视图,示出了触摸板可以如何具有安装在柔性垫上的力传感器。
[0036] 图20是根据本发明的一个实施例的示例性触摸板的底视图,示出了可以如何使用弹簧结构将触摸板安装至电子设备的壳体结构。
[0037] 图21是根据本发明的一个实施例的示例性触摸板的示意图,示出了可以用于收集和处理触摸板信号并且响应于触摸板信号控制触摸板移动的电路。
[0038] 图22是根据本发明的一个实施例的示例性力传感器输出信号作为时间的函数的曲线,示出了阈值可以如何被用于处理力传感器信号以检测按钮致动事件,诸如按压和释放事件。
[0039] 图23是根据本发明的一个实施例的曲线,示出了来自触摸板中的四个传感器中每个传感器的信号可以如何被组合以形成平均力信号。
[0040] 图24是根据本发明的一个实施例,当通过处理来自触摸板中的力传感器的力信号而检测到按压事件时可以产生的示例性按压信号的曲线图。
[0041] 图25是根据本发明的一个实施例,当通过处理来自触摸板中的力传感器的力信号而检测到释放事件时可以产生的示例性释放信号的曲线图。
[0042] 图26是根据本发明的一个实施例,响应于通过处理来自触摸板中的力传感器的力信号而检测到按压和释放事件可以产生的示例性按压-释放脉冲的曲线图。
[0043] 图27是根据本发明的一个实施例的可以用于在触摸板中提供触觉反馈的具有基本相等的上升和下降时间的弧形对称致动器驱动信号的曲线图。
[0044] 图28是根据本发明的一个实施例的可以用于在触摸板中提供触觉反馈的具有基本相等的上升和下降时间的对称三角形致动器驱动信号的曲线图。
[0045] 图29是根据本发明的一个实施例的可以用于在触摸板中提供触觉反馈的、上升时间比下降时间更短更快的不对称致动器驱动信号的曲线图。
[0046] 图30是根据本发明的一个实施例的可以用于在触摸板中提供触觉反馈的、下降时间比上升时间更短更快的不对称致动器驱动信号的曲线图。
[0047] 图31示出了根据本发明的一个实施例,当不存在触摸传感器手势动作时,可以如何处理力信号以产生按压和释放事件信号。
[0048] 图32示出了根据本发明的一个实施例,可以如何在存在触摸传感器手势动作时禁止响应于力信号产生按压和释放事件信号。
[0049] 图33是根据本发明的一个实施例的示出了触摸传感器数据可以如何被处理的示意图,示出了力传感器可以如何产生根据力信号处理设置被处理的原始力输出信号,以及示出了得到的按压和释放事件数据可以如何基于驱动设置被用于产生致动器驱动信号。
[0050] 图34是根据本发明的一个实施例的设置和操作电子设备中的触摸板所涉及的示例性步骤的流程图
[0051] 图35是根据本发明的一个实施例的示例性计算系统的简化示意图,该计算系统可以包括可以具有力传感器和用于提供反馈的致动器的触摸敏感输入-输出设备,诸如触摸板。
[0052] 图36是根据本发明的一个实施例的示例性计算系统的示意图,该计算系统可以包括可以具有力传感器和用于提供反馈的致动器的触摸敏感输入-输出设备,诸如触摸板,并且可以结合有显示结构。

具体实施方式

[0053] 电子设备可以设置有触摸敏感用户输入设备。触摸敏感用户输入设备可以包括触摸屏或,更典型地,触摸板。触摸板,有时被称作跟踪板,通常被用在诸如便携式计算机的电子设备中。触摸板还可以被实现为独立的设备。例如,触摸板可以设置有通用串行总线(USB)电缆,其使得触摸板能够被插接到计算机的USB端口。触摸板还可以被应用在工业和商业设备中、计算机鼠标中、键盘中、游戏机中等等。为了清晰,在此有时将触摸板用在便携式计算机中(即,作为便携式计算机跟踪板)描述为示例。然而,这仅是示例性的。触摸板和其它触摸敏感输入设备可以被实施为任何适当电子设备的一部分。
[0054] 触摸板可以包括力传感器和触摸传感器电路。触觉反馈可以通过使用能够向触摸板施加移动的致动器来提供。
[0055] 触摸板的触摸传感器可以使用电阻触摸技术、表面声波技术、电容技术、光检测器(例如,通过测量由外部物体产生的环境光阴影来检测位置的基于阴影的传感器的光传感器阵列)、或其它适当的触摸传感器布置来实施。使用电容触摸传感器技术有时在此作为示例被描述。与需要用力地直接接触来记录触摸事件的触摸技术不同,电容触摸传感器即使在很小或没有直接压力施加至触摸传感器表面时也能检测到触摸事件。这是因为电容触摸传感器测量由于很接近传感器表面的用户手指或其它外部物体的存在而引起的电容改变。
[0056] 触摸板的触摸传感器能力使得用户能够提供触摸输入。例如,用户可以将指尖或触笔(stylus)置于触摸板表面上的期望位置。通过控制触摸传感器被触摸的位置,用户可以控制屏幕上光标的位置,或者可以以其它方式与电子设备交互。如果愿意,基于手势的控制布置可以被实施,其中相对于屏幕的一个或多个触摸位置的移动可以被转换为命令。例如,在触摸板表面上滑过特定数量的手指可以被解释为在项目列表中前进的命令或在计算机屏幕上滚动所显示的材料的命令。单击和多击命令也可以使用触摸板的触摸传感器功能来处理。
[0057] 触摸板的力传感器能力使得用户能够执行按钮类型的动作。在具有整体按钮的传统触摸板中,通过在靠近触摸板的前边缘处向下用力按压来致动触摸板的按钮部分。这就导致触摸板向下枢转来致动位于触摸板前边缘下面的开关,并产生听得见的点击声音。
[0058] 当力传感器被包括在触摸板中时,不需要允许触摸板以该方式枢转。相反,来自一个或多个力传感器的力信号可以用来检测何时用户按压和下压触摸板。触摸板不需要显著移动(即,触摸板可以保持基本不动和水平),从而原本被保留用于容纳枢转运动的空间可以被用于容纳组件。在使用压电部件来实现力传感器的典型配置中,即使在最有力的按钮按压负载下,触摸板的位移可以小于0.05mm。力反馈可以被用于还原按钮按压带给用户的预期感觉。例如,当确定用户已经使用足够的力来按压触摸板时,致动器可以移动触摸板。这可以对用户手指施加类似于传统的触摸板按钮致动事件的感觉。致动器可以在移动触摸板时产生点击声,或可以被驱动以安静地致动触摸板(例如,通过使用主要为亚音速成分的驱动信号)。如果愿意,点击声或其它适当声音可以根据默认的和/或用户定义的设置由扬声器产生。
[0059] 以该方式,力传感器信号可以被用于模仿传统按钮功能。例如,力传感器信号可以用于检测何时用户使用足以使传统枢转型触摸板偏转的力来按压触摸板。作为响应,致动器可以对触摸板施加力。
[0060] 如果愿意,可以使用包括力传感器和触摸传感器二者的触摸板来实现不同类型的功能或其它功能。还可以实现部分依靠力信号输入值且部分依靠触摸传感器输入信号值的功能。例如,按钮动作检测操作可以在存在手势时被禁止,或者,使用力传感器检测到足够力可以导致禁止对处理基于手势的触摸传感器命令的正常响应。又例如,单手选择-拖拽功能可以被实现。使用这样的布置,屏幕上的项目可以通过用手指施加足够的力至力传感器并同时使手指在触摸传感器上移动来由用户选择和移动。轻击可以导致一种类型的动作,中等强度的点击可以导致另一类型的动作,而有力的点击可以导致再一类型的动作。施加至触摸板的不同部分的力可以导致不同类型的响应。例如,在触摸板的左后角按压可以导致与在右后角按压不同的动作。
[0061] 响应于所处理的触摸板信号(力和/或触摸传感器信号)所采取的动作可以包括由操作系统采取的响应、由应用软件采取的响应、由使用软件和硬件的组合实现的服务所采取的响应、设备硬件的响应、其它动作、以及这些响应的组合。
[0062] 可以被力和/或触摸信号影响的响应的一个示例是触觉反馈功能。触觉反馈,有时也被称作触摸反馈、力反馈或触感反馈,涉及响应于特定检测到的动作产生触摸板移动。例如,触觉反馈可以在触摸板中的力传感器检测到手指按压已经超过给定阈值时被产生。如果愿意,硬件和软件(诸如固件、操作系统代码和应用代码)可以被用于实现力反馈布置。如果愿意,触觉响应可以独立于特定按钮按压或触摸事件被产生。例如,具有力反馈能力的触摸板可以在接收到电子邮件或发生预定事件时振动。触摸板触觉功能的这些使用类型在此有时被称作力反馈功能、触觉反馈功能、触感反馈等。
[0063] 包括触摸传感器、力传感器、和/或力反馈能力的触摸板可以在便携式电子设备、附件、蜂窝电话、嵌入式系统或任何其它适当电子设备中实施。为了清楚起见,诸如这样的触摸板被包括在便携式电子设备中的布置有时在此作为示例被描述。
[0064] 可以包括触摸板的诸如便携式计算机的示例性便携式设备在图1中示出。如图1所示,设备10可以是具有诸如壳体12的壳体的便携式计算机。壳体12可以具有诸如上壳体12A的上部分,其有时被称作盖或盖子。壳体12还可以具有诸如下壳体12B的下部分,其有时被称作壳底或主单元。壳部分12A和12B可以使用诸如铰链16(有时被称作爪筒铰链)的铰链结构彼此枢转连接。显示器14可以安装在上壳体12A中。诸如键盘18和触摸板20的其它组件可以安装在下壳体12B中。
