具有大功率负载的微混合动机动车的电池系统

申请号 CN201180007172.6 申请日 2011-01-19 公开(公告)号 CN102741082B 公开(公告)日 2015-04-15
申请人 罗伯特·博世有限公司; 三星SDI株式会社; 发明人 J·费策尔; S·布茨曼; H·芬克;
摘要 本 发明 涉及一种用于具有 内燃机 的机动车的 蓄 电池 系统,其中,该 蓄电池 系统至少具有 启动 电路 、低压车载电气系统和具有增高 电压 的车载电气系统。该启动电路具有启动蓄电池和与该启动蓄电池连接的或能够连接的启动器,该启动器被构造为根据启动 信号 启动内燃机。该低压车载电气系统具有车载电气系统蓄电池(15)以及至少一个电 力 负载(14-2),该车载电气系统蓄电池(15)被构造为产生第一电压并将其输出到该低压车载电气系统。具有增高电压的该车载电气系统具有至少一个发 电机 (13-2),该发电机能够由该内燃机驱动并被构造为产生高于该第一电压的第二电压并将其输出到具有增高电压的该车载电气系统。具有增高电压的该车载电气系统通过第一耦合单元(16)与该低压车载电气系统连接,该第一耦合单元(16)被构造为从具有增高电压的该车载电气系统提取 电能 并将其输送到该低压车载电气系统。该低压车载电气系统通过第二耦合单元(17)与该启动电路连接,该第二耦合单元(17)被构造为从该低压车载电气系统提取电能并将其输送到该启动电路。此外本发明的主题是具有相应的蓄电池系统的机动车。
权利要求

1.一种用于具有内燃机的机动车的电池系统,所述蓄电池系统至少具有:
启动电路,其具有启动蓄电池(10)和与所述启动蓄电池(10)连接的或能够连接的启动器(11),所述启动器被构造为根据启动信号启动所述内燃机;
低压车载电气系统,其具有车载电气系统蓄电池(15)以及至少一个电负载(14-2),所述车载电气系统蓄电池被构造为产生第一电压并将其输出到所述低压车载电气系统;以及
具有增高电压的车载电气系统,带有至少一个发电机(13-2),所述发电机能够由所述内燃机驱动并且被构造为产生高于所述第一电压的第二电压并且将其输出到具有增高电压的所述车载电气系统,其中,具有增高电压的所述车载电气系统通过第一耦合单元(16)与所述低压车载电气系统连接,所述第一耦合单元被构造为从具有增高电压的所述车载电气系统提取电能并将其输送到所述低压车载电气系统,并且其中所述低压车载电气系统通过第二耦合单元(17)与所述启动电路连接,所述第二耦合单元被构造为从所述低压车载电气系统提取电能并将其输送到所述启动电路。
2.根据权利要求1所述的蓄电池系统,其特征在于,所述启动蓄电池(10)和/或所述车载电气系统蓄电池(15)被实施为锂离子蓄电池。
3.根据权利要求1或2所述的蓄电池系统,其特征在于,具有增高电压的所述车载电气系统具有至少一个大功率负载(19)。
4.根据权利要求3所述的蓄电池系统,其特征在于,所述至少一个大功率负载(19)为电动空调压缩机、电加热系统或电动机
5.根据权利要求1或2所述的蓄电池系统,其特征在于,所述低压车载电气系统的所述至少一个电力负载(14-2)是音响设备、导航装置或电动摇窗机。
6.根据权利要求1或2所述的蓄电池系统,其特征在于,所述蓄电池系统具有二极管(18),其阳极与所述低压车载电气系统连接,并且其阴极与所述启动电路连接。
7.根据权利要求1或2所述的蓄电池系统,其特征在于,具有增高电压的所述车载电气系统具有缓冲电容器(20)。
8.根据权利要求1或2所述的蓄电池系统,其特征在于,所述第一耦合单元(16)和/或所述第二耦合单元(17)是DC/DC变换器。
9.根据权利要求1或2所述的蓄电池系统,其特征在于,所述第一电压在10V到15V之间。
10.根据权利要求1或2所述的蓄电池系统,其特征在于,所述第二电压在24V到45V之间。
11.一种具有内燃机和根据前述权利要求中任意一项所述的蓄电池系统的机动车。
12.根据权利要求11所述的机动车,其中,所述机动车是微混合动力机动车。

