负载点调节器和辅助设备的控制

申请号 CN200780005315.3 申请日 2007-01-24 公开(公告)号 CN101416138B 公开(公告)日 2012-06-20
申请人 大动力公司; 发明人 A·查普斯; M·古兹;
摘要 一种功率控制系统,包括至少一个POL调节器、至少一个辅助设备、可操作地连接到该POL调节器和辅助设备的串行 数据总线 、以及一个系统 控制器 ,其适于通过所述串行数据总线与该POL调节器和辅助设备交换数字数据。该辅助设备可包括功率调节设备、 开关 设备、 发动机 控制设备、 温度 控制设备、和/或 外围设备 。至少一个辅助设备控制器可以操作地耦合在辅助设备和串行数据总线之间。辅助设备控制器可以与系统控制器集成在一起,或者可以在系统控制器之外。辅助设备控制器可进一步包括至少一个寄存器,其适于存储编程数据,该编程数据包括接通延迟、关断延迟、输入/输出 信号 的极性、故障配置和组成员关系中的至少一个。辅助设备控制器可以进一步适于从辅助设备接收监视数据,辅助设备控制器通过串行数据总线向系统控制器传递监视数据。
权利要求

1.一种功率控制系统,包括:
至少一个负载点调节器,适于提供输出电压给相应负载;
至少一个辅助设备,具有与所述至少一个负载点调节器不同的功能;以及系统控制器,经公共串行数据总线可操作地连接到所述至少一个负载点调节器和所述至少一个辅助设备,并且适于经所述公共串行数据总线发送用于所述至少一个负载点调节器和所述至少一个辅助设备的编程数据。
2.如权利要求1的功率控制系统,进一步包括第二串行数据总线,在所述系统控制器与所述至少一个负载点调节器及所述至少一个辅助设备之间传递故障管理信息。
3.如权利要求1的功率控制系统,进一步包括一个前端调节器,在中间电压总线上提供中间电压给所述至少一个负载点调节器。
4.如权利要求3的功率控制系统,其中,所述前端调节器与所述系统控制器结合在单个设备中。
5.如权利要求1的功率控制系统,其中,所述系统控制器进一步包括用户接口,该用户接口适于将所述编程数据从用户传递到所述至少一个负载点调节器和至少一个辅助设备。
6.如权利要求5的功率控制系统,进一步包括图形用户界面,可操作地耦合到用户接口,所述图形用户界面适于使用户能够生成所述编程数据。
7.如权利要求1的功率控制系统,其中,所述至少一个负载点调节器各自进一步包括功率转换电路,该功率转换电路适于将中间电压转换为所述输出电压。
8.如权利要求1的功率控制系统,其中,所述至少一个辅助设备各自进一步包括一个唯一的地址。
9.如权利要求8的功率控制系统,其中,经公共串行数据总线发送的所述编程数据包括所述唯一的地址。
10.如权利要求1的功率控制系统,其中,所述至少一个辅助设备包括功率调节设备、开关设备、发动机控制设备、温度控制设备、视觉指示器设备和外围设备中的至少一个。
11.如权利要求10的功率控制系统,其中,所述至少一个辅助设备进一步包括线性调节器。
12.如权利要求11的功率控制系统,其中,所述至少一个辅助设备进一步包括低压差线性调节器。
13.如权利要求1的功率控制系统,进一步包括至少一个辅助设备控制器,设置在所述至少一个辅助设备和所述系统控制器之间,所述辅助设备控制器从所述系统控制器接收所述编程数据并向所述至少一个辅助设备提供相应的命令。
14.如权利要求13的功率控制系统,其中,所述至少一个辅助设备控制器与系统控制器集成。
15.如权利要求13的功率控制系统,其中,所述至少一个辅助设备控制器在系统控制器外部。
16.如权利要求13的功率控制系统,其中,所述至少一个辅助设备控制器进一步包括适于存储编程数据的至少一个寄存器。
17.如权利要求1的功率控制系统,其中,所述编程数据包括接通延迟、关断延迟、输入/输出信号的极性、故障配置和组成员关系中的至少一个。
18.如权利要求13的功率控制系统,其中,所述至少一个辅助设备控制器进一步适于从所述至少一个辅助设备接收监视数据,所述至少一个辅助设备控制器经所述公共串行数据总线将所述监视数据传递给所述系统控制器。
2
19.如权利要求1的功率控制系统,其中,所述公共串行数据总线进一步包括IC总线。
20.如权利要求1的功率控制系统,其中,所述公共串行数据总线进一步包括双线总线。
21.如权利要求1的功率控制系统,其中,所述公共串行数据总线进一步包括单线总线。
22.一种操作功率控制系统的方法,包括:
生成编程参数以用于至少一个负载点调节器和具有与所述至少一个负载点调节器不同功能的至少一个辅助设备;
通过可操作地连接到所述至少一个负载点调节器和所述至少一个辅助设备的公共数据总线,串行地发送基于所述编程参数的编程数据;以及
根据所述编程数据操作所述至少一个负载点调节器和所述至少一个辅助设备。
23.如权利要求22的方法,其中,所述生成步骤进一步包括从用户接收编程参数。
24.如权利要求23的方法,进一步包括使用图形用户界面生成编程参数。
25.如权利要求22的方法,进一步包括在将所述编程数据发送到所述至少一个负载点调节器之后并且在根据所述编程数据操作所述至少一个负载点调节器和所述至少一个辅助设备之前,将所述编程数据存储在所述至少一个负载点调节器和所述至少一个辅助设备中包含的存储器中。
26.如权利要求22的方法,进一步包括在生成所述编程参数之后并且在将所述编程数据发送到所述至少一个负载点调节器和所述至少一个辅助设备之前,将所述编程数据存储在可操作地耦合到所述至少一个负载点调节器和所述至少一个辅助设备的系统控制器中包含的存储器中。
27.如权利要求22的方法,其中,所述编程数据包括接通延迟、关断延迟、输入/输出信号的极性、故障配置和组成员关系中的至少一个。
28.如权利要求22的方法,其中一个唯一的地址被分配给所述至少一个辅助设备。
29.如权利要求28的方法,其中所述编程数据包括所述唯一的地址以识别所述至少一个辅助设备。
30.如权利要求22的方法,进一步包括在根据所述编程数据操作所述至少一个负载点调节器和所述至少一个辅助设备期间,生成关于所述至少一个负载点调节器和所述至少一个辅助设备的工作状态的监视数据,并且通过公共数据总线串行地发送所述监视数据。
31.如权利要求30的方法,进一步包括使用图形用户界面来监视所述监视数据。

