用于包含寄生谐振储能电路电子装置的无线功率发射

申请号 CN200980129768.6 申请日 2009-07-28 公开(公告)号 CN102113195B 公开(公告)日 2016-06-08
申请人 高通股份有限公司; 发明人 奈杰尔·库克; 卢卡斯·西贝尔; 汉斯彼得·威德默;
摘要 示范性 实施例 是针对无线功率传送。无线功率接收器包含接收天线,其用于与产生近 磁场 的发射器的发射天线耦合。所述接收天线从所述近磁场接收无线功率,且包含谐振储能 电路 和以无线方式耦合到所述谐振储能电路的寄生谐振储能电路。无线功率发射器包含发射天线,其用于与接收器的接收天线耦合。所述发射天线产生用于无线功率发射的近磁场,且包含谐振储能电路和耦合到所述谐振储能电路的寄生谐振储能电路。
权利要求

1.一种无线功率接收器,其包括:
接收天线,其经配置以通过经由在所述接收天线外部的发射器产生的近磁场而耦合到所述发射器来接收足以对负载进行充电的无线功率,所述接收天线经配置以与所述发射器是相互谐振关系,所述接收天线包含:
谐振储能电路;以及
第一寄生谐振储能电路,其以无线方式耦合到所述谐振储能电路,所述第一寄生谐振储能电路经配置以将经由所述发射器产生的所耦合到的近磁场接收的无线功率中继到所述谐振储能电路;
其中当所述接收天线处于所述发射器的邻近区以内时,所述第一寄生谐振储能电路与所述发射器以耦合因数k为特征而耦合,且
其中所述邻近区的特征在于所述接收天线与所述发射器之间的距离,在所述距离处所述耦合因数k<0.1。
2.根据权利要求1所述的无线功率接收器,
其中当所述接收天线处于产生所述近磁场的发射器的近程以内时,所述谐振储能电路与产生所述近磁场的所述发射器以耦合因数k为特征而耦合,且
其中近程的特征在于所述接收天线与所述发射器之间的距离,在所述距离处所述耦合因数k>0.1。
3.根据权利要求1所述的无线功率接收器,其中所述第一寄生谐振储能电路以电感方式将所接收的无线功率耦合到所述谐振储能电路。
4.根据权利要求1所述的无线功率接收器,其中所述第一寄生谐振储能电路是具有比所述谐振储能电路大的Q值的高Q谐振器
5.一种无线功率发射器,其包括:
发射天线,其经配置以产生近磁场以用于足以对负载进行充电的无线功率的发射,所述发射天线经配置以与在所述发射天线外部的接收器是相互谐振关系,所述发射天线经由所述近磁场耦合到所述接收器,所述发射天线包含:
谐振储能电路;以及
第一寄生谐振储能电路,其以无线方式耦合到所述谐振储能电路,其中所述第一寄生谐振储能电路经配置以经由所耦合到的近磁场将无线功率中继到所述接收器,所述无线功率是从所述谐振储能电路接收而被中继到包含第二寄生谐振储能电路的接收天线的;
其中当处于所述第一寄生谐振储能电路的邻近区以内时,所述接收器以耦合因数k为特征而耦合到所述发射天线,且
其中所述邻近区的特征在于所述发射天线与所述接收器天线之间的距离,在所述距离处所述耦合因数k<0.1。
6.根据权利要求5所述的无线功率发射器,
其中当所述发射天线处于接收所述无线功率的所述接收器的近程以内时,所述谐振储能电路产生所述近磁场,所述接收器以耦合因数k为特征而耦合到所述发射天线,且其中近程的特征在于所述发射天线与所述接收器天线之间的距离,在所述距离处所述耦合因数k>0.1。
7.根据权利要求5所述的无线功率发射器,其中所述谐振储能电路以电感方式将所述无线功率耦合到所述第一寄生谐振储能电路。
8.根据权利要求5所述的无线功率发射器,其中所述第一寄生谐振储能电路是具有比所述谐振储能电路大的Q值的高Q谐振器。
9.一种无线功率发射系统,其包括:
发射器,其包含发射天线,所述发射天线经配置以产生近磁场以用于足以对负载进行充电的无线功率的发射,所述发射天线包含第一谐振储能电路;
接收器,其在所述发射器外部,其包含接收天线,所述接收天线经配置以与所述发射天线耦合以从所述近磁场接收所述无线功率,所述接收天线经配置以与所述发射天线是相互谐振关系,所述接收天线包含第二谐振储能电路;以及
第一寄生谐振储能电路,其以无线方式耦合到所述第一谐振储能电路和所述第二谐振储能电路中的一者,所述第一寄生谐振储能电路经配置以经由所述发射器产生的所耦合到的近磁场而中继从所述第一谐振储能电路和所述第二谐振储能电路中的一者接收到的或者发送到所述第一谐振储能电路和所述第二谐振储能电路中的一者的无线功率;
其中所述接收天线与所述发射天线的所述耦合的特征在于耦合因数k,其中所述第一寄生谐振储能电路经配置以用于,当所述发射天线处于所述接收天线的邻近区以内时,到所述接收天线的所述无线功率发射,且
其中所述邻近区的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k<0.1。