说明书全文

具有大功率负载的微混合动机动车的电池系统

技术领域

[0001] 本发明涉及一种用于机动车的蓄电池系统,该蓄电池系统以相同的工作电压供给多个不同类型的电力负载。此外本发明的主题是具有相应的蓄电池系统的机动车。

背景技术

[0002] 在具有内燃机的机动车中,为了为用于内燃机的电动启动器或启动装置以及机动车的其他电动装置供电,设置了所谓的车载电气系统,该车载电气系统依据标准采用14V驱动(参见图1)。在启动内燃机(未示出)时,取决于为供电而设置的启动蓄电池10的充电状态的电压通过车载电气系统被提供给启动内燃机的启动器11(在图1的实施例中:如果开关12通过相应的启动信号闭合的话)。如果内燃机启动,那么该内燃机驱动发电机
13-1(“机动车发电机”),该发电机然后产生大约14V的电压并通过车载电气系统将其提供给机动车上的不同的电力负载14-1。在此,发电机13-1还为承受了由启动过程引起的负荷的启动蓄电池10重新充电。
[0003] 能够预料的是,所谓的微混合动力机动车在不远的将来会得到广泛推广。相对于“纯”混合动力机动车,这种类型的机动车仅使用内燃机用于驱动。例如在制动时,设置用于回收动能的装置(再生(Rekuperation)),然而以电的形式回收的能量却不是用于驱动,而是用于例如起止自动装置和其他电动子系统,以便尽可能少地必须使用由内燃机驱动的发电机,这减少了内燃机的负荷并且由此减少了其燃料消耗。
[0004] 但目前已经批量生产的微混合动力机动车在常用的铅酸蓄电池的使用寿命方面存在严重问题,因为与传统的机动车相比这种车辆施加了很大地附加的充气流量。在此原因是,电力负载在内燃机断开的停止阶段期间必须由蓄电池供电。另一方面,按照这种方式快速放电的蓄电池在再生的相对较短的阶段期间重新充电,这也是蓄电池的一种负荷。这就导致了微混合动力机动车上的蓄电池部分使用寿命不到两年。经常需要更换蓄电池导致机动车的可靠性方面出现问题并招致客户的不满。
[0005] 在如今装配的机动车上的另一个问题是,在14V驱动的车载电气系统情况下,像例如电动空调压缩机或电加热系统等电力大功率负载的供电会出现问题,因为这些负载由于电压比较低而必须供给非常高的电流,以便能够提供所需的功率。

发明内容

[0006] 本发明的第一方面引入了用于具有内燃机的机动车的蓄电池系统,其中,该蓄电池系统至少具有启动电路、低压车载电气系统和具有增高电压的车载电气系统。启动电路包括启动蓄电池和与启动蓄电池连接的或能够连接的启动器,该启动器被构造为根据启动信号启动内燃机。低压车载电气系统包括车载电气系统蓄电池和至少一个电力负载,该车载电气系统蓄电池被构造为产生第一电压并将其输出到低压车载电气系统。具有增高电压的车载电气系统包括至少一个发电机,该发电机能够由内燃机驱动并被构造为产生高于第一电压的第二电压和并将其输出到具有增高电压的车载电气系统。具有增高电压的车载电气系统通过第一耦合单元与低压车载电气系统连接,该第一耦合单元被构造为从具有增高电压的车载电气系统提取电能并将其输送到低压车载电气系统。低压车载电气系统通过第二耦合单元与启动电路连接,该第二耦合单元被构造为从低压车载电气系统提取电能并将其输送到启动电路。
[0007] 依据本发明的车载电气系统或蓄电池系统所使用的蓄电池具有更长的使用寿命并更适用于向大功率负载的供电。
[0008] 本发明的优点是,能够通过低压车载电气系统进一步地驱动根据低(第一)电压设计的电力负载。而具有增高电压的车载电气系统可供大功率负载使用,该车载电气系统由于更高的第二电压而能够以更低的电流供给大功率负载。此外,启动电路与低压车载电气系统分开,并且启动电路以及低压车载电气系统各自具有自身的蓄电池,即一方面是启动蓄电池和另一方面是车载电气系统蓄电池。由此稳定低压车载电气系统,并对于由于微混合动力机动车的起止自动装置而频繁的启动过程更不敏感。在启动时,尤其是低压车载电气系统的电压将不中断或至少明显较少地中断,这确保了在低压车载电气系统中驱动的电力负载的无故障,并因此确保其可靠的功能。
[0009] 依据本发明,发电机设置在具有增高电压的车载电气系统内并在内燃机完成启动后向该车载电气系统提供电能,这种电能也能够至少部分地输送到低压车载电气系统用于启动蓄电池的充电。发电机设置在具有增高电压的车载电气系统中的优点是,在具有增高电压的车载电气系统内产生电能,在具有增高电压的车载电气系统内也设置有具有最大功率消耗的负载。仅较少部分的电能必须通过耦合单元输送到低压车载电气系统,这改善了总体设置的效率。启动电路也具有单独的蓄电池(启动蓄电池),该蓄电池能够在没有干扰的中间部件情况下向启动器提供启动所需的大电流。
[0010] 特别优选一种蓄电池系统,其中,启动蓄电池和/或车载电气系统蓄电池是锂离子蓄电池。锂离子蓄电池在给定的体积下能够储存比例如铅电池更大的能量。在此特别有利的是,第二耦合单元在内燃机完成启动后从低压车载电气系统向启动电路输送电能,并起到用于启动蓄电池的充电器的作用。在本发明的这种优选实施方式中,启动蓄电池必须以特别的方式充电,因为该启动蓄电池被实施为锂离子蓄电池,并因此对过压敏感。锂离子蓄电池的另一优点是,其能够承受大量的充电周期并因此能够增加微混合动力机动车的可靠性。
[0011] 具有增高电压的车载电气系统能够具有至少一个大功率负载,例如电动空调压缩机、电加热系统或电动机。低压车载电气系统的至少一个电力负载例如能够是音响设备、导航装置或电动摇窗机。
[0012] 在本发明一种有利的实施方式中,设置有二极管,其阳极与低压车载电气系统连接,并且其阴极与启动电路连接。如果启动电路内的电压由于启动内燃机时的高负荷而断开,那么二极管开始自动接通并通过将车载电气系统蓄电池与启动蓄电池并联连接来稳定启动电路的电压。因为二极管能够输送明显大于第二耦合单元的电流,所以第二耦合单元不会如所期望地稳定启动电路内的电压。
[0013] 优选地,具有增高电压的车载电气系统具有缓冲电容器,该缓冲电容器平滑在具有增高电压的车载电气系统内由发电机产生的第二电压。
[0014] 优选地,第一耦合单元和/或第二耦合单元是DC/DC变换器。
[0015] 第一电压能够在10V到15V之间。这种电压范围保证与机动车结构内可供支配的大量电系统的兼容性。出于同样原因,优选地还设置用于启动电路的第一电压。
[0016] 第二电压优选地在24V到45V之间。这种电压范围允许了对大功率负载所需电功率的简化的供给,而不会将电压提高到使在修理情况下的维修人员或在事故情况下的救护人员或乘客遭受高电压的危险。通过第二电压基本为第一电压的两倍到三倍之间的方式,使得具有增高电压的车载电气系统与低压车载电气系统的耦合成为可能,能够以良好的效率进行第二电压向第一电压的转换。
[0017] 本发明的第二方面涉及一种具有内燃机和根据本发明的第一方面所述的蓄电池系统的机动车。优选地,机动车被实施为微混合动力机动车。附图说明
[0018] 下面借助附图的实施例对本发明进行详细说明。在此,相同或类似的附图标记表示相同或类似的元件。附图中:
[0019] 图1示出了现有技术中的蓄电池系统;以及
[0020] 图2示出了依据本发明的蓄电池系统的实施例。