说明书全文

负载点调节器和辅助设备的控制

[0001] 相关申请
[0002] 本申请根据35 U.S.C.§120作为部分继续申请要求2002年12月21日提交的美国专利申请No.10/326222的优先权。

技术领域

[0003] 本发明涉及功率控制系统,或更具体而言,涉及控制、编程和监视负载点调节器阵列以及其它辅助设备的方法和系统。

背景技术

[0004] 随着电子系统复杂度增加,电子系统经常需要以若干个不同的离散电压电流电平来供电。例如,电子系统可以包括需要例如3V、5V、9V等电压的离散的电路。此外,许多这些电路需要相对较低的电压(例如1V),但是电流相对较高(例如100A)。由于多种原因,不希望通过电子设备在相对较长的距离上以较低电压传递较高的电流。首先,低电压高电流线路的相对较长的物理行程占用很大的电路板面积并且使信号线在电路版上的布线拥塞。第二,传送高电流的线路的阻抗容易消耗大量功率并且使负载调节变复杂。第三,难以设计电压/电流特性以适应负载需求的变化。
[0005] 为了满足这些功率要求,已知在整个电子系统中分配中间总线电压,并且在电子系统内的功耗点包括一个独立的负载点(“POL”)调节器,即DC/DC转换器。特别地,每个电子电路各自可包括POL调节器以将中间总线电压转换为电子电路所需电平。一个电子系统可包括多个POL调节器以将中间总线电压转换为多个电压电平中的每一个。理想地,POL调节器可以物理地位于相应的电路附近以最小化低电压高电流线路通过电子系统的长度。可以使用损耗最小的低电流线路将中间总线电压传递到多个POL调节器。
[0006] 利用这种分布式方法,需要协调功率系统的POL调节器的控制和监视。POL调节器一般与电源控制器协同工作,电源控制器激活、编程和监视各个POL调节器。本领域中已知控制器使用多连接的并行总线来激活和编程每个POL调节器。例如,并行总线可以传送接通和关断每个POL调节器的使能/禁止位,以及用于编程POL调节器的输出电压设定点的电压识别(VID)码位。控制器可以进一步使用其它连接以监视由每个POL调节器传递的电压/电流,以检测POL调节器的故障情况。这种控制系统的缺点是它增加了整个电子系统的复杂度和尺寸。
[0007] 本领域也已知在电子系统中包括各种其它设备用于系统支持功能(也称为辅助设备)。这些设备可以提供:低功率调节,例如线性调节器、低压差(LDO)线性调节器或其它电源;设备开关,例如机器操作的开关、磁操作的控制开关、热和磁继电器、延时继电器和致动器发动机控制;温度控制,例如箱和风扇;视觉指示设备,例如灯、发光二极管(LED)、视频显示监视器、标尺;外围设备等。在一些情况下,期望与功率系统的POL调节器相一致地协调控制这些辅助设备,例如,与POL调节器的激活同步地控制风扇的工作;但是,常规的分布式系统不提供对除了POL调节器之外的其它辅助设备的灵活控制。
[0008] 因此,在分布式功率系统内具有一种用于控制和监视POL调节器以及其它辅助设备的系统和方法是有利的。