10.根据权利要求9所述的无线功率发射系统,其进一步包括以无线方式耦合到所述第一谐振储能电路和所述第二谐振储能电路中的不耦合到所述第一寄生谐振储能电路的一者的第二寄生谐振储能电路,所述第二寄生谐振储能电路经配置以将无线功率中继到所述第一谐振储能电路和所述第二谐振储能电路中的不耦合到所述第一寄生谐振储能电路的一者,或从所述第一谐振储能电路和所述第二谐振储能电路中的不耦合到所述第一寄生谐振储能电路的一者中继无线功率。
11.根据权利要求10所述的无线功率发射系统,
其中所述第一谐振储能电路和所述第二谐振储能电路经配置以在所述发射天线处于所述接收天线的近程以内时用于所述第一谐振储能电路与所述第二谐振储能电路之间的所述无线功率发射,且
其中近程的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k>0.1。
12.根据权利要求9所述的无线功率发射系统,其中所述第一谐振储能电路和所述第二谐振储能电路中的所述一者以电感方式将无线功率耦合到所述第一寄生谐振储能电路。
13.一种用于通过接收天线来接收无线功率的方法,其包括:
当接收天线处于在所述接收天线外部的发射天线的近程以内时,经由与所述发射器的相互谐振关系,通过将接收天线的谐振储能电路耦合到由所述发射器产生的近磁场,在所述谐振储能电路处经由所述发射天线产生的近磁场接收足以对负载进行充电的无线功率,所述接收天线和所述发射天线以耦合因数k为特征而耦合,所述近程的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k>0.1;
当所述接收天线处于所述发射天线的邻近区以内时,在所述接收天线的第一寄生谐振储能电路处接收由所述发射天线产生的所述近磁场的所述无线功率,所述接收天线和所述发射天线以耦合因数k为特征而耦合,所述邻近区的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k<0.1,其中所述寄生谐振储能电路以无线方式耦合到所述谐振储能电路,
所述第一寄生谐振储能电路以无线方式耦合到所述谐振储能电路,并经配置以将所接收无线功率中继到所述谐振储能电路;以及
对所述无线功率进行整流。
14.根据权利要求13所述的用于通过接收天线来接收无线功率的方法,其进一步包括当所述接收天线处于所述发射天线的邻近区以内时,以电感方式将所述无线功率从所述第一寄生谐振储能电路耦合到所述谐振储能电路。
15.根据权利要求13所述的用于通过接收天线来接收无线功率的方法,其中所述第一寄生谐振储能电路是具有比所述谐振储能电路大的Q值的高Q谐振器。
16.一种用于发射无线功率的方法,其包括:
当在发射天线外部的接收天线处于所述发射天线的近程以内且以耦合因数k为特征而耦合到所述发射天线时,在所述发射天线的谐振储能电路处产生近磁场中的足以对负载进行充电的无线功率,近程的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k>0.1;以及
当所述接收天线处于所述发射天线的邻近区以内且以耦合因数k为特征而耦合到所述发射天线时,在所述发射天线的第一寄生谐振储能电路处产生所述近磁场的所述无线功率,所述邻近区的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k<0.1,其中所述第一寄生谐振储能电路以无线方式耦合到所述谐振储能电路,并经配置以中继从所述谐振储能电路接收的无线功率。
17.根据权利要求16所述的用于发射无线功率的方法,其进一步包括当所述接收天线处于所述发射天线的所述邻近区以内时,以电感方式将所述无线功率从所述谐振储能电路耦合到所述第一寄生谐振储能电路。
18.根据权利要求16所述的用于发射无线功率的方法,其中所述第一寄生谐振储能电路是具有比所述谐振储能电路大的Q值的高Q谐振器。
19.一种无线功率接收器,其包括:
用于当接收天线处于发射天线的近程以内且耦合到所述发射天线时,经由与所述发射天线的相互谐振关系,通过将所述发射天线经由所述发射天线产生的近磁场耦合到所述接收天线,在所述接收天线的谐振储能电路处,接收由在所述接收天线外部的所述发射天线产生的近磁场中的足以对负载进行充电的无线功率的装置,近程的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处耦合因数k>0.1;
用于当所述接收天线处于所述发射天线的邻近区以内且以耦合因数k为特征耦合到所述发射天线时在所述接收天线的第一寄生谐振储能电路处,接收由所述发射天线产生的所述近磁场的所述无线功率的装置,所述邻近区的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k<0.1,其中所述第一寄生谐振储能电路以无线方式耦合到所述谐振储能电路,并经配置以将所接收的无线功率中继到所述谐振储能电路;