[0065] 触摸板20可以包括包含触摸传感器的平坦触摸板部件。触摸传感器可以由触摸传感器结构(例如,触摸传感器电容电极)的阵列形成。通常,触摸板20中的触摸传感器结构可以使用任何适当触摸敏感技术来实现。可以用于为触摸板20提供触摸感测能力的触摸传感器示例包括电容触摸传感器、基于电阻感测的触摸传感器、表面声波触摸传感器以及光学触摸传感器。基于电容触摸传感器的触摸板20的示例性配置在此有时作为示例被描述。然而,这仅仅是示例。任何适当触摸技术可以被用于为触摸板20提供感测用户手指、触笔或其它外部物体的位置的能力。
[0066] 当外部物体与触摸板的表面直接接触时,或者当外部物体与表面很接近时(例如,当电容触摸传感器检测到用户的手指或其它物体位于触摸传感器表面的几毫米内时),用户触摸可以被感测到。触摸板的触摸传感器部分受外部物体的位置控制的事件通常被称作触摸事件,不论触摸信号是由外部物体和触摸板之间的直接接触产生,还是响应于外部物体和触摸板彼此很接近而产生。
[0067] 如图1所示,触摸板20可以具有横向维度XX和YY。横向维度XX,有时被称作触摸板的宽度,可以与XYZ坐标系统22中的X轴平行。横向维度YY,有时被称作触摸板的长度,可以与XYZ坐标系统22中的Y轴平行。构成触摸板20的结构还具有与XYZ坐标系统22中的Z轴平行的维度。该维度有时被称作触摸板的垂直维度或平面外维度。如图1所示,Z轴垂直于包含X轴和Y轴的XY平面延伸(即,Z轴垂直于触摸板20暴露的平坦表面的平面)。为了保证设备10的厚度最小化,最小化与触摸板20相关的结构的厚度可能是有帮助的。
[0068] 在触摸板20的XY平面中的用户手指(一个或多个)或其它外部物体(一个或多个)的位置可以使用触摸板20的触摸传感器来感测。沿Z轴向下和向上的运动可以使用力传感器来检测。如图2所示,触摸传感器20可以具有平坦触摸板部件24(有时被称作跟踪板部件)。触摸板部件24可以包括触摸传感器。触摸传感器可以用来测量诸如手指26的外部物体相对于平坦触摸板部件24的X和Y横向维度的位置。如由点32所表示的,可以有多个外部物体(即,多于一个手指)触摸触摸板部件24(例如,当用户进行多点触摸手势命令时)。单个物体触摸触摸板部件24的布置有时在此作为示例被描述。然而,这仅是示例性的。如果愿意,一个物体、两个物体、三个物体或多个三个物体可以同时接触触摸板部件24。
[0069] 除了在一个或多个位置触摸触摸板部件24,用户还可以产生按钮致动事件。按钮致动事件涉及用户在沿Z轴(参见例如坐标系统22)的方向28上向下按压的按压事件。按钮致动事件还涉及释放事件。在释放事件中,用户减少施加至触摸板部件24的向下的力的量,并停止在方向28上移动手指26(例如,通过沿方向30向上抬起手指26)。
[0070] 按钮致动动作,有时被称作力施加事件,可以使用力传感器34来感测。力传感器34一般响应于垂直施加的力(沿Z轴)。在触摸板20中可以存在一个力传感器34,存在两个力传感器34,存在三个力传感器34,或存在四个或更多个力传感器34。力传感器可以放置在诸如部件24的矩形平坦触摸板结构的四个角下面,如图2所示(作为示例)。在具有两个传感器的配置中,传感器可以位于部件24的相反边缘处。在具有三个传感器的配置中,传感器可以被分布为形成三脚式配置。如果仅单个传感器被使用,则传感器可以位于触摸板部件24的中心的下面或沿触摸板部件24的边缘(例如,前缘)。
[0071] 将力传感器34布置在触摸板部件24的所有四个角的优点是这使得来自多个传感器的力信号能够被并行收集和处理。力传感器信号可以被平均,可以被处理以帮助确认用户手指在部件24上的位置,或可以被处理来确定哪种类型的动作应被设备10执行。
[0072] 按钮致动行为或其它行为(例如特定触摸事件)可以导致力反馈。例如,当用户在方向28上向下按压部件24时,力传感器34可以轻微压缩并且可以检测所得到的在部件24上的力。如果检测到足够的向下的力,致动器36可以被用于向部件24施加移动(触觉反馈)。使用图2中示出的示例性结构,致动器36通过侧向延伸臂40耦接至平坦触摸板部件24。臂40例如可以是金属条或刚性连接在致动器36的输出和触摸板部件24之间的其它结构。
[0073] 当致动器36被控制信号驱动时,致动器36驱动臂40朝向和/或离开平坦触摸板部件24(例如,沿平行于图2中的X轴的横向方向38)。由致动器36施加的移动有时被称作触觉反馈,因为这种类型的移动可以响应于按钮致动事件来提供。用户倾向于期望按钮致动事件将导致点击感觉和声音。通过适当地驱动致动器36,触摸板24中的振动或其它移动可以为用户产生希望的触觉体验(例如在手指26的指尖)。例如,用户可能感觉到好像板24向下移动并接合传统的机械开关,而实际情况是,力传感器34允许部件24有相对很小的垂直移动,因为触摸板部件24安装在壳体12B中的基本固定的位置。如果愿意,致动器36可以响应于其它准则(例如,当特定软件条件出现时,当用户作出使用触摸板20的触摸传感器部分感测到的特定手势时,等等),将力施加到杆40并从而施加到触摸板部件24。
[0074] 触摸板20可以由多个结构的分层堆叠而形成。例如,触摸板部件24可以包括印刷电路板或其它基板,其上形成有触摸传感器电极阵列。电极阵列可以在尺寸上基本等于触摸板部件的尺寸,从而触摸板部件和该阵列在触摸板的所有有效表面上延伸。
[0075] 加硬物、光滑玻璃覆盖层、以及墨层和粘合层也可以被结合在触摸板部件24中。如果愿意,通过以更少的层实现触摸板20,可以最小化尺寸和重量。例如,假设触摸板20还是刚性的,触摸板20可以使用具有整体形成的电容电极的玻璃或陶瓷层来实现,且没有加硬物。触摸板部件24的硬度保证了用户的按钮致动行为可被力传感器34检测到,无论用户按压触摸板部件表面上的什么位置。在触摸板20中使用刚性触摸板部件还有助于保证单个致动器(或其它适当数量的致动器)能够有效地在触摸板部件的整个表面上产生触觉反馈(即,致动器引起的全局运动)。如果陶瓷、玻璃、塑料或用于形成接触表面的触摸板部件24的其它层以及用于触摸板部件24的触摸传感器阵列是柔性的,那么不锈加硬物或其它适当的加硬结构可以被结合在触摸板部件24中。触摸板部件24还可以通过使用足够厚的玻璃、陶瓷、塑料或复合材料层来加硬,而不使用额外的不锈钢加硬层(例如,通过由1mm厚或更多、2mm厚或更多、3mm厚或更多、或4mm厚或更多(作为示例)的玻璃、陶瓷、塑料或复合材料形成触摸板部件24的一些层)。矩形形状是触摸板部件24通常所使用的,因为这对应于显示器14的矩形形状。然而,如果愿意,可以使用其它形状。这些仅是示例性示例。如果愿意,任何适当触摸板结构可以被用于形成触摸板20。
[0076] 图3示出了可以用在触摸板20中的示例性结构组的分解透视图。如图3所示,触摸板20可以包含矩形平坦触摸板部件24。平坦触摸板部件24可以安装至壳体结构12B。壳体结构12B可以由壳体壁的一部分(例如,图1的底单元12B中的下壁)、内部壳体框架结构或支撑、其它适当支撑结构、或这些结构的组合形成。
[0077] 力传感器34可以位于触摸板部件24的四个角的每一个处。如果愿意,安装垫,例如安装垫42,可以夹置在力传感器34和壳体结构12B之间。垫42可以由诸如凝胶或泡沫的柔性材料形成。用于垫42的凝胶可以由诸如的材料形成。当诸如硅酮凝胶垫的垫被置于传感器34和壳体12B之间时,响应于致动器36施加横向力(平面内的力),触摸板部件24被允许在X和Y维度上(例如,横向,平行于壳体12B的平坦内表面)稍微移动(例如,几千微米或更少、几百微米或更少等)。如果触摸板部件24被过于刚性地安装到壳体12B,那么触摸板部件24可能无法呈现出所需的触觉反馈量(即,部件24的振动可能被过度抑制)。垫42可以通过粘合剂连接至壳体12B。力传感器34可以通过粘合剂连接至垫42。粘合剂还可以用于将力传感器34连接至平坦触摸板部件24。尽管凝胶垫42的存在允许刚性触摸板部件24的微小横向移动,但是触摸板部件24保持在壳体12B内基本固定的位置(即,对于用户不存在可识别的视觉移动)。与需要枢转运动来致动相关开关的传统布置不同,没有铰链或枢转弯曲件附接到触摸板部件24,并且触摸板部件24在按钮致动和触觉反馈过程中基本不枢转或移动。此外,因为触摸板部件24一般被实施为刚性结构,所以触摸板部件24不弯曲。相反,触摸板部件24在按钮致动和触觉反馈事件过程中,作为单个刚性单元操作。
[0078] 部件24的最上层56可以由玻璃或其它适当材料(例如塑料、陶瓷等)的光滑层形成。在电容触摸传感器布置中,层56可以由电介质形成以免电磁屏蔽下面的电容电极。