发明内容

[0009] 本发明提供了一种用于控制、编程和监视分布式功率系统内的POL调节器和辅助设备的系统和方法。
[0010] 在本发明的实施例中,该功率控制系统包括至少一个POL调节器、至少一个辅助设备、可操作地连接到该POL调节器和辅助设备的串行数据总线、以及一个系统控制器,其适于通过所述串行数据总线与该POL调节器和辅助设备交换数字数据。该辅助设备可包括功率调节设备、开关设备、发动机控制设备、温度控制设备、和/或外围设备。至少一个辅助设备控制器可以操作地耦合在辅助设备和串行数据总线之间。辅助设备控制器可以与系统控制器集成在一起,或者可以在系统控制器之外。辅助设备控制器可进一步包括至少一个寄存器,其适于存储编程数据,该编程数据包括接通延迟、关断延迟、输入/输出信号的极性、故障配置和组成员关系中的至少一个。辅助设备控制器可以进一步适于从辅助设备接收监视数据,辅助设备控制器通过串行数据总线向系统控制器传达监视数据。
[0011] 在本发明的另选实施例中,一种操作功率控制系统的方法包括:(a)生成编程参数以用于至少一个负载点(POL)调节器和至少一个辅助设备;(b)通过操作地连接到所述至少一个POL调节器和所述至少一个辅助设备的公共数据总线串行地发送基于所述编程参数的编程数据;以及(c)根据所述编程数据操作所述至少一个POL调节器和所述至少一个辅助设备。可以例如使用图形用户界面从用户处接收编程参数。可以将编程数据存储在所述至少一个POL调节器和至少一个辅助设备中所包含的存储器中,或者存储在操作地耦合到所述至少一个POL调节器和至少一个辅助设备的系统控制器中所包含的存储器中。该方法可进一步包括生成关于所述至少一个POL调节器和至少一个辅助设备的工作状态的监视数据,并且通过公共数据总线串行地发送所述监视数据。
[0012] 通过考虑以下对优选实施例的具体描述,本领域技术人员将能够更完整地理解用于控制和监视多个POL调节器和多个辅助设备的方法和系统,以及其它优点和目标的实现方式。将参考首先将简要描述的附图

附图说明

[0013] 图1示出现有技术的分布式功率传输系统;
[0014] 图2示出使用并行控制总线的现有技术的POL控制系统;
[0015] 图3示出根据本发明的实施例构造的示例性POL控制系统;
[0016] 图4示出POL控制系统的示例性POL调节器;
[0017] 图5示出POL控制系统的示例性系统控制器;
[0018] 图6示出提供对辅助设备的控制的POL控制系统的另选实施例;以及[0019] 图7示出根据图6的实施例的用于控制辅助设备的工作的示例性图形用户界面(GUI)。