以及
用于对所述无线功率进行整流的装置。
20.一种无线功率发射器,其包括:
用于当在发射天线外部的接收天线处于所述发射天线的近程以内且以耦合因数k为特征而耦合到所述发射天线时在所述发射天线的谐振储能电路处,产生近磁场中的足以对负载进行充电的无线功率的装置,其中近程的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k>0.1;以及
用于当所述接收天线处于所述发射天线的邻近区以内且以耦合因数k为特征而耦合到所述发射天线时在所述发射天线的第一寄生谐振储能电路处,产生所述近磁场的所述无线功率的装置,所述邻近区的特征在于所述接收天线与所述发射天线之间的距离,在所述距离处所述耦合因数k<0.1,其中所述第一寄生谐振储能电路以无线方式耦合到所述谐振储能电路,并经配置以中继从所述谐振储能电路接收的无线功率。

说明书全文

用于包含寄生谐振储能电路电子装置的无线功率发射

[0001] 依据35 U.S.C.§119主张优先权
[0002] 本申请案依据35 U.S.C.§119(e)主张以下申请案的优先权:2008年7月28日申请的题目为“无线供电和充电(WIRELESS POWERING & CHARGING)”的第61/084,246号美国临时专利申请案,所述专利申请案的揭示内容全文以引用的方式并入本文中。

背景技术

[0003] 通常,例如无线电子装置等每一电池供电装置需要其自身的充电器和电源,所述电源通常为交流电(AC)功率出口。此有线配置在许多装置需要充电时变得不便利。
[0004] 正开发使用耦合到待充电的电子装置的发射器与接收器之间的空中或无线功率发射的方法。此类方法一般分为两个类别。一类是基于待充电装置上的发射天线与接收天线之间的平面波辐射(也称为远场辐射)的耦合。接收天线收集所辐射功率并对其整流以用于为电池充电。天线一般具有谐振长度,以便改进辐射或接收效率。此方法受到以下事实影响:功率耦合随天线之间的距离增加而快速下降。因此合理距离(例如,0.5到2米范围内)上的充电变得低效。另外,由于发射系统辐射平面波,所以无意的辐射如果未经由滤波适当控制则可能干扰其它系统。
[0005] 无线能量发射的其它方法是基于例如内嵌在“充电底板”或表面中的发射天线与内嵌在待充电的主机电子装置中的接收天线(和整流电路)之间的电感性耦合。此方法具有发射天线与接收天线之间的间隔必须非常靠近(例如,在几厘米内)的缺点。尽管此方法的确具有在同一区域中同时对多个装置充电的能,但此区域通常非常小且要求用户正确地将装置定位到特定区域。因此,需要提供一种适应发射天线和接收天线的灵活放置和定向的无线充电布置。附图说明
[0006] 图1说明无线功率发射系统的简化框图
[0007] 图2说明无线功率发射系统的简化示意图。
[0008] 图3说明根据示范性实施例的环形天线的示意图。
[0009] 图4A-4C说明根据示范性实施例的包含发射器和接收器的无线功率发射系统的物理实施方案。
[0010] 图5A-5B说明根据示范性实施例的发射器、能量中继器和接收器的物理实施方案。
[0011] 图6说明根据示范性实施例的经配置以接收以无线方式发射的功率并发射无线功率的装置。
[0012] 图7说明有线功率发射系统。
[0013] 图8说明根据各种示范性实施例的无线功率发射系统的功能框图。
[0014] 图9说明根据示范性实施例的发射天线与接收天线之间的第一耦合变型的电路图。
[0015] 图10说明根据示范性实施例的发射天线与接收天线之间的第二耦合变型的电路图。
[0016] 图11说明根据示范性实施例的发射天线与接收天线之间的第三耦合变型的电路图。
[0017] 图12说明根据示范性实施例的发射天线与接收天线之间的第四耦合变型的电路图。
[0018] 图13说明根据示范性实施例的发射天线与接收天线之间的第五耦合变型的电路图。
[0019] 图14说明根据示范性实施例的低频/高频(LF-HF)发射器。
[0020] 图15A-15C说明根据示范性实施例的多级发射功率转换单元的各种配置。
[0021] 图16A-16D说明根据示范性实施例的单级发射功率转换单元的各种配置。
[0022] 图17说明根据示范性实施例的LF-HF接收器。
[0023] 图18A-18H说明根据各种示范性实施例的接收功率转换单元的各种配置。
[0024] 图19说明根据示范性实施例的用于接收无线功率的方法的流程图
[0025] 图20说明根据示范性实施例的用于发射无线功率的方法的流程图。

具体实施方式

[0026] 词语“示范性的”在本文中意味着“充当实例、例子或说明”。本文中被描述为“示范性的”任何实施例不必须被理解为比其它实施例优选或有利。