[0079] 形成层56的材料可以是透明的(例如清澈玻璃)。在这种类型的情况下,可能期望层56的下表面设有不透明的颜料或墨层。例如,色墨层或其它装饰涂层可以置于层56的下方(见,例如墨层54)。层56还可以由不透明物质形成(例如,黑玻璃或陶瓷)。无论层56是否由不透明物质形成,或者层56是否由于下面的诸如不透明墨的不透明材料层而不透明,触摸板部件24的诸如层56的结构通常足够不透明以防止下面的层结构从设备10的外部被看见。通过由不透明结构形成触摸板24的最上面的一个或多个层,可以防止触摸板部件24的下层中的不悦目的结构被看见。因为使用一个或多个不透明材料层可能增强触摸板20的美观性,所以通常期望由使得触摸板部件24不透明的结构(即,由不允许光透过触摸板部件24的叠层)来形成触摸板部件24。
[0080] 当期望使用触摸板20作为触摸屏的一部分时(例如,当形成层的堆叠以形成液晶显示触摸屏、电子墨水显示触摸屏或其它触摸屏时),优选地在层56上没有不透明墨。相反,层56可以由显示器盖玻璃层或其它透明显示结构形成。尽管独立的触摸板有时在此作为示例被描述,但是触摸传感器、力传感器以及触摸板20的致动机构可以被用在触摸屏显示器或其它类型的部件中。独立的计算机跟踪板在此仅作为示例被描述。
[0081] 如图3所示,诸如压力敏感粘合层52的粘合层可以用于将层56和54附着至触摸传感器阵列50。触摸传感器阵列50可以由导电电容器电极阵列形成(例如,以形成X-Y电容触摸传感器)。这些电极可以由金属、诸如化铟的透明导电材料、或其它导电材料形成,它们可以形成在层56的底面上,或如图3所示,可以形成在印刷电路板基板的一面或两面上,以形成传感器阵列50。印刷电路板基板可以是刚性的或柔性的。设备10中的刚性电路板可以由诸如玻璃纤维填充的环氧树脂(例如FR4)的材料形成。柔性印刷电路板(“柔性电路”)可以由聚合物或其它电介质(例如,聚酰亚胺)的柔性片材上的导电迹线形成。
[0082] 诸如压力敏感粘合层48的粘合层可以用于将触摸传感器阵列50粘结至加硬物46。加硬物46可以由诸如金属(例如不锈钢、等)的坚硬材料形成。诸如玻璃、陶瓷、纤维复合材料和塑料的材料也可以被使用。为了减少重量,加硬物46的一些部分可以被去除(例如,形成孔58)。
[0083] 力传感器34可以由压电器件、在被施加力时呈现电阻、电容或电感变化的结构、或任何其它适当的力感测结构形成。
[0084] 如图4所示,力传感器34可以由诸如可弯曲部件60(例如应变计结构)的弯曲结构形成。在这种类型的力传感器中,惠斯登电桥电路或其它电路可以置于诸如部件60的部件的表面上,以检测部件60被弯曲时,表面电阻和/或体电阻率的改变。部件60例如可以由其上已经形成有金属迹线62的可弯曲电介质形成。迹线62可以包括交叉指状物62A和62B。当在方向64上弯曲时,部件60呈现位置66。该弯曲可以产生迹线62A和62B或位于部件60表面上的其它检测电路的可测量的电阻改变。这种电阻改变可以用作施加至力传感器34的力的量的指示。
[0085] 每个力传感器34也可以使用随着所施加的力,固体被压缩或平坦表面之间的距离被改变的结构来实现。例如考虑图5中示出的类型的布置。在图5的示例中,力传感器34可以具有上表面66。当力沿向下方向28施加于传感器34时,传感器34的上表面可以移动至位置68。在该位置,存在可测量的传感器34的属性的改变。例如,传感器34可以由压电材料形成,其产生与传感器34中的压缩量成比例的电压。又例如,传感器34可以由泡沫或在压缩时比未压缩时具有不同电阻的其它可压缩材料形成。传感器34的材料可以例如是聚合物-金属复合材料或填充有纳米微粒的聚合物(例如,位于Richmond,North Yorkshire,United Kingdom的Peratech有限公司提供的类型的量子隧道复合材料)。力传感器还可以被用于呈现电感的改变、磁性的改变或其它可测量的与力相关的属性。
[0086] 如图6和7的示例中的力传感器34所示,力传感器34可以具有诸如具有可压缩突起74的部件70的结构。在图6所示的位置中,部件70还没有相对于部件72被压缩,因此突起74没有被压缩。当向下的力施加至部件70时,突起74可以压缩并变形,如图7所示。部件70可以由电阻性泡沫形成,部件72可以由导体形成(作为例子)。在图7所示的压缩状态,部件70和
72之间的电阻将小于图6所示的未压缩状态的电阻。因此,测量部件70和72之间的电阻可以反映已经施加至部件70的力的量。
[0087] 力传感器34可以具有电极。例如,力传感器34可以具有上电容器电极76和下电容器电极78,如图8所示。电容传感器电路80可以通过测量电极76和78之间的电容来确定电极76和78之间的距离。当施加使电极76沿方向82向下移动的力时,电容(进而电容输出信号OUT)将上升,表示该力的存在。泡沫、其它弹性物质、或其它弹性结构可以置于电极76和78之间,从而电容上升的幅度反映出所施加的力的量。
[0088] 图9示出了力传感器34可以如何基于响应于所施加力的改变而呈现出电阻变化的可变电阻器(诸如电阻器84)。可变电阻器84可以使用参考图4、5、6和7(作为例子)描述的类型的结构形成。电阻测量电路86可以用于将基于力的电阻改变转换为相应的力传感器输出信号(输出信号OUT)。
[0089] 如这些示例阐明的,力传感器34可以由产生响应于所施加力的输出信号的任何结构形成。在一种典型的情形中,由每个力传感器34产生的输出信号的量将与所施加力的量成线性比例或非线性比例(即,传感器34是模拟力传感器)。如果期望,穹顶开关或其它双态开关可以代替模拟传感器被使用。在这种类型的布置中,穹顶开关的状态(打开或闭合)可以用于确定所施加力是高于还是低于给定阈值(即,穹顶开关的触发阈值)。
[0090] 图10是诸如图1的致动器36的示例性致动器的截面侧视图。致动器36可以是螺线管,具有包含电线圈96的筒94。筒94中的电线可以连接至端子88和90。当电流应用至端子88和90时,磁场形成,该磁场将磁性活塞92吸入筒94的内部。通过调制流入端子88和90的电流,活塞92可以沿筒94的纵轴在方向38上前后移动。
[0091] 活塞92可以具有形成图2的耦接部件40的部分,或可以连接至诸如图2的耦接部件40的部件。如果愿意,致动器36可以由线性达、旋转马达或其它电磁致动器结构形成。致动器36还可以由压电材料和其它能够响应于所施加的电信号产生运动的结构形成。
[0092] 如图11的顶视图所示,致动器36可以位于触摸板部件24的附近。耦接部件40可以直接连接至致动器36的可移动结构(例如,图10中的螺线管36的活塞92),并且可以直接连接至触摸板部件24的边缘(例如,连接至图3中所示的一个或多个层)。部件40的长度可以小于螺线管36的最大尺寸(作为例子)。
[0093] 不一定要将部件40既直接连接至致动器36又直接连接至触摸板24。例如,在部件40和触摸板部件24之间可以有诸如缝隙98的缝隙,如图12中所示。缝隙也可以形成在致动器36的附近。
[0094] 图13示出了致动器36可以如何安装在设备10中稍微远离触摸板部件24的位置。部件40的长度可以例如是2-5mm、5-10mm、2-20mm、10-30mm或超过30mm。对于较长的长度,部件40的长度(进而致动器36和触摸板部件24之间的距离)可以是致动器36的最大尺寸的1倍、2倍、3倍或3倍以上。
[0095] 如图14中的示例所示,部件40不需要是直的。部件40例如可以包括一个或多个弯曲,例如弯曲100和102。
[0096] 图15示出了致动器36和触摸板部件24可以如何通过机械连杆(连杆40)被连接。连杆40的结构可以允许由致动器36施加的力的量通过利用机械优势而增大或减小。使用诸如连杆结构40的连杆还可以使得致动器36位于设备10中原本可能不可行(例如由于存在阻挡结构等原因)的位置。
[0097] 操作过程中,致动器36可以在方向110上移动部件40C。部件40C和40B可以在枢轴点104连接。部件40B可以相对于设备壳体关于枢轴点106旋转。当致动器36在方向110上移动部件40C时,部件40B可以被迫绕枢轴点106顺时针旋转(方向112)。这迫使在枢轴108连接至部件40B的部件40A在方向114上向触摸板部件24移动。
[0098] 超过一个致动器可以被用于向触摸板24施加移动。图16示出了一对致动器耦接至触摸板部件24的示例性配置。左侧致动器36-1使用耦接部件40-1连接至触摸板部件24的左边缘,而右侧致动器36-2使用耦接部件40-2连接至触摸板部件24的右边缘。致动器36-1和36-2可以由彼此180°异相(作为例子)的信号驱动。在触摸板部件24完全刚性的配置中,使用多个致动器可以有助于高效地将全局运动施加至触摸板部件24中的所有结构(即,致动器可以在触摸板部件24中产生在整个触摸板部件中基本一致的运动)。横向的平面内的致动可以用于帮助提高致动器和触摸板部件之间的能量传递效率。如果愿意,一个或多个致动器可以被用于将垂直运动施加至触摸板部件24。这种类型的致动布置在满足设计约束时可能是有利的。