具体实施方式

[0020] 本发明提供了一种用于控制和监视分布式功率系统内的POL调节器和辅助设备的系统和方法。在以下的具体描述中,使用相似的元件标号描述在一幅或多幅附图中示出的相似的元件。
[0021] 参考图1,示出了现有技术的分布式功率传输系统。现有技术的分布式功率传输系统包括AC/DC转换器12,其将可用的AC电源转换为初级DC电源,例如48伏。初级DC电源连接到将DC电源分配到例如印刷电路板14的多个电子系统中的初级电源总线。该总线可以进一步耦合到电池18,电池18为连接到初级电源总线的电子系统提供备份电源。当AC/DC转换器12传输DC电源到初级电源总线中时,电池18保持在完全充电状态。在缺少AC电源或AC/DC转换器12发生故障的情况下,电池18将在电池18的容量所限制的一段有限时间期内继续传输DC电源给初级电源总线。
[0022] 印刷电路板14可进一步包括DC/DC转换器,其将初级总线电压降低到中间电压电平,例如5或12伏。然后通过向印刷电路板14上的多个电路提供的中间电源总线分配该中间电压。紧挨着每个电路设置一个相关联的负载点(“POL”)调节器,例如POL 22、24和26。每个POL调节器将中间总线电压转换为电子电路所需的低电压高电流电平,例如POL
22、24和26分别提供的1.8伏、2.5伏和3.3伏。应理解,在此描述的电压电平完全是示例性的,并且可以选择其它电压电平以适应印刷电路板14上多个电子电路的特殊需求。通过将POL 22、24、26邻近它们相应的电子电路而设置,印刷电路板14上的低电压高电流线路的长度被最小化。此外,中间电源总线可适于传送相对较低的电流,从而将线路阻抗导致的功率损失最小化。但是,这种分布式功率传输系统不提供监视和控制POL 22、24、26的性能的方法。
[0023] 图2示出现有技术的DC/DC转换器控制系统,其具有电源控制器32和多个DC/DC转换器34、36、38和42。DC/DC转换器34、36、38和42各自连接到提供输入电压的电源总线(如以上参考图1所述)。DC/DC转换器34、36、38和42各自提供低电压高电流输出,该输出穿过各个传感电阻46、52、56和62以及各个开关48、54、58和64。控制器32通过各自传送使能/禁止位和五个VID码位的多个六位并行总线提供控制信号给DC/DC转换器34、36、38和42。VID码位对DC/DC转换器进行编程以提供所需的输出电压/电流电平。控制器32也使用传感电阻46、52、56和62监视DC/DC转换器34、36、38和42的性能。特别地,控制器32通过检测传感电阻输出侧的电压来监视每个DC/DC转换器的输出电压,并且通过检测传感电阻两端的电压来监视穿过传感电阻的输出电流。为每个DC/DC转换器感测电压和电流需要两条分离的线路,因此需要八条分离的线路来感测示例性四转换器系统的电压和电流情况。此外,控制器32具有连接到开关48、54、58和64的栅极端的开关使能线路,通过该开关使能线路,控制器32可以切断来自DC/DC转换器34、36、38和42中任何一个的输出或者控制接通/关断转换速率。
[0024] 在示例性的操作中,控制器32通过六位并行总线的VID码部分提供控制参数(例如输出电压设定点)给DC/DC转换器34。然后,控制器32通过六位并行总线的使能/禁止部分激活DC/DC转换器34。一旦被激活,DC/DC转换器34将电源总线电压(例如,48伏)转换为所选输出电压。然后,控制器32通过经电压监视线路测量输出电压来验证输出电压是所需电压。如果输出电压在可接受的范围内,则通过经开关使能线路激活开关48来将它提供给负载(未示出)。然后,控制器32可以通过经电压监视线路测量输出电压并且测量传感电阻两端的电压降(即,电流监视线路和电压监视线路之间的电压差),继续监视DC/DC转换器34所产生的输出电压和输出电流。如果控制器32检测出DC/DC转换器34的故障情况(例如,输出电压降低到特定阈值之下),则控制器32可以禁止和复位DC/DC转换器。控制器32以相同的方式与其它DC/DC转换器36、38和42通信。
[0025] 图2的控制系统的缺点在于,由于其使用六位并行总线来控制每个DC/DC转换器和分离的三线输出连接来监视每个DC/DC转换器的性能,所以增加了整个电子系统的复杂度和大小。换言之,控制器32为了与四个DC/DC转换器34、36、38和42通信利用了36个分离的连接。随着电子系统的复杂度和功率要求的增加,到控制器的连接的数量也将线性增加。