[0027] 希望下文结合附图阐述的详细描述作为对本发明的示范性实施例的描述,且并不希望表示可实践本发明的仅有实施例。贯穿此描述所使用的术语“示范性”意味着“充当实例、例子或说明”,且应不必将其解释为比其它示范性实施例优选或有利。出于提供对本发明的示范性实施例的透彻理解的目的,详细描述包括特定细节。所属领域的技术人员将显而易见,可在无这些特定细节的情况下实践本发明的示范性实施例。在一些情况下,以框图形式展示众所周知的结构及装置,以避免使本文中所呈现的示范性实施例的新颖性模糊不清。
[0028] 本文使用词语“无线功率”来表示在不使用物理电磁导体的情况下发射器到接收器之间发射的与电场磁场电磁场或其它相关联的任何形式的能量。本文中描述系统中的功率转换以用无线方式对包含(例如)移动电话、无绳电话、iPod、MP3播放器、手持机等的装置进行充电。一般来说,无线能量传送的一个基本原理包含使用例如30MHz以下的频率磁性耦合谐振(即,谐振感应)。然而,可采用各种频率,包含准许相对高辐射等级下的免许可(license-exempt)操作的频率,例如135kHz(LF)以下或13.56MHz(HF)。在通常由射频识别(RFID)系统使用的这些频率下,系统必须遵守例如欧洲EN 300330或美国FCC第15部分规范等干扰和安全性标准。借助说明而非限制,本文使用缩写词LF和HF,其中“LF”指代f0=135kHz且“HF”指代f0=13.56MHz。
[0029] 图1说明根据各种示范性实施例的无线功率发射系统100。将输入功率102提供到用于产生用于提供能量传送的磁场106的发射器104。接收器108耦合到磁场106并产生输出功率110供耦合到输出功率110的装置(未图示)存储或消耗。发射器104与接收器108两者分开距离112。在一个示范性实施例中,发射器104和接收器108根据相互谐振关系而配置,且当接收器108的谐振频率与发射器104的谐振频率匹配时,当接收器108位于磁场106的“近场”中时发射器104与接收器108之间的发射损失最小。
[0030] 发射器104进一步包含用于提供用于能量发射的装置的发射天线114,且接收器108进一步包含用于提供用于能量接收的装置的接收天线118。发射天线和接收天线是根据待与之相关联的应用和装置来定大小。如所陈述,通过将发射天线的近场中的能量的大部分耦合到接收天线而不是将大部分能量在电磁波中传播到远场而发生有效能量传送。在此近场中,可在发射天线114与接收天线118之间建立耦合。天线114和118周围的可能发生此近场耦合的区域在本文中称为耦合模式区。
[0031] 图2展示无线功率发射系统的简化示意图。由输入功率102驱动的发射器104包含振荡器122、功率放大器124和滤波器及匹配电路126。振荡器经配置以产生所需频率,可响应于调节信号123来调节所述所需频率。振荡器信号可由功率放大器124放大,其中放大量响应于控制信号125。可包含滤波器及匹配电路126以滤除谐波或其它不想要的频率,且使发射器104的阻抗与发射天线114匹配。
[0032] 接收器108可包含匹配电路132和整流器及切换电路134以产生DC功率输出来对如图2所示的电池136充电或对耦合到接收器的装置(未图示)供电。可包含匹配电路132以使接收器108的阻抗与接收天线118匹配。
[0033] 如图3中说明,示范性实施例中使用的天线可配置为“环形”天线150,其在本文中也可称为“磁性”或“谐振”天线。环形天线可经配置以包含空气磁心或例如体磁心等物理磁心。此外,空气磁心环形天线允许将其它组件放置在磁心区域内。另外,空气磁心环形可容易实现将接收天线118(图2)放置在其中发射天线114(图2)的耦合模式区可更有效的发射天线114(图2)平面内。
[0034] 如所陈述,发射器104与接收器108之间的能量的有效传送在发射器104与接收器108之间的匹配或近乎匹配的谐振期间发生。然而,即使当发射器104与接收器108之间的谐振不匹配时,也可在较低效率下传送能量。通过将来自发射天线的近场的能量耦合到驻存在建立此近场的邻近处的接收天线而不是将来自发射天线的能量传播到自由空间中而发生能量的传送。
[0035] 环形天线或磁性天线的谐振频率是基于电感和电容。环形天线中的电感通常为环形所创建的电感,而电容通常添加到环形天线的电感以在所需谐振频率下创建谐振结构。作为一非限制性实例,电容器152和电容器154可添加到天线以创建产生正弦或准正弦信号
156的谐振电路。因此,对于较大直径环形天线,引发谐振所需的电容大小随环形的直径或电感增加而减小。此外,随着环形天线或磁性天线的直径增加,近场的有效能量传送区域针对“接近”耦合装置增加。当然,其它谐振电路是可能的。作为另一非限制性实例,电容器可并联放置在环形天线的两个端子之间。另外,所属领域的一般技术人员将认识到,对于发射天线,谐振信号156可输入到环形天线150。