[0099] 如果愿意,触摸板部件24可以使用一个或多个柔性结构(例如玻璃或金属薄片、呈现出柔性的塑料层等)来实现。在柔性和稍微刚性这两种实施例中,两个或更多个致动器可以被用于选择性地向触摸板部件24的不同区域施加移动。例如,如果存在四个致动器耦接至触摸板部件24,则一个致动器可以独立于其它致动器被驱动以便向触摸板的左上角施加移动(作为例子)。如果使用多个致动器,则可以提供更为集中的触觉反馈。
[0100] 诸如这些的多个致动器配置可以用于在触摸板表面的特定部分已经被按压时向用户提供触觉确认,而不干扰在其它位置与触摸板接触的其它手指或物体。例如,触摸板部件24可以在不同位置被按压以执行不同的命令。如果用户按压一个位置,该位置可以被一个或多个相关致动器移动。如果用户按压另一不同位置,则不同的致动器可以用于在该位置附近提供力反馈。还可以使用全局反馈布置,其中响应于检测到在不同区域中的按钮按压,使用不同的致动器驱动信号。
[0101] 致动器被用于在不同位置提供不同程度的触觉反馈的布置有时被称作可变致动机制。可变致动机制可以用来基于力传感器信号和/或触摸传感器阵列信号为触摸板20的用户提供信息丰富的触觉反馈。如果愿意,可变致动机制可以与其它致动机制结合使用。例如,在一些活动过程中(例如,当特定软件应用正在运行时),可以使用涉及单个致动器将全局运动施加至整个触摸板部件24的类型的全局致动机制,而在其它活动过程中(例如,当运行其它应用时),可以使用可变致动方案。全局运动可以被横向施加,而局部运动可以使用垂直方向的传感器、一个或多个传感器的不同集合等来施加。
[0102] 图17是可以用于向触摸板部件24施加移动的示例性致动设置的截面侧视图。在图17的示例中,当驱动信号应用于致动器36时,致动器36被定向以迫使活塞116沿方向118向上运动。这将耦合部件40的部分120沿方向118向上拉起。枢轴112可以耦接至设备壳体,从而部分120的移动迫使部件40的边缘128沿方向126压向触摸板部件24的相应左侧边缘。
[0103] 在期望将致动器36置于不同于触摸板部件24的竖向位置的竖向位置时,或期望满足布局约束时,可以使用图17中所示的类型的布置。
[0104] 触摸板部件24可以在任意适当方向(横向、垂直、成角度、同时使用横向和垂直位移机制,等等)上被致动器36驱动。
[0105] 触摸板部件24的横向致动(即,导致部件24在平面内移动的致动)可能是有利的,因为触摸板部件24在力横向施加至其一个边缘(例如,直接施加于加硬部件的垂直边缘或施加于紧邻加硬部件的边缘布置的耦接结构)时是最坚硬的。当触摸板部件24是矩形时,触摸板部件24在其一个较窄端被施压时对不期望的挠曲可能最有抵抗力,如图11-16的示例所示。在这种类型的配置中,在致动过程中浪费较少能量。横向致动也可能优于其它类型的致动(例如,涉及致动板部件24平行于Z轴的部分的垂直位移的致动,其可能导致不期望的不规则“鼓式”的振动模式)。横向致动可以比垂直致动产生更小的噪声,并且因此可以比垂直致动更有效率,尤其是在考虑了触摸板部件24相对于壳体12B的横向移动的安装机制被用于触摸板部件24时(例如,当图3的凝胶垫42被使用时)。因为噪声可以被最小化,所以如果愿意,触觉反馈可以被安静地提供。
[0106] 图18是使用轴承来帮助促进触摸板部件24的横向运动的示例性配置的截面侧视图。如图18所示,致动器36可以安装至壳体12B的上壁130。部件40可以连接在触摸板24和致动器36之间,从而致动器36可以在方向38上横向驱动触摸板部件24。可以由下壳体壁138或其它适当支撑结构支撑的硅酮缓冲器132可以被用于帮助保持触摸板部件24。磁结构134和相配的磁结构136可以呈现出对彼此的磁性吸引,从而在方向146上产生向下的力。磁机构134和136可以都是磁,或者结构134和136之一可以是铁棒或别的铁磁结构。
[0107] 轴承结构可以支撑触摸板24。例如,轴承结构可以由轴承座140和轴承142形成。当致动器36在方向38上移动触摸板24时,球142沿触摸板部件24的下表面144滚动。通过以该方式促进触摸板部件24的横向运动,使用致动器36向触摸板部件24施加触觉反馈所需的能量可以被降低(即,可以提高致动效率)。
[0108] 图19的侧视图示出了力传感器34可以如何安装在凝胶垫42或允许触摸板部件24在使用致动器36横向致动时在横向方向38上稍微移动的其它安装结构上。当向触摸板部件24施加力时,垫42可以有一点移动。因为触摸板部件24不是刚性附着至壳体12B,所以致动器36的能量可以高效地施加到触摸板部件24。
[0109] 图20是触摸板部件24的底视图,示出了触摸板部件24可以如何使用弹簧148安装在上壳体壁130的矩形开口中。弹簧148可以是金属弹簧,其由金属片冲压或切割,或可以通过将弹簧148直接切割为上壳体壁130的一部分来以整体方式形成。对于图19的柔性垫42,图20的弹簧148在由致动器36致动时,可以允许触摸板部件24在方向38上横向移动。
[0110] 图21中示出了用于触摸板20中的电容触摸传感器的示例性电极阵列的顶视图。如图21的示例所示,触摸板阵列150可以由基板50上的水平电极154和垂直电极152形成。基板50可以由刚性或柔性印刷电路板材料或其它适当基板形成。路径156可以被用于将电极信号从电极152和154传送至触摸传感器处理电路158。触摸传感器处理电路158可以将使用电极152和154检测到的电容改变转换为位置数据(例如,以定位诸如用户手指的外部物体在触摸板部件24上的位置)。力传感器34可以通过路径164将力信号提供至力传感器处理电路
162。力传感器处理电路162可以处理原始传感器信号以确定在每个传感器34上存在的力的量(例如,由于用户施加至触摸板的力引起的)。驱动电路166(例如,音频放大器或其它输出驱动器)可以用于将驱动信号提供至致动器36。当以这种方式被驱动时,致动器36可以通过诸如结构40的耦接结构向触摸板施加移动。
[0111] 电路162和158可以形成存储和处理电路160的一部分。存储和处理电路160可以包括安装在设备10中的一个或多个印刷电路板上的分立组件和集成电路。可以由易失性和非易失性存储电路形成存储和处理电路160中的存储部。如果愿意,硬盘驱动器和其它介质也可以被用于在设备10中存储信息。存储和处理电路160中的处理电路可以使用特定用途集成电路(ASIC)、数字信号处理电路、微控制器微处理器以及其它电路来实现。诸如应用代码、操作系统指令以及固件之类的软件可以用于实现用于操作触摸板20的功能。例如,软件可以被用于实现控制算法,其确定何时致动器36应当对触摸板部件24施加力。诸如电路162、驱动电路166以及电路158之类的硬件可以用于收集和处理传感器信号以及施加适当的驱动信号至致动器36。
[0112] 在一种典型情形中,控制功能可以使用硬件和软件的组合来实现。例如,用于收集力和传感器数据的信号处理算法可以使用触摸和力传感器的硬件功能,以及诸如处理电路162和158之类的相关处理电路的硬件功能。一旦原始传感器信号已经被处理,就可以采取适当的动作(例如,通过使用诸如驱动电路166的硬件来施加驱动信号至致动器166)。用于确定响应于检测到特定模式的传感器数据采取什么动作的控制算法可以被硬连线(例如,使用专用电路),可以使用软件,等等。
[0113] 图22示出了当用户在触摸板的平坦外表面上向下按压时可以产生的示例性力信号。如图22所示,力F最初可以随时间上升(例如,当用户在触摸板上施加增大的向下的力时)。当用户从触摸板表面抬起手指时,由力传感器测量到的力的量减少。
[0114] 用于处理诸如图22的力信号F的力信号的信号处理算法可以包括频率相关的滤波算法(例如,低通滤波器带通滤波器、以及高通滤波器)、基于时间的算法、呈现滞后的算法(例如,用于实现反跳(debounce)功能)、以及应用力幅度阈值的算法。例如,存储和处理电路160(图21)可以忽略幅度小于力阈值FT1(例如,噪声阈值)的所有力信号。高于和/或低于其它阈值(例如力阈值FT2和FT3)的力信号可以被归类为对应于按钮按压事件和按钮释放事件。