[0026] 现在参考图3,示出根据本发明实施例的POL控制系统100。具体地,POL控制系统100包括系统控制器102、前端调节器104和以阵列排列的多个POL调节器106、108、110、112和114。在此示出的POL调节器包括但不限于,负载点调节器、负载功率(power-on-load)调节器、DC/DC转换器、电压调节器和本领域技术人员一般所知的所有其它可编程电压或电流调节设备。在各个POL调节器之间提供设备内部接口,例如在POL0
106和POL1 108之间提供的电流共享接口(CS1)和在POL4 112和POLn 114之间提供的CS2,以控制例如电流共享或并联的特定相互作用。在图3中所示的示例性结构中,POL0
106和POL1108以并行模式工作,以产生电流容量增加的输出电压VO1,POL2 110产生输出电压VO2,并且POL4 112和POLn 114以并行模式工作,以产生输出电压VO3,不过应理解可以有利地利用其它组合和其它数量的POL调节器。
[0027] 前端调节器104通过中间电压总线提供中间电压到多个POL调节器,并且可以简单地包括另一个POL调节器。系统控制器102和前端调节器104可以一起集成到一个单元中,或者可以作为分立器件提供。或者,前端调节器104可以通过多个中间电压总线提供多个中间电压给POL调节器。系统控制器102可以从中间电压总线汲取其功率。
[0028] 系统控制器102通过经图3示为同步/数据总线的单向或双向串行总线写和/或读数字数据(同步或异步地)来与多个POL调节器通信。同步/数据总线可以包括一条双2
线串行总线(例如IC),其使得数据能够被异步传送,或者一条单线串行总线,其使得数据能够同步传送(即,同步于时钟信号)。为了寻址阵列中的任何一个特定的POL,以唯一的地址标识每个POL,该唯一地址可以硬连线到POL中或由其它方法设定。系统控制器102也为了故障管理而通过图3中示为OK/故障总线的第二单向或双向串行总线与多个POL调节器通信。通过将多个POL调节器连接到共同的OK/故障总线而将它们组合到一起,使得POL调节器在故障状态下具有相同的行为。另外,系统控制器102经用户接口总线与用户系统通信,以编程、设置和监视POL控制系统10。最后,系统控制器102通过独立的线路与前端调节器104通信,以禁止前端调节器的操作。
[0029] 图4更详细地示出POL控制系统10的一个示例性的POL调节器106。图3中的其它POL调节器具有基本上相同的配置。POL调节器106包括功率转换电路142、串行接口144、POL控制器146、缺省配置存储器148、以及硬连线设置接口150。功率转换电路142根据通过串行接口144接收到的设置、硬连线设置150或缺省设置,将输入电压(Vi)变换为所需的输出电压(Vo)。功率转换电路142也可以包括对于输出电压、电流、温度和其它参数的监视传感器,这些参数用于局部控制并且也通过串行接口144被传回系统控制器。功率转换电路142也可以为独立的应用产生电源正常(Power Good,PG)的输出信号以提供简化的监视功能。串行接口144通过同步/数据和OK/故障串行总线接收并发送命令和消息给系统控制器102。缺省配置存储器148存储在没有通过串行接口144或硬连线设置接口
150接收到编程信号的情况下POL调节器106的缺省配置。选择该缺省配置使得POL调节器106在缺少编程信号时将工作在“安全”状态下。
[0030] 硬连线设置接口150与外部连接通信以便在不使用串行接口144的情况下对POL调节器编程。硬连线设置接口150可以包括POL的地址设置(Addr)作为输入,以便作为地址(即,POL的标识符)的函数改变或设定某些设置例如相移、使能/禁止位(En)、微调、和VID码位。此外,在通过串行接口144的通信操作期间,该地址标识POL调节器。微调输入允许连接一个或多个外部电阻以限定POL调节器的输出电压电平。类似地,VID码位可以用于将POL调节器编程到所需的输出电压/电流电平。通过切换数字高/低信号,使能/禁止位使得POL调节器能够接通/关断。
[0031] POL控制器146接收POL调节器的设置并且区分它们的优先级。如果没有通过硬连线设置接口150或串行接口144接收到设置信息,则POL控制器146访问存储在缺省配置存储器148中的参数。或者,如果通过硬连线设置接口150接收到设置信息,则POL控制器146将应用那些参数。因此,缺省设置应用于不能或没有通过硬连线设置的所有参数。可以由通过串行接口144所接收的信息覆盖通过硬连线设置接口150接收的设置。POL调节器因此可以工作在独立模式、完全可编程模式、或其组合模式下。此编程灵活性使得能够使用单个通用的POL调节器满足多个不同的功率应用,从而减少成本并且简化POL调节器的制造。