[0036] 本发明的示范性实施例包含处于彼此的近场中的两个天线之间的耦合功率。如所陈述,近场是天线周围存在电磁场但电磁场不能从天线传播或辐射出去的区域。其通常限于接近天线的物理体积的体积。在本发明的示范性实施例中,例如单和多匝环形天线等磁性类型天线用于发射(Tx)和接收(Rx)天线系统两者,因为天线周围的可能环境的大部分是介电的,且因此与电场相比对磁场具有较少影响。此外,还预期“电”天线(例如,偶极和单极)或磁性天线与电天线的组合。
[0037] Tx天线可在足够低的频率下操作,且具有足够大以实现在比早先提及的远场和感应方法所允许的距离显著更大的距离处到小Rx天线的良好耦合效率(例如,>10%)的天线大小。如果Tx天线正确地定大小,那么可在主机装置上的Rx天线放置在被驱动的Tx环形天线的耦合模式区(即,在近场中)内时实现高耦合效率(例如,30%)。
[0038] 本文揭示的各种示范性实施例指明了基于不同功率转换方法的不同耦合变型,以及包含装置定位灵活性的发射范围(例如,用于在几乎零距离处的充电垫解决方案的接近“近程”耦合,或用于短程无线功率解决方案的“接近”耦合)。接近近程耦合应用(强耦合体系,耦合因数通常为k>0.1)依据天线大小而提供通常大约数毫米或数厘米的短或极短距离上的能量传送。接近耦合应用(松散耦合体系,耦合因数通常为k<0.1)依据天线大小而提供通常10cm到2m范围内的距离上的相对低效率的能量传送。
[0039] 如本文所描述,可将“近程”耦合和“接近”耦合视为使功率源/功率耗散器与天线/耦合网络匹配的不同方法。此外,各种示范性实施例提供针对LF和HF应用两者以及针对发射器和接收器的系统参数、设计目标、实施方案变型和规范。这些参数和规范中的一些可例如视需要变化以较好地与特定功率转换方法匹配。系统设计参数可包含各种优先权和折衷。特定来说,发射器和接收器子系统考虑因素可包含电路的高发射效率、低复杂性,从而产生低成本实施方案。
[0040] 图4A-4C说明根据示范性实施例的包含发射器和接收器的无线功率发射系统的物理实施方案。在图4A的一个示范性实施例中,发射器可配置在包含发射天线202的单装置充电垫(SDCP)200内。SDCP 200也可为可缩放的且扩展为包含发射天线206和发射天线208(图4A中说明)的多装置充电垫204以包含多个SDCP。图4B说明包含与一装置(例如,手机、PDA、MP3播放器等)耦合的发射天线(未图示)的SDCP 200,所述装置包含用于在装置210处接收以无线方式传送的功率的接收天线(未图示)。图4B还说明包含分别用于对装置212和装置
214充电的第一发射天线(未图示)和第二发射天线(未图示)的多装置充电垫204。类似地,图4C说明包含与另一形状因数的微装置216(例如,无线手持机等)耦合的发射天线(未图示)的SDCP200,所述装置216包含用于在装置216处接收以无线方式传送的功率的接收天线(未图示)。图4C还说明包含分别用于对装置218和装置220充电的第一发射天线(未图示)和第二发射天线(未图示)的多装置充电垫204。
[0041] SDCP可以各种方式配置且具有各种能力,借助实例而非限制,SDCP可针对用于需要大约4瓦的充电功率的中等大小装置的高效充电而配置。或者,SDCP可针对用于需要1瓦以下的充电功率的例如手持机、MP3播放器等小形状因数的极低功率装置的中等效率充电而配置。
[0042] 图5A-5B说明根据示范性实施例的包含发射器、能量中继器和接收器的无线功率发射系统的物理实施方案。无线功率传送可使用寄生谐振天线(也称为“能量中继器”线圈/天线/环形或“转发器”线圈/天线/环形)来扩展。虽然发射器与接收器之间的“接近”耦合不可提供高效能量传送,但“接近”耦合提供相对于发射器天线定位接收器(装置附接到所述接收器)的灵活性。
[0043] 图5A说明根据示范性实施例的包含中间能量中继器的无线功率发射系统的配置。无线功率发射系统250包含说明为SDCP的发射器252。发射器252进一步包含发射天线254,且发射器252接收输入功率256。
[0044] 无线功率发射系统250进一步包含耦合到相应装置或集成在相应装置内的一个或一个以上接收器260,且所述接收器260位于距发射器252一距离处。无线功率发射系统250进一步包含包括中继天线272的能量中继器270。如图5A中说明,能量中继器270作为发射器252与接收器260之间的中间能量中继器而操作,发射器与接收器之间的耦合可称为“接近”耦合。