[0115] 图23的曲线示出了存储和处理电路160可以如何处理来自多个力传感器34的信号。在图23的示例中,触摸板20具有四个力传感器34,它们产生各自的力信号FFL(来自左前传感器)、FFR(来自右前传感器)、FBL(来自左后传感器)以及FBR(来自右后传感器)。这些信号可以被处理以确定用户手指的位置,或提取有关用户的力行为的性质的其它信息。使用一种适当的布置,四个独立的力信号可以被组合(例如,数字相加和/或平均),以产生组合的力信号FAVG。使用像这样的组合技术可以有助于减少噪声并提高力传感器的准确性。
[0116] 通过处理图22和23中示出的类型的模拟力传感器,存储和处理电路160可以处理相应的数字信号。例如,存储和处理电路160可以产生图24中示出的类型的数字“按压”信号以表示用户已经完成了按压事件,以及可以产生图25中示出的类型的数字“释放”信号以表示用户已经完成了释放事件。“按压”信号的持续时间(t2-t1)以及“释放”信号的持续时间(t4-t3)可以被固定,或者“按压”和“释放”可以连续地被断言(assert)直到被清零(作为例子)。图26示出了按压和释放事件可以如何通过组合的“按压”/“释放”信号中的上升沿和下降沿来表示。
[0117] 按压和释放事件可以通过对来自力传感器的力信号应用阈值来识别。例如,在平均力传感器信号FAVG超过默认的或用户定义的阈值时,可以识别出用户按钮按压(断言“按压”)。
[0118] 用户可以调节在处理触摸和力传感器信号时所使用的设置。例如,用户可以调节影响定时和幅度阈值的灵敏度设置和其它滤波参数。用户还可以调节提供给致动器36的驱动信号的类型。致动器信号的形状和幅度一般将影响由致动器施加至触摸板的力的量,以及赋予的运动的类型。
[0119] 图27示出了可以用于驱动致动器36的平滑(弧形)且对称的致动器驱动信号。图28示出了可以被使用的对称但形状更陡峭的驱动信号。图29和30的示例示出了致动器可以如何使用不对称信号而被驱动。具有短上升时间的信号(例如图29所示类型的信号)倾向于产生质量不同于具有短下降时间的信号(例如图30所示类型的信号)的触觉反馈。对称和不对称驱动信号还可以产生可察觉的不同结果。如果愿意,可以使用主要呈现亚音速频率分量(例如,小于20Hz、小于15Hz等的频率)的驱动信号,从而保证触觉反馈功能的安静操作的可能性(例如,当可听见的扬声器反馈被禁用时)。驱动信号还可以具有多个峰(例如,作为双脉冲)或可以具有其它复杂的波形。用户可以调节设备10中的设置以控制处理设置和反馈设置,从而符合用户的个人要求。例如,用户可以指示存储和处理电路160在检测到按压事件时产生期望的驱动形状,以及在检测到释放事件时产生不同的期望的驱动形状。
[0120] 力信号和触摸传感器信号可以被存储和处理电路160一起处理。例如,力传感器处理和/或力反馈可以在检测到手势行为时被禁止。这防止检测到无意的按钮按压并防止不期望的反馈。
[0121] 例如,以图31的情况为例。在这种情况下,用户没有在触摸传感器上移动手指(即,用户没有进行手势命令)。存储和处理电路160可以监视由触摸板20的触摸传感器部分收集的触摸传感器信号,并且可以得出不存在手势行为的结论。当检测到诸如图31的左侧的曲线的力F之类的力信号时,力传感器处理操作可以被执行以检测按压和释放事件。相应的“按压”和“释放”信号可以被产生以使得致动器36能够进行较高等级的处理和相应的对触摸板部件24的致动。
[0122] 然而,如果用户处于使用触摸板20输入手势的过程中,用户对触摸传感器的有效(active)使用可以被存储和处理电路160检测到。当用户做手势时,用户的手指移过触摸板的表面。有时,用户可能在手势过程中无意地在触摸板表面上按压。通过检测到手势行为,触摸板20的力反馈功能可以暂时被禁止。如图32所示,当力反馈功能被禁止时,检测到图32的左侧曲线中示出类型的力F将不会导致产生任何“按压”和“释放”信号。因此,在不存在手势行为时,没有驱动信号被提供至致动器36的驱动电路,并且致动器36在手势过程中将不产生触觉反馈,不论力按钮按压反馈功能在正常操作期间是如何灵敏。
[0123] 如果愿意,力反馈可以被手动关闭(例如,如果用户期望使用手势功能并且不希望无意中产生按钮按压)。还可以基于当前正在运行哪个应用、哪个用户登录至多用户系统、当前时间、其它条件的存在等等,来调节力反馈强度。
[0124] 可以与触觉反馈相呼应地产生声音,来帮助通知用户按钮致动事件已经发生(例如,使用设备10中的扬声器)。默认的和用户所选的声音可以产生。如果愿意,所产生的声音可以取决于所选择的致动驱动信号。例如,如果致动器驱动信号具有图29所示类型的形状,则产生的声音可以不同于致动器驱动信号具有图30所示类型的形状的情况(作为例子)。
[0125] 图33示出了力传感器、触摸传感器、以及驱动设置可以如何被用来调节触摸板20的操作。如图33所示,一个或多个力传感器34可以产生力数据(例如,与用户的手指多用力地向下按压在触摸板上相关的数据)。板20中的触摸传感器阵列168可以产生触摸数据(例如,与用户手指在触摸板的XY平面中的位置相关的数据)。
[0126] 用户定义的和默认的力信号处理设置可以提供给力信号处理电路162。这些信号可以包括力阈值、时间阈值、频率相关的滤波准则、以及其它影响力数据如何被力信号处理器162处理和解释的准则。基于这些设置,力信号处理电路162可以从力数据产生经处理的力数据信号(例如按压和释放数据)。
[0127] 用户定义的和默认的触摸信号处理设置可以被提供至触摸传感器处理电路158。这些信号可以包括灵敏度设置、用于当用户在键盘18上打字时禁止触摸响应的手掌检查设置、以及影响触摸板传感器阵列数据如何被触摸传感器信号处理电路158处理和解释的其它适当的处理准则。基于这些设置,触摸传感器信号处理电路158可以从触摸传感器168提供的触摸数据产生经处理的触摸数据信号(例如,手指位置数据)。
[0128] 驱动信号产生器170可以使用默认的和用户调节的驱动设置来调节。这些设置可以包括例如用于控制应用于致动器36的驱动控制信号的形状和幅度的设置。驱动信号产生器170可以由专用硬件、图21的存储和处理电路160中的资源、或其它适当资源来实现,它可以为致动器36提供致动器控制信号。这些信号可以被驱动器166(图21)驱动至致动器36中,或驱动器166的电路可以结合到驱动信号产生器170中。
[0129] 图34示出了调节和使用触摸板20所涉及的示例性步骤的流程图。
[0130] 在步骤170,触摸板20的默认设置可以被存储在存储和处理电路160中。例如,固件或其它代码可以嵌入在存储和处理电路160中的非易失性存储器中。该代码可以包括触摸板20的力传感器、触摸传感器阵列和致动器的默认设置。
[0131] 在步骤172可以从用户收集用户可调节的设置。例如,用户可以通过使用键盘、按压按钮、滑动开关、输入声音命令、或与屏幕上选项交互来提供设置。可被用户调节的触摸板设置包括应用软件设置、操作系统设置、固件设置、硬件设置等等。这些设置可以包括结合图33描述的类型的力信号处理设置、触摸传感器设置、以及驱动设置。
[0132] 在步骤174,可以从触摸传感器168和力传感器电路34收集触摸板数据。该数据可以在设备10的操作期间被持续收集(作为例子)。
[0133] 在步骤176,在步骤174收集的力数据和触摸数据可以使用用户提供的和默认的力信号处理设置以及用户提供的和默认的触摸传感器处理设置来处理。步骤176的处理操作使得产生经处理的力和触摸传感器数据(例如,X-Y手指移动数据和基于力的按钮致动数据)。
[0134] 在步骤178,响应于步骤176的处理操作,可以在设备10和触摸板20中采取适当的动作。例如,设备10上的操作系统或应用程序可以将按钮按压事件解释为打开或关闭显示窗口的命令,启动或停止特定功能的命令,等等。响应于步骤176的处理操作,通过使用适当控制信号驱动致动器36,可以产生触摸板移动。用于驱动致动器36的信号可以受到经处理的触摸和力信号以及致动器设置(例如,默认的和用户提供的驱动信号设置,诸如指示在各种情况下,图27-30的致动器驱动信号中的哪个应当被使用的设置,等等)的影响。
[0135] 尽管有时针对便携式计算机中的触摸板进行了描述,但是在此描述的这些类型的触摸板特征可以用在任何电子设备中。触摸板的力传感器特征可以用在具有或不具有触摸传感器功能以及具有或不具有致动器的设备中,触摸传感器特征可以用在具有或不具有力传感器功能以及具有或不具有致动器的设备中,致动器特征可以用在具有或不具有触摸传感器功能以及具有或不具有力传感器特征的设备中。
[0136] 所描述的实施例可以包括触摸I/O设备1001(在此有时被称作触摸板),其可以通过有线或无线通信信道1002接收与计算系统1003(图35)交互的触摸输入。触摸I/O设备1001可以用于代替诸如键盘、鼠标等其它输入设备或与之相结合,向计算系统1003提供用户输入。一个或多个触摸I/O设备1001可以被用于向计算系统1003提供用户输入。触摸I/O设备1001可以是计算系统1003的组成部分(例如膝上型计算机上的触摸屏)或可以与计算系统1003分开。