[0032] 图5中示出POL控制系统100的示例性系统控制器102。该系统控制器102包括用户接口122、POL接口124、控制器126和存储器128。用户接口122通过用户接口总线向用户(或主机)发送消息并且从用户(或主机)接收消息。用户接口总线可以由使用标准2
接口协议的串行或并行的双向接口提供,例如IC接口。例如监视值或新的系统设置的用户信息将通过用户接口122传输。与用户(或主机)的通信可以是直接的或者通过局域网(LAN)或广域网(WAN)进行。用户可以出于监视、控制和/或编程POL控制系统的目的而通过直接耦合到用户接口总线来访问POL控制系统。用户系统可包括用户接口,例如图形用户界面(GUI),其能够显示POL控制系统的状态信息。
[0033] POL接口124通过同步/数据和OK/故障串行总线变换去往/来自POL调节器的数据。POL接口124通过同步/数据串行总线来通信,以发送设置数据和接收监视数据,并且通过OK/故障串行总线来通信,以接收指示至少一个所连接的POL调节器中的故障情况的中断信号。存储器128包括一个非易失性存储器存储设备,其用于存储连接到系统控制器102的POL调节器的系统设定参数(例如,输出电压、电流限制设定点、时序数据等)。可选地,也可以将一个第二外部存储器132连接到用户接口122以为监视数据或设置数据提供更大的存储容量。
[0034] 控制器126可操作地连接到用户接口122、POL接口124、和存储器128。控制器126具有一个外部端口以用于将禁止信号(FE DIS)传达给前端调节器104。在POL控制系统100启动时,控制器126从内部存储器128(和/或外部存储器132)读取系统设置并且据此通过POL接口124对POL调节器编程。然后根据系统编程以预定的方式设定并启动每个POL调节器。在正常工作期间,控制器126解码并执行来自用户或POL调节器的任何命令或消息。控制器126监视POL调节器的性能并且通过用户接口122将此信息报告回用户。
也可以由用户通过控制器126编程POL调节器,以对例如过电流或过电压情况的故障执行特定的、自主的反应。或者,可以将POL调节器编程为仅向系统控制器102报告故障情况,然后系统控制器102将根据预定的设置确定适当的校正动作,例如,通过FE DIS控制线路关闭前端调节器。
[0035] 可以可选地提供监视模130,以监视没有通过同步/数据或OK/故障总线可操作地连接到控制器102的其它功率系统的一个或多个电压或电流电平的状态。监视模块130可以提供此信息给控制器126,以通过用户接口按照与关于POL控制系统100的其它信息相同的方式向用户报告。以此方式,POL控制系统100可以提供一些与已经存在于电子系统中的功率系统的后向兼容性。
[0036] 返回图3,系统控制器102适于提供初始配置数据给每个POL调节器(即,106、108、110、112、114)。应理解,该初始配置数据可包括但不限于一个或多个以下类型的数据:输出电压设定点数据(即,所需的输出电压);输出电流设定点数据(即,最高所需输出电流);低电压限制数据(即,最低所需输出电压);高电压限制数据(即,最高所需输出电压);输出电压转换速率(即,所需的输出转换速率);使能/禁止数据(即,接通/关断POL调节器输出);时序数据(例如,接通延迟、关断延迟、故障恢复时间等)和/或本领域技术人员一般公知的所有其它类型的POL编程数据。一旦接收到初始配置数据,POL控制器146(见图4)适于在存储器中存储至少一部分初始配置数据。然后使用所存储的初始配置数据的至少一部分来产生所需输出。例如,可以产生一个输出,包括特定的电压电平、特定的转换速率等,这取决于所接收/存储的初始配置数据的类型。