[0045] 在操作中,发射器252充当能量中继器270的“激励器”,其导致中继天线272周围的近磁场的产生。能量中继器270的近磁场接着耦合到接收器260的接收天线262。因此,中间能量中继器270促进发射天线254处展现的能量的传送得以有效地在接收天线262处接收。借助实例,能量中继器270的典型Q值可大约为300到800之间的Q值。
[0046] 图5B说明根据示范性实施例的包含环绕能量中继器的无线功率发射系统的配置。无线功率发射系统280包含说明为SDCP的发射器282。发射器282进一步包含发射天线284,且发射器282接收输入功率286。
[0047] 无线功率发射系统280进一步包含耦合到相应装置或集成在相应装置内的一个或一个以上接收器290,且所述接收器290位于距发射器282一距离处。无线功率发射系统280进一步包含包括中继天线302的能量中继器300。如图5B中说明,能量中继器300作为发射器282与接收器290之间的中间能量中继器操作,发射器与接收器之间的耦合也可称为“接近”耦合。
[0048] 在操作中,发射器282充当能量中继器300的“激励器”,其产生中继天线302周围的近磁场。能量中继器300的近磁场接着耦合到接收器290的接收天线292。因此,中间能量中继器300促进发射天线284处展现的能量的传送得以有效地在接收天线292处接收。借助实例,能量中继器300的典型Q值可大约为300到800之间的Q值。
[0049] 图6说明根据示范性实施例的经配置以接收以无线方式发射的功率并发射无线功率的装置。装置400包含上文相对于图2描述的发射器104和接收器108。针对其中接收器可经再配置以作为到又一接收器的发射器而操作的示范性实施例,装置400进一步包含可根据发射器104与接收器108之间的开关418而切换的发射/接收天线416。此外,装置400进一步包含电池136,其可根据开关420而可切换地耦合以从接收器108接收电荷或将输入功率102提供到发射器104。
[0050] 在作为接收器的操作中,装置400可经配置以从单独的发射器(未图示)接收以无线方式发射的功率,并在作为接收器的装置操作期间将以无线方式接收的功率存储在电池136中。在作为发射器的操作中,装置400可经配置以使用存储在电池136中的能量作为输入功率102而产生近磁场。
[0051] 图7说明有线功率发射系统。有线功率发射系统500包含在AC频率fAC下操作的AC输入功率IAC、VAC。输入功率输入到在切换频率fSW下操作的AC/DC转换器502中。DC软线504将DC功率VDCL、IDCL运载到装置506,而开关508选择性地将输入功率运载到电池510。
[0052] 可计算发射效率,其中AC输入功率PACin定义为,
[0053]
[0054] 且装置输入充电端子处的DC输入功率P′DCL定义为,
[0055]
[0056] 而电池端子处的DC输入功率PDCL定义为,
[0057]
[0058] 因此,如装置端子处定义的效率定义为,
[0059]
[0060] 且总体(端对端)效率定义为,
[0061]
[0062] 而典型的所测量效率约为60%-70%。
[0063] 图8说明根据各种示范性实施例的无线功率发射系统的功能框图。图8中识别各种端口,包含输入端口602和输出端口610,用于在说明耦合变型的后续图中进行比较。无线功率发射系统600包含发射器604和接收器608。输入功率PTXin提供到发射器604以用于产生主要非辐射场606(具有耦合k),以便提供能量传送。接收器608耦合到非辐射场606且产生输出功率PRXout供耦合到输出端口610的电池或负载636存储或消耗。发射器604与接收器608两者分开一距离。在一个示范性实施例中,发射器604和接收器608根据相互谐振关系而配置,且当接收器608的谐振频率f0与发射器604的谐振频率匹配时,当接收器608位于辐射场606的“近场”中时发射器604与接收器608之间的发射损失最小。
[0064] 发射器604进一步包含用于提供用于能量发射的装置的发射天线614,且接收器608进一步包含用于提供用于能量接收的装置的接收天线618。发射器604进一步包含至少部分充当AC/AC转换器的发射功率转换单元620。接收器608进一步包含至少部分充当AC/DC转换器的接收功率转换单元622。图8中识别各种内部端口电流电压和功率,用于后续图中各种耦合变型的比较。
[0065] 图9说明根据示范性实施例的发射天线与接收天线之间的第一耦合变型的电路图。图9的耦合变型630说明例如图4A-4C的单装置充电垫(SDCP)200中的“近程”耦合变型寻找应用。耦合变型630包含说明为发射天线614′和接收天线618′的串联储能电路(tank circuit)。发射天线614′包含由电容器C1和电感器L1组成的串联储能电路,且接收天线618′包含由电容器C2和电感器L2组成的另一串联储能电路。