[0137] 触摸I/O设备1001可以包括完全或部分透明的、半透明的、不透明的、不透光或其任意组合的触摸敏感面板。触摸I/O设备1001可以实施为触摸屏、触摸板、作为触摸板工作的触摸屏(例如,代替膝上型计算机的触摸板的触摸屏)、与任何其它输入设备组合或结合的触摸屏或触摸板(例如,布置在键盘上的触摸屏或触摸板)、或具有用于接收触摸输入的触摸敏感表面的任何多维物体。
[0138] 在一个示例中,实施为触摸屏的触摸I/O设备1001可以包括部分或完全位于显示器的至少一部分上的透明和/或半透明触摸敏感面板。根据该实施例,触摸I/O设备1001用于显示从计算系统1003(和/或其它源)发送的图形数据,并且还用于接收用户输入。在其它实施例中,触摸I/O设备1001可以实施为触摸敏感组件/设备与显示组件/设备集成的集成触摸屏。在别的实施例中,触摸屏可以用作补充或附加的显示屏,用于显示补充的或相同的图形数据作为主显示,以及接收触摸输入。
[0139] 触摸I/O设备1001可以被配置为基于电容、电阻、光、声、感应、机械、化学测量、或可以针对一个或多个触摸或设备1001附近的近似触摸的发生进行测量的任何现象,来检测设备1001上的一个或多个触摸或近似触摸的位置。软件、硬件、固件或其任何组合可以被用来处理所检测到的触摸的测量,以识别和跟踪一个或多个手势。手势可以对应于触摸I/O设备1001上的静止或非静止的单个或多个触摸或近似触摸。手势可以通过以特定方式在触摸I/O设备1001上移动一个或多个手指或其它物体而执行,诸如,在基本相同时刻、连续地、或连贯地轻击、按压、摇摆、擦过、扭拧、改变方向、以变化的压力按压等等。手势可被表征为(但不限于)任意手指之间或使用任意手指的收拢、滑动、挥过、旋转、挠曲、拖拽、或轻击动作。单个手势可以使用一只或多只手、由一个或多个用户、或其任意组合来执行。
[0140] 计算系统1003可以使用图形数据驱动显示器显示图形用户界面(GUI)。GUI可以用于通过触摸I/O设备1001接收触摸输入。实施为触摸屏的触摸I/O设备1001可以显示GUI。可替换地,GUI可以显示在与触摸I/O设备1001分开的显示器上。GUI可以包括显示在界面内的特定位置的图形元素。图形元素可以包括但不限于各种显示的虚拟输入设备,包括虚拟滚轮、虚拟键盘、虚拟旋钮、虚拟按钮、任何虚拟UI等等。用户可以在触摸I/O设备1001上可能与GUI的图形元素相关联的一个或多个特定位置做手势。在其它实施例中,用户可以在与GUI的图形元素的位置无关的一个或多个位置做手势。在触摸I/O设备1001上做出的手势可以直接或间接操纵、控制、修改、移动、触发、启动、或一般而言影响GUI中的图形元素,诸如光标、图标、媒体文件、列表、文字、所有或部分图像,等等。例如,在触摸屏的情况下,用户可以通过在触摸屏上的图形元素上做出手势来直接与图形元素交互。可替换地,触摸板通常提供间接的交互。手势还可以影响未显示的GUI元素(例如,使用户界面出现)或可以影响计算系统1003中的其它动作(例如,影响GUI、应用或操作系统的状态或模式)。手势可以或可以不与所显示的光标结合地在触摸I/O设备1001上进行。例如,在在触摸板上执行手势的情况下,光标(或指针)可以显示在显示屏或触摸屏上,并且光标可以通过触摸板上的触摸输入被控制以与显示屏上的图形对象交互。在直接在触摸屏上执行手势的其它实施例中,用户可以直接与触摸屏上的对象交互,而触摸屏上可以显示或不显示光标或指针。
[0141] 响应于或基于触摸I/O设备1001上的触摸或近似触摸,可以通过通信信道1002将反馈提供给用户。反馈可以以光学、机械、电、嗅觉、声学等方式或其任意组合以可变或不可变的方式来传送。
[0142] 现在注意力转向可以在任何便携式或非便携式设备中实现的系统架构的实施例,所述设备包括但不限于通信设备(例如移动电话、智能电话)、多媒体设备(例如,MP3播放器、TV、收音机)、便携式或手持计算机(例如,平板电脑、上网本、膝上型电脑)、桌上型计算机、一体化桌上型计算机、外围设备、或适于包括系统结构2000的任何其它系统或设备,包括这些设备类型的两个或更多个的组合。图36是系统2000的一个实施例的框图,其一般包括一个或多个计算机可读介质2001、处理系统2004、输入/输出(I/O)子系统2006、射频(RF)电路2008以及音频电路2010。这些组件可以通过一个或多个通信总线或信号线2003耦接。
[0143] 在一些实施例中,系统2000可以包括MP3播放器(例如iPod(苹果计算机公司的商标))的功能。系统2000因此可以包括与iPod兼容的多引脚连接器。在一些实施例中,系统2000可以包括一个或多个可选的在图像应用中使用的光传感器(未示出),例如CMOS或CCD图像传感器。
[0144] 应该理解图36中示出的架构仅是系统2000的示例性架构,系统2000可以具有比示出的更多或更少的组件,或具有不同的组件配置。图36中示出的各种组件可以以硬件、软件、固件或其任意组合来实现,包括一个或多个信号处理和/或特定用途集成电路。
[0145] RF电路2008用于通过无线链路或网络发送信息至一个或多个其它设备和从一个或多个其它设备接收信息,其包括熟知的用于执行该功能的电路,包括但不限于天线系统、RF收发器、一个或多个放大器、调谐器、一个或多个振荡器数字信号处理器、CODEC芯片组、存储器等。在一些实施例中,RF电路2008能够使用一个或多个通信协议来建立和维持与其它设备的通信,所述通信协议包括但不限于时分多址(TDMA)、码分多址(CDMA)、全球移动通信系统(GSM)、增强数据GSM环境(EDGE)、宽带码分多址(W-CDMA)、Wi-Fi(例如IEEE 802.11a,IEEE 802.11b,IEEE802.11g,和/或IEEE 802.11n)、蓝牙、Wi-MAX、HSDPA(高速下行分组接入)、网络电话协议(VoIP)、电子邮件协议、即时消息、和/或短消息服务(SMS)、或任何其它适当通信协议,包括在本文件的提交日还没有开发出的通信协议。
[0146] RF电路2008和音频电路2010通过外围接口2016耦接至处理系统2004。接口2016包括用于建立和维持外围设备和处理系统2004之间的通信的各种已知部件。音频电路2010耦接至音频扬声器2050和麦克2052,并包括已知的用于处理从接口2016接收的声音信号以使得用户能够与其它用户实时通信的电路。在一些实施例中,音频电路2010包括机插孔(未示出)。由RF电路2008和音频电路2010接收的语音和数据信息(例如,在语音识别或语音命令应用中)通过外围接口2016被发送至一个或多个处理器2018。该一个或多个处理器2018可被配置用于为存储在介质2001上的一个或多个应用程序2030处理各种数据格式。
[0147] 术语“数据”包括但不限于文本、图形、网页、JAVA小程序、窗口小部件、电子邮件、即时消息、语音、数字图像或视频、MP3等,其可以被存储在介质2001上的一个或多个应用程序(例如,Web浏览器、电子邮件等)使用。在一些实施例中,系统2000能够通过无线网络或外部端口2036从因特网上传和下载各种数据,诸如文件、歌曲、数字图像、视频、电子邮件、窗口小部件、即时消息等。
[0148] 外部接口2016将系统的输入和输出外围设备耦接至处理器2018和计算机可读介质2001。一个或多个处理器2018通过控制器2020与一个或多个计算机可读介质2001通信。计算机可读介质2001可以是能够存储供一个或多个处理器2018使用的代码和/或数据的任何设备或介质。介质2001可以包括存储器层次结构,包括但不限于高速缓存、主存储器和次存储器。存储器层次结构可以使用RAM(例如SRAM、DRAM、DDRAM)、ROM、FLASH、磁和/或光存储设备(例如,盘驱动器、磁带、CD(光盘)和DVD(数字视频光盘))的任意组合来实现。介质2001也可以包括用于携带表示计算机指令或数据的信息承载信号的传输介质(具有或不具有其上调制有信号的载波)。例如,传输介质可以包括通信网络,包括但不限于因特网(也被称作环球网)、内部网、局域网(LAN)、无线局域网(WLAN)、存储区域网络(SAN)、城域网(MAN)等。