[0037] 在产生输出之后,POL控制器146适于接收故障监视数据(例如,从外部设备、传感电路等)。然后在存储器中存储包含关于POL调节器或其输出的信息的该故障监视数据。响应于一个情况(例如,接收到请求、超过一个已知参数、寄存器内容变化等),然后POL控制器146适于提供故障监视数据的至少一部分给系统控制器102。应理解,该故障监视数据可包括但不限于一个或多个以下类型的数据:输出电压数据,其可包括实际输出电压数据(即,所测量的输出电压)或电压比较数据(例如,所测量的输出电压是否高于或低于最高所需输出电压,所测量的输出电压是否高于或低于最低所需输出电压等);输出电流数据,其可包括实际输出电流数据(即,所测量的输出电流)或电流比较数据(例如,所测量的输出电流是否高于或低于最高所需输出电流);温度状态数据,其可包括实际温度数据(即,所测量的POL调节器、或更具体而言其发热元件的温度)或温度比较数据(例如,POL调节器(或其元件)的温度是否高于或低于已知值等),和/或本领域技术人员一般已知的所有其它类型的POL故障监视数据。也应理解,该故障监视数据不限于表示故障情况存在的数据。例如,认为指示POL调节器工作在可接受参数内(例如,可接受的温度范围内)的故障监视数据是在本发明的精神和范围内的。
[0038] 系统控制器102或POL控制器146可以使用故障监视数据来监视和/或控制POL调节器。换言之,POL控制器146可以使用故障监视数据,来提供POL状态信息(例如,对应于特定POL调节器或其输出的数据)给系统控制器102,或者如果满足特定条件(例如,状态寄存器变化、超过了温度限制等)则禁止POL调节器。或者,系统控制器102可以使用故障监视数据,来提供POL状态信息给管理员、禁止特定的POL调节器,或者存储该故障监视数据以供将来使用。例如,在本发明的一个实施例中,每个POL调节器包括存储在ID寄存器中的唯一的ID数据(例如,序列号、制造的日期等)。这使得系统控制器102能够提供POL状态信息和唯一的ID数据给管理员。
[0039] 在本发明的另一个实施例中,每个POL调节器进一步包括至少一个传感器电路。使用该传感器电路来产生故障监视数据或可以(例如与存储在存储器中的信息一起)用来产生故障监视数据的信息。应理解,在此所描述的传感器电路将取决于正被检测的信息类型而变化(例如,电路、位置、输入等)。例如,检测电流的传感器电路与检测温度的传感器电路相比,可以包括不同的电路,具有不同输入,以及放置在不同的位置。
[0040] POL控制系统10能够进行四种不同模式的工作。在第一种工作模式下,POL调节器在缺少系统控制器并且不与其它POL调节器交互的情况下独立工作。POL调节器各自包括局部反馈和控制系统以调节它们自己的性能以及控制接口使得能够进行局部编程。POL调节器进一步包括缺省设置,它们可以在缺少局部编程或来自系统控制器的数据时返回缺省设置。换言之,每个POL调节器可以作为独立设备工作,而不需要系统控制器或与其它POL调节器交互。
[0041] 在第二种工作模式下,在缺少系统控制器的情况下,为了电流共享或者交织的目的,多个POL调节器协同工作。POL调节器通过电流共享接口相互通信。可以使用同步/数据线路传达同步信息,以允许POL调节器的相位交织,其中通过经硬连线连接输入地址来局部编程相位。在第一或第二种工作模式下,在POL调节器之间除了同步之外通常还传递信息;不需要传递编程信息。
[0042] 在第三种工作模式下,POL调节器作为一个阵列工作,在该阵列中,每个POL调节器和作为一个整体的该阵列的行为由系统控制器协调。系统控制器通过同步/数据串行总线对每个POL调节器的工作进行编程,并且从而优先于POL调节器的预定设置。进一步使用该同步/数据串行总线来传达同步信息,以允许POL调节器的同步和交织。此工作模式将不包括通过电流共享接口进行设备间通信。
[0043] 最后,第四种工作模式包括使用系统控制器的中央控制和对于某些功能性的局部控制。这样,POL调节器作为由系统控制器协调的阵列而工作,并且也互相合作来执行例如电流共享的功能。
[0044] 图6示出本发明的一个替代实施例。在此实施例中,POL控制系统可以额外包括多个辅助设备,例如示例性的LDO 240、250。这些辅助设备通常具有比POL调节器少的网络能和/或智能,并且在某些情况下可以仅响应于基础级(例如,使能/禁止)命令。该替代的POL控制系统包括系统控制器202和多个POL调节器106、108。系统控制器202将监视和控制辅助设备和POL调节器的工作,从而提供系统级的解决方案。系统控制器202在结构上将大体类似于以上参考图3所讨论的系统控制器102。应理解,图6示出不同于图3中实施例的差别,同时为了简单而省略了其它细节。
[0045] 该替代的POL控制系统进一步包括辅助设备控制系统230,其进一步包括多个辅助设备控制器232、234。应理解,分离的辅助设备控制器可以与受控制的每个单独的辅助设备相关联。辅助设备控制系统230可以是系统控制器202的部分(例如,集成到该电路或半导体设备中),或者可以提供为POL控制系统的分离的物理元件。