[0066] 如果耦合因数k12和/或接收器负载(未图示)改变,那么经耦合串联储能电路通常不展现失谐效应。此外,具有开放端子的串联储能电路理论上不吸收发射器的紧密近程处的能量,这与含有可独立于接收端子处的加载而吸收相对大量功率的并联L-C结构的其它耦合变型形成对比。因此,经耦合串联回路的耦合变型630为例如相对于图4A-4C说明的单一或多个接收器配置提供有效无线功率发射。
[0067] 图10说明根据示范性实施例的发射天线与接收天线之间的第二耦合变型的电路图。图10的耦合变型650说明“接近”耦合变型,且可用于耦合到用于“接近”耦合的高Q谐振储能电路。耦合变型650变换阻抗以与功率转换电路匹配,从而产生经改善的或高传送效率。特定来说,耦合变型650包含谐振发射天线614″和谐振接收天线618″。
[0068] 发射天线614″包含高Q储能谐振器652(其包含电容器C1和电感器L1)以及耦合环形/线圈654。耦合环形/线圈654将发射器的其它部分与高Q储能谐振器652匹配。接收天线618″包含高Q储能谐振器656(其包含电容器C2和电感器L2)以及耦合环形/线圈658。耦合环形/线圈658将接收器的其它部分与高Q储能谐振器656匹配。
[0069] 图11说明根据示范性实施例的发射天线与接收天线之间的第三耦合变型的电路图。耦合变型670使用电容性耦合代替电感性耦合以变换高Q并联储能电路的高阻抗以与图8的发射和接收功率转换单元匹配。特定来说,耦合变型670包含发射天线614″′和接收天线
618″′。
[0070] 发射天线614″′包含高Q并联储能谐振器672(其包含电容器C1和电感器L1)以及耦合电容器674。耦合电容器674将发射器的其它部分与高Q并联储能谐振器672匹配。接收天线618″′包含高Q并联储能谐振器676(其包含电容器C2和电感器L2)以及耦合电容器678。耦合电容器678将接收器的其它部分与高Q并联储能谐振器676匹配。
[0071] 图12说明根据示范性实施例的发射天线与接收天线之间的第四耦合变型的电路图。耦合变型690使用串联和并联储能电路的混合配置,其在一些示范性实施例中可提供关于发射或接收功率转换的阻抗匹配的特定优点。特定来说,耦合变型690包含发射天线614″″和接收天线618″″。
[0072] 发射天线614″″可类似于图9的发射天线614′进行配置。发射天线614″″包含串联储能谐振器692(其包含电容器C1和电感器L1),且接收天线618″″包含并联储能谐振器696(其包含电容器C2和电感器L2)。
[0073] 图13说明根据示范性实施例的发射天线与接收天线之间的第五耦合变型的电路图。图13的耦合变型700说明用于使用用于“接近”耦合的串联谐振电路来扩展通常设计用于“近程”耦合的系统的实施例。耦合变型700包含发射天线614″″′和接收天线618″″′。发射天线614″″′包含串联储能谐振器704(其包含电容器C1和电感器L1),且接收天线618″″′包含串联储能谐振器706(其包含电容器C2和电感器L2)。发射天线614″″′和接收天线618″″′还可包含一个或一个以上寄生高Q谐振器702。
[0074] 在耦合变型700中,添加寄生高Q谐振器702作为发射天线614″″′中的寄生高Q谐振器702A、接收天线618″″′中的寄生高Q谐振器702B,或发射天线614″″′与接收天线618″″′两者中的寄生高Q谐振器702A、702B。此外,可通过改变耦合因数k11′和/或k22′来控制匹配。借助实例,寄生高Q谐振器702A的典型Q值可大约为大于300的Q值,且寄生高Q谐振器702B的典型Q值可大约为80到200之间的Q值。
[0075] 万一耦合因数k12将归因于装置定位而变化,则寄生储能电路还可用于耦合变型的输入端口602(图8)和输出端口610(图8)处的阻抗调节。特定来说,如果耦合因数k12变化,那么如输入端口602处所见的阻抗和输出端口610处的最佳负载阻抗可显著改变,从而导致需要通常通过发射和接收功率转换器620、622(图8)实现的在功率传送链路的两侧上的阻抗适应。使用具有到其串联储能电路的固定耦合(k11′)的寄生储能电路可使此阻抗在某种程度上稳定,同时放松对发射和接收功率转换单元620、622的要求。
[0076] 一般来说,谐振天线系统为来自外来物体的去谐效应的主体。接收天线通常在集成到主机装置中时归因于装置主体对磁场和电场的影响而去谐。此影响可通过设计和组件选择来解决。这与去谐可依据装置的位置而变化的发射天线形成对比。另外,未加载Q因数通常将归因于装置主体中的涡电流损失和电介质损失而下降。
[0077] 对于紧密“近程”耦合来说,可能不太需要天线的谐振频率的调谐,因为谐振天线将可能高度负载(即,低负载Q因数)。这在针对“接近”耦合设计的系统中可能不同,在针对“接近”耦合设计的系统中,操作Q因数将可能为高,因此需要补偿任何去谐效应。此外,因装置中的损失造成的Q下降不能得到补偿,而是必须接受。依据解决方案,其可能影响发射器和接收器两者。