[0149] 一个或多个处理器2018运行存储在介质2001中的各种软件组件来执行系统2000的各种功能。在一些实施例中,软件组件包括操作系统2022、通信模(或指令集)2024、触摸处理模块(或指令集)2026、图形模块(或指令集)2028、一个或多个应用(或指令集)2030、以及力传感器和反馈模块(或指令集)2038。这些模块和上述应用中的每一个对应于用于执行上述一个或多个功能以及在本申请中描述的方法(例如计算机可执行方法和在此描述的其它信息处理方法)的一个指令集。这些模块(即,指令集)不一定要实施为单独的软件程序、过程或模块,因此在各种实施例中,这些模块的各种子集可以被组合或以其它方式重新布置。在一些实施例中,介质2001可以存储上述模块和数据结构的子集。此外,介质2001可以存储上面没有描述的其它模块和数据结构。
[0150] 操作系统2022(例如,Darwin、RTXC、LINUX、UNIX、OSX、Windows或诸如VxWorks的嵌入式操作系统)包括各种程序、指令集、软件组件和/或用于控制和管理通用系统任务(例如,存储管理、存储装置控制、电源管理等)的驱动程序,并且有利于各种硬件和软件组件之间的通信。
[0151] 通信模块2024有利于通过一个或多个外部端口2036或经由RF电路2008与其它设备通信,并且包括各种用于处理从RF电路2008和/或外部端口2036接收的数据的软件组件。外部端口2036(例如,USB、FireWireTM等)适于直接或通过网络(例如,因特网、无线LAN等)间接耦接至其它设备。
[0152] 图形模块2028包括各种已知的软件组件,用于在显示器表面上渲染、动画化和显示图形对象。在触摸I/O设备2012是触摸敏感显示器(例如触摸屏)的实施例中,图形模块2028包括在触摸敏感显示器上渲染、显示和动画化对象的组件。注意,术语“图形对象”包括可以被显示给用户的对象,包括但不限于文本、网页、图标、数字图像、动画等。
[0153] 一个或多个应用2030可以包括安装在系统2000上的任何应用,包括但不限于浏览器、地址簿、联系人列表、电子邮件、即时消息、文字处理、键盘模拟、窗口小部件、JAVA应用、加密、数字版权管理、语音识别、语音复制、定位功能(例如,由全球定位系统(GPS)提供)、音乐播放器(播放存储在一个或多个文件中的记录的音乐,例如MP3或AAC文件),等等。
[0154] 触摸处理模块2026包括用于执行与触摸I/O设备2012相关的各种任务的各种软件组件,执行所述任务包括但不限于通过触摸I/O设备控制器2032接收和处理从I/O设备2012接收的触摸输入。
[0155] 系统2000还可以包括力传感器和反馈模块2038,用于执行结合图33和34描述的方法/功能。力传感器和反馈模块2038可以至少用于接收和处理来自力传感器的触摸和力数据,并作为响应采取动作(例如,通过使用致动器控制信号驱动致动器)。模块2038可以实施为硬件、软件、固件或其任意组合。尽管模块2038示出为驻留在介质2001中,但是模块2038的所有或部分可以实施在系统2000内的其它组件中,或可以全部实施为系统2000中的单独组件)。
[0156] I/O子系统2006耦接至触摸I/O设备2012和一个或多个其它I/O设备2014,用于控制或执行各种功能,诸如功率控制、扬声器音量控制、铃声响度、键盘输入、滚动、保持、菜单、屏幕、清除和结束通信等等。触摸I/O设备2012通过触摸I/O设备控制器2032与处理系统2004通信,触摸I/O设备控制器2032包括用于处理用户触摸输入(例如,扫描硬件)的各种组件。一个或多个其它输入控制器2034向/从其它I/O设备2014发送/接收电信号。其它I/O设备2014可以包括物理按钮(例如,按压按钮、摇杆按钮等)、拨号盘、滑动开关、杆、键盘、触摸板、其它显示屏、或其任意组合。
[0157] 如果实施为触摸屏,触摸I/O设备2012在GUI中向用户显示视觉输出。视觉输出可以包括文本、图形、视频及其任何组合。视觉输出的一些或所有可以对应于用户界面对象。触摸I/O设备2012形成接受来自用户的触摸输入的触摸敏感表面。触摸I/O设备2012和触摸屏控制器2032(连同任何相关模块和/或介质2001中的指令集)检测和跟踪触摸I/O设备
2012上的触摸或近似触摸(以及触摸的任何移动或释放),并将所检测到的触摸输入转换为与图形对象(诸如一个或多个用户界面对象)的交互。在设备2012被实施为触摸屏的情况下,用户可以直接与显示在触摸屏上的图形对象交互。可替换地,在设备2012被实施为不是触摸屏的触摸设备(例如触摸板)的情况下,用户可以间接与显示在被实施为I/O设备2014的单独显示屏上的图形对象交互。在一个示例性实施例中,由触摸I/O设备2012从用户接收的触摸输入对应于用户的一个或多个手指。触摸I/O设备2012和触摸I/O设备控制器2032可以使用多种触摸敏感技术中的任一种来检测触摸输入,包括但不限于电容、电阻、红外、光学、表面声波技术、感应、机械、化学以及其它触摸传感器布置或其它用于确定触摸I/O设备
2012上的一个或多个触摸或近似触摸的部件。用户可以使用任何适当物体或附件(例如,触笔、笔、手指等)来与触摸I/O设备2012进行接触。
[0158] 触摸I/O设备2012可以类似于在下面的美国专利中描述的多触摸敏感表面:6,323,846(Westerman等人)、6,570,557(Westerman等人),和/或6,677,932(Westerman)、和/或美国专利公开2002/0015024A1,其中每个都通过引用结合于此。
[0159] 在触摸I/O设备2012是触摸屏的实施例中,触摸屏可以使用LCD(液晶显示)技术、LPD(发光聚合物显示)技术、OLED(有机LED)、或OEL(有机电致发光),但是其它显示技术可以应用在其它实施例中。
[0160] 在设备2012被实施为触摸屏的一些实施例中,系统2000还可以包括实施为其它I/O设备2014的触摸板。在一些实施例中,触摸板是设备的触摸敏感区域,其不像触摸屏那样显示视觉输出。在这种情况下,触摸板与触摸屏分开。可替换地,触摸板可以实施为触摸屏。在又一些实施例中,触摸屏的一些部分可以包括用作在触摸屏以外接收触摸输入的触摸板的非显示区域(例如,沿触摸屏的外围)。
[0161] 基于用户触摸输入以及所显示的东西和/或计算系统的状态,可以由触摸I/O设备2012提供反馈。反馈可以以光学(例如,光信号或显示图像)、机械(例如触感反馈、触摸反馈、力反馈等)、电(例如电刺激)、嗅觉、声学(例如蜂鸣声等)等方式或其任意组合以可变或不可变的方式被传送。
[0162] 系统2000还包括功率系统2044,用于为各种硬件组件供电。功率系统2044可以包括功率管理系统、一个或多个电源(例如,电池、交流(AC))、充电系统、功率故障检测电路、功率转换器或逆变器、电源状态指示器(例如,发光二极管(LED))以及任何其它通常与便携式设备中功率的产生、管理和分配相关的组件。
[0163] 在一些实施例中,外围设备接口2016、一个或多个处理器2018以及存储器控制器2020可以实施在单个芯片上,例如处理系统2004。在一些其它实施例中,它们可以实施在分别的芯片上。
[0164] 一个或多个手势可以几乎同时在触摸I/O设备1001上执行。多个手势可以以单个不中断的一笔做出。可替换地,单个手势可以由多个分段的子手势组成,例如“剪切和粘贴”手势。在触摸I/O设备1001上的不同区域中执行的相同的手势可以根据手势执行的区域来向计算系统1003提供不同的触摸输入。
[0165] 应该注意,尽管上面关于触摸表面描述的是一个或多个触摸或近似触摸对应于用户手指触摸或接近触摸表面,但是应该理解其它物体也可以用来向触摸I/O设备1001提供触摸输入,其它物体包括一个或多个其它的用户身体部分(例如,手掌、全手、头、鼻子、耳朵、脚、指甲)、无源或有源触笔、文件、物体阴影(例如手指阴影)、非导电或导电物体、无源或有源物体、多维物体、或其任意组合。有源针笔的示例可以包括光笔。此外,多种类型的物体可以同时或不同时向触摸I/O设备1001提供触摸输入。
[0166] 根据一个实施例,提供一种接收来自外部物体的输入的跟踪板,包括:具有触摸板传感器阵列的触摸板部件,所述触摸板传感器阵列收集表示外部物体已触摸了触摸板部件的给定位置的触摸传感器阵列信号;多个力传感器,分别连接至触摸板部件的不同位置,其中所述力传感器产生表示外部物体正在多用力地按压触摸板部件的力输出信号;以及横向致动所述触摸板部件的致动器。
[0167] 根据另一个实施例,提供一种跟踪板,其中触摸板传感器阵列包括具有电容电极阵列的电容触摸传感器。
[0168] 根据另一个实施例,提供一种跟踪板,其中所述多个力传感器中的每个力传感器包括压电力传感器,并且触摸板部件借助于所述多个力传感器安装在计算机壳体内的固定位置。
[0169] 根据另一个实施例,提供一种跟踪板,其中致动器包括至少一个线圈,触摸板部件基本上平坦并位于平面内,并且致动器向触摸板部件施加横向的在平面内的移动。