[0046] 辅助设备控制器232、234进一步包括各自的接口232a、设定寄存器232b和通断及监视逻辑232c。接口232a适于经过同步/数据总线与POL控制系统的其它元件通信。系统控制器202包括接口224,其通过同步/数据和OK/故障串行总线变换去往/来自POL调节器的数据。接口224通过同步/数据串行总线进行通信,以发送设置数据和接收监视数据,并且通过OK/故障串行总线进行通信,以接收指示至少一个所连接的POL调节器中的故障情况的中断信号。接口232a耦合到同步/数据总线以与辅助设备交换同类数据。如上2
所讨论的,同步/数据总线可以是单线或双线通信总线(例如,IC),其适于在多个设备之间发送和接收信息。
[0047] 设定寄存器232b定义辅助设备的工作参数。这些寄存器232b包括用于存储用于辅助设备的系统设定参数(例如,接通延迟、关断延迟、输入/输出信号的极性(即,有效的低或高配置))的存储器。装载到设定寄存器232b中的数据值可以由系统控制器通过同步/数据总线提供。
[0048] 通断及监视逻辑232c提供与辅助设备的直接交互。具体而言,逻辑232c响应于设定寄存器232b的值和经同步/数据总线接收的命令,提供使能和禁止命令给辅助设备。例如,通断逻辑232c将根据设定寄存器232b中定义的时序数据(例如,接通延迟)提供使能命令给辅助设备。辅助设备将提供反映辅助设备的工作状态的响应的监视信号,例如电源正常信号。然后,监视逻辑232c将例如经同步/数据总线将此状态信息传送回系统控制器226。应理解,可以利用给辅助设备的其它类型的命令和来自辅助设备的其它类型的状态监视信息,这取决于对辅助设备的具体系统需求和应用。因此,系统控制器226可以按照与它控制和监视POL设备相同的方式控制和监视非POL设备。
[0049] 可以使用唯一地址标识辅助设备控制器232。该地址可以被硬连线到辅助设备控制器中,或者由其它方法设定。系统控制器202可以在经同步/数据总线传达给辅助设备的数据消息内使用该地址。或者,辅助设备控制器232可以由系统控制器226直接寻址以便作为该地址(即,辅助设备的标识符)的函数更改或设定某些设置。辅助设备控制器232也可以由用户或主机直接寻址,或硬连线,而不必经过系统控制器226。
[0050] 图7示出根据图6的实施例,用于编程辅助设备的工作的示例性图形用户界面(GUI)的屏幕快照。如上所讨论的,用户可以为了监视、控制和/或编程POL控制系统,通过经系统控制器226直接耦合到用户接口而访问POL控制系统。用户系统可包括一个GUI,其使得能够显示关于POL控制系统的状态信息。图7的GUI图形地显示辅助设备以及POL调节器的接通/关断延迟。
[0051] 具体地,包括示出在接通/关断时刻(即,时刻0)之后以毫秒为单位的时间量的时间表图。在图的顶部,on/off线示出在时刻0(即,接通时刻)发生的正阶跃函数,并且该时序线以负阶跃函数复位到时刻0(即关断时刻)。两个示例性辅助设备(即,Aux 1,Aux2)的激活波形示出相似的阶跃函数,它们从各自的时刻0偏移,反映出接通延迟和关断延迟。Aux 1示出大约25毫秒的接通延迟,以及大约10毫秒的关断延迟。类似地,Aux 2示出大约100毫秒的接通延迟,以及大约10毫秒的关断延迟。该图也示出POL调节器的接通和关断延迟。左下部的可滑动工具条使得用户能够使用适当的指点设备调节接通和关断延迟的幅度。沿GUI的右侧的按钮使得用户能够将编程的接通和关断延迟应用于各个辅助设备,或者应用于指定的一组中的全部辅助设备,或者应用于整个板上的全部辅助设备。应理解,图7的GUI可适于编程辅助设备的其它参数。一旦用户完成了编程,适当的数据值被装载到相应的辅助设备控制器内的适当的设定寄存器中,如上所讨论的。
[0052] 应理解,也可以使用类似的GUI监视辅助设备的性能。用户可以经到达系统控制器的用户接口访问GUI,并且查看示出辅助设备和POL调节器的工作状态的图。如果发生故障情况,例如,用户可以通过选择性地关断辅助设备和/或POL调节器、改变它们的顺序或分组、和采取其它校正措施来使用GUI更改POL控制系统的工作。
[0053] 已经如上描述了控制和监视DC/DC电源转换器和辅助设备的阵列的方法和系统的优选实施例,对于本领域技术人员来说很明显,实现了该系统的某些优点。也应理解,可以在本发明的范围和精神内作出各种修改、改装和替代实施例。进一步通过以下权利要求限定本发明。
QQ群二维码
意见反馈