具体实施方式

[0021] 图2示出了依据本发明的蓄电池系统的实施例。优选地被实施为锂离子蓄电池的启动蓄电池10向启动电路供给优选为10V至15V的电压,其中,精确的电压取决于启动蓄电池10的充电状态。与启动蓄电池10连接的是启动器11,其被构造以启动内燃机(未示出)。与启动器11串联的是开关12,通过启动信号控制该开关12。如果开关12闭合,那么启动器11被激活,并且电流从启动蓄电池10流来并流过启动器11。优选地,没有其他电力负载与启动器11并联,以便不额外增加启动蓄电池10的负荷。启动电路通过在该实施例中被实施为DC/DC变换器的耦合单元17与低压车载电气系统连接。耦合单元17被构造为从低压车载电气系统提取电能并将其提供给启动电路,由此启动蓄电池10重新充电。可选择地,能够设置二极管18,该二极管在启动电路内的电压降到低于车载电气系统的电压以下时将低压车载电气系统与启动电路连接。
[0022] 低压车载电气系统具有自身的蓄电池,车载电气系统蓄电池15,该蓄电池优选地被实施为锂离子蓄电池,并被构造为产生优选为10V至15V的电压。此外,在低压车载电气系统内设置至少一个电力负载14-2,其被设计为在10V至15V的电压下工作。这种电力负载例如能够是音响设备、导航装置、电力摇窗机等这类负载。低压车载电气系统通过在该实施例中同样被实施为DC/DC变换器的另一耦合单元16与具有增高电压的车载电气系统连接。具有增高电压的车载电气系统由发电机13-2供电,该发电机由(已启动的)内燃机驱动,并被构造为产生优选为24V至45V的电压。另一耦合单元16被构造为,从具有增高电压的车载电气系统提取电能并将其输送到低压车载电气系统,由此将车载电气系统蓄电池15充电并提供至少一个电力负载14-2运行所需的功率。相反,具有增高电压的车载电气系统包括这种电力负载,它们消耗比较高的电功率,并因此更简单地由依据本发明地由发电机13-2产生的更高的电压驱动,以降低必要的电流。图2示例性地示出了这种大功率负载
19。在此,该大功率负载例如能够是电动空调压缩机或加热系统。优选地,具有增高电压的车载电气系统包括用于电压平滑的装置,该装置的任务是平滑由发电机13-2产生的通常为矩形波的电压。优选地,用于电压平滑的装置被实施为缓冲电容器20。
[0023] 当然,尤其地,第一耦合单元16和此外还有第二耦合单元17也能够被构造为用于双向的电荷迁移。本发明的这种实施方式允许,在单个蓄电池或车载电气系统之间按需迁移电荷。
[0024] 本发明提供了一种用于具有内燃机的机动车、优选地为微混合动力机动车的车载电气系统以及蓄电池系统,该蓄电池系统更适用于大功率负载的供电并比依据现有技术的解决方案具有更高的可靠性。
QQ群二维码
意见反馈