[0170] 根据另一个实施例,提供一种跟踪板,其中触摸板部件基本平坦并且具有多个边缘,并且致动器包括具有活塞的螺线管,该活塞向所述边缘之一施加移动。
[0171] 根据另一个实施例,提供一种跟踪板,其中触摸板部件包括具有边缘的刚性的基本平坦的结构,并且致动器耦接至所述边缘并通过将横向的在平面内的力施加至所述边缘来移动触摸板部件。
[0172] 根据另一个实施例,提供一种跟踪板,其中致动器包括由驱动信号控制的电磁致动器,触摸板部件包括位于平面内的刚性触摸板部件,触摸板部件具有左、右、后和前边缘,左和右边缘短于后和前边缘,致动器耦接至左边缘和右边缘中所选的一个,并且致动器在所述平面内水平移动触摸板部件,而不在所述平面外垂直移动触摸板部件。
[0173] 根据另一个实施例,提供一种跟踪板,其中触摸板部件包括由致动器全局致动的刚性矩形部件,并且所述多个力传感器包括四个力传感器,每个力传感器位于触摸板部件的一个相应角处,并且每个力传感器产生表示外部物体正在多用力地按压触摸板部件的单独的模拟力输出信号。
[0174] 根据另一个实施例,提供一种跟踪板,所述跟踪板还包括耦接至所述四个力传感器中的每一个的柔性垫。
[0175] 根据另一个实施例,提供一种跟踪板,其中所述柔性垫包括凝胶。
[0176] 根据另一个实施例,提供一种跟踪板,其中所述力传感器包括压电力传感器。
[0177] 根据一个实施例,提供一种电子设备,包括:存储和处理电路;以及耦接至所述存储和处理电路的跟踪板,其中跟踪板具有有效表面和跨基本全部有效表面延伸的触摸板部件、耦接至触摸板部件的触摸传感器阵列、耦接至触摸板部件的力传感器、以及耦接至触摸板部件的致动器,所述力传感器产生表示外部物体正在多用力地按压触摸板部件的力传感器信号,所述致动器响应于所述力传感器信号,通过移动触摸板部件来产生触觉反馈,其中存储和处理电路被配置为使用触摸传感器阵列来检测跟踪板上的手势行为,并且被配置为响应于检测到手势行为,暂时禁止致动器移动触摸板部件。
[0178] 根据另一个实施例,提供一种电子设备,其中触摸板部件具有四个边缘并且基本位于平面内,并且致动器耦接至所述边缘之一并基本上在所述平面内移动触摸板部件。
[0179] 根据另一个实施例,提供一种电子设备,其中存储和处理电路包括力信号处理电路,该力信号处理电路处理力传感器信号以产生表示用户何时按压和释放了与触摸板部件接触的手指的按压和释放数据。
[0180] 根据另一个实施例,提供一种电子设备,其中力传感器包括压电传感器
[0181] 根据另一个实施例,提供一种电子设备,所述电子设备还包括多个柔性垫,每个柔性垫耦接至所述力传感器中的一个相应的力传感器。
[0182] 根据另一个实施例,提供一种电子设备,所述电子设备还包括壳体结构,其中所述多个柔性垫安装至所述壳体结构。
[0183] 根据另一个实施例,提供一种电子设备,其中所述壳体结构包括所述柔性垫附着到的计算机壳体壁。
[0184] 根据另一个实施例,提供一种电子设备,所述电子设备还包括耦接在致动器和触摸板部件之间的耦接结构。
[0185] 根据另一个实施例,提供一种电子设备,其中所述耦接结构包括细长的金属部件。
[0186] 根据另一个实施例,提供一种电子设备,其中所述细长的金属部件具有包括弯曲的部分。
[0187] 根据另一个实施例,提供一种电子设备,其中所述耦接结构包括机械连杆。
[0188] 根据另一个实施例,提供一种电子设备,其中所述机械连杆包括至少一个部件以及该至少一个部件绕其旋转的至少一个枢轴。
[0189] 根据另一个实施例,提供一种电子设备,其中存储和处理电路被配置为接收用户定义的力信号处理设置。
[0190] 根据另一个实施例,提供一种电子设备,其中触摸传感器阵列产生触摸数据,并且存储和处理电路被配置为接收用于控制所述存储和处理电路如何处理力传感器信号的第一用户定义设置,并且被配置为接收用于控制所述存储和处理电路如何处理力传感器信号的第二用户定义设置。
[0191] 根据一个实施例,提供一种操作计算机跟踪板的方法,所述计算机跟踪板具有拥有触摸传感器阵列的触摸板部件,连接至触摸板部件的力传感器,以及致动器,所述方法包括:使用触摸传感器阵列,确定外部物体与跟踪板的触摸板部件相接触的位置;使用每个力传感器,测量外部物体向跟踪板的触摸板部件施加了多少力;以及使用致动器,至少部分地基于使用力传感器收集的数据向跟踪板的触摸板部件施加全局移动。
[0192] 根据另一个实施例,提供一种方法,其中致动器由致动器驱动信号驱动以向跟踪板的触摸板部件施加所述移动,所述方法还包括:收集用户定义的驱动设置;以及当向跟踪板的触摸板部件施加移动时,至少部分基于所述用户定义的驱动设置来产生所述致动器驱动信号。
[0193] 根据另一个实施例,提供一种方法,其中所述用户定义的驱动设置包括指定使用上升时间短于下降时间的不对称致动器驱动信号的设置。
[0194] 根据另一个实施例,提供一种方法,其中所述用户定义的驱动设置包括指定使用下降时间短于上升时间的不对称致动器驱动信号的设置。
[0195] 根据另一个实施例,提供一种方法,其中所述用户定义的驱动设置还包括指定使用具有基本相同的上升时间和下降时间的对称致动器驱动信号的设置。
[0196] 根据另一个实施例,提供一种方法,其中存在四个所述力传感器,每个力传感器位于跟踪板的触摸板部件的一个相应角的下面,所述力传感器信号包括模拟力传感器信号,并且测量向跟踪板的触摸板部件施加了多少力包括:从所述四个力传感器中的每个力传感器收集单独的模拟力传感器信号;以及组合已收集的所述模拟力传感器信号。
[0197] 根据另一个实施例,提供一种方法,其中组合所述模拟力传感器信号包括数字平均所述模拟力传感器信号。
[0198] 根据一个实施例,提供一种计算机跟踪板系统,包括:刚性矩形触摸板部件,其包括电容触摸传感器阵列并且具有四个角;四个力传感器,每个力传感器耦接至所述四个角中的一个相应的角;至少一个致动器,其通过耦接部件连接至刚性矩形触摸板部件的边缘,并且响应于致动器驱动信号向整个刚性矩形触摸板部件施加移动;以及电路,其处理来自所述电容触摸传感器阵列的触摸传感器数据和来自所述力传感器的模拟力数据,并且基于来自所述电容触摸传感器阵列的触摸传感器数据和基于来自所述力传感器的模拟力数据,产生用于致动器的致动器驱动信号。
[0199] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述四个力传感器中的每个力传感器产生一个相应的模拟力信号,并且所述电路被配置为处理来自所述四个力传感器的模拟力信号以产生平均力信号。
[0200] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述电路被配置为通过处理所述平均力信号来识别按钮按压和按钮释放行为,并且所述按钮按压和按钮释放行为表示用户向所述刚性矩形触摸部件施加力。
[0201] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述电路被配置为响应于识别出所述按钮按压和按钮释放行为而产生相应的致动器驱动信号。
[0202] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述电路被配置为在所述电路使用电容触摸传感器阵列检测到同时的手势行为时,禁止响应于识别出所述按钮按压和按钮释放行为而产生相应的致动器驱动信号。
[0203] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述力传感器包括聚合物-金属复合材料力传感器。
[0204] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述力传感器包括当力施加至力传感器时呈现电阻改变的材料。
[0205] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述力传感器包括当力施加至力传感器时呈现电容改变的电极。
[0206] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述力传感器包括应变计。
[0207] 根据另一个实施例,提供一种计算机跟踪板系统,其中所述刚性矩形触摸板部件包括:矩形平坦玻璃层;以及覆盖所述玻璃层的至少一个表面的不透明墨层,所述不透明墨层防止光通过所述玻璃层。
[0208] 上述仅是本发明的原理的示例性说明,在不背离本发明的范围和精神的情况下,本领域技术人员可以进行各种修改。上述实施例可以单独或任意组合地实施。
QQ群二维码
意见反馈