[0078] 如上文参看图8-13陈述,无线功率发射系统600包含如图8中说明的发射器604和接收器608。无线功率发射系统可经配置以在包含“低”和“高”频率的各种谐振频率下操作。描述低和高频率实施例的实例。描述低频(LF)实施例,其中发射频率f0=135kHz(针对RFID系统的LF ISM带)。描述高频(HF)实施例,其中发射频率f0=13.56MHz(针对RFID系统的HF ISM带)。在以下图式中,指明LF系统与HF系统之间的差异。
[0079] 关于发射器,低频或高频(LF-HF)发射器包括两个主要部分,(1)发射功率转换单元,和(2)发射天线(耦合单元)。发射天线基本上由环形/线圈天线和反电抗器(电容器)组成以使系统处于谐振。
[0080] 图14说明根据示范性实施例的LF-HF发射器。LF-HF发射器800包含发射天线802,其说明为包含电容器C1和电感器L1的串联谐振储能电路804。图14还说明等效电阻器806,其表示天线的内部损失和归因于天线附近的物体的谐振阻尼效应而带来的外部损失。LF-HF发射器800进一步包含发射功率转换单元808,其包括AC/AC转换器子单元810、频率产生和控制子单元812,以及用于将功率供应到频率产生和控制子单元812的辅助转换器814。
[0081] 图15A-15C说明根据示范性实施例的多级发射功率转换单元的各种配置。图15A说明用于产生LF-HF功率的LF-HF发射功率转换单元的一般化二级示范性实施例,其包含第一级中的AC/DC转换,之后是LF-HF功率级。LF-HF发射功率转换单元808A包含具有可变输出功率的AC/DC转换器820,以及由形成频率产生和控制子单元812的一部分的频率产生器(未图示)驱动的LF-HF功率级822。辅助转换器814在通常较低且固定的电压下提供供给功率。图15A的双级方法的一个益处是可用于控制到耦合网络中的功率(PTXout)的功率级的可变DC供应。
[0082] 图15B说明用于产生LF-HF功率的LF-HF发射功率转换单元的示范性实施例,其包含半桥反相器功率级。LF-HF发射功率转换单元808A′包含处于形成半桥反相器832的配置中的两个FET开关830A、830B。理想地,为实现高效率,半桥反相器832在电压/电流零交叉处切换。因此,例如针对具有f0=135kHz驱动波形的LF和具有f0=13.56MHz门驱动波形的HF的工作循环固定在约50%。通过DC/DC转换器834提供PWM受控可变输出电压VDC1来实现功率控制。50%工作循环还使谐波含量最小化。然而,在一些情况下半桥反相器832的额外PWM控制可为有用的。
[0083] DC/DC转换器834可在操作频率下或在按要求调整的不同频率(例如,200kHz或更高)下切换。发射功率转换单元808A′的输出处的调节网络836可用以依据耦合网络来抑制谐波和/或增加效率。在当前示范性实施例中,虽然可能需要多个FET开关830,但通常与单一FET功率级相比存在FET的较少电压应力,因此可使用较低成本装置。此外,在当前示范性实施例中,半桥反相器功率级如同电压源(低阻抗)那样操作且因此可驱动任何负载阻抗,只要电流和/或功率不超过FET额定值即可。半桥反相器尤其适于驱动串联谐振储能电路。
[0084] 图15C说明用于产生LF-HF功率的LF-HF发射功率转换单元的另一示范性实施例,其包含类似于“升压转换器”或E类配置功率级。LF-HF发射功率转换单元808A″包含经配置以形成类似于“升压转换器”或E类电路的一个FET开关830,其中FET开关在零电压下“准时”发生(E类或软切换方法)。
[0085] 如果LF-HF发射功率转换单元将驱动配置为串联谐振储能电路的发射天线,那么此串联谐振储能电路接着充当通常用于E类操作的串联C-L-RL负载网络的一部分。门驱动可出于阻抗匹配或功率控制目的而受额外PWM控制。一般来说,在50%工作循环处实现最高效率。DC/DC步降转换器842可在操作频率下或在按要求调整的不同频率(例如,200kHz或更高)下切换。发射功率转换单元808A″的输出处的调节网络844可用以依据耦合网络来抑制谐波和/或增加效率和匹配。
[0086] 图16A-16D说明根据示范性实施例的单级发射功率转换单元的各种配置。图16A中说明使用单级方法直接从主AC电压产生LF-HF功率。由于DC电源电压可为固定的且较高(例如,在120-315VDC范围内),所以可借助切换波形(PWM)的工作循环实现功率控制。在此方法中,AC/AC转换器850可视为变压器隔离AC/DC电源的一部分。耦合网络充当隔离变压器,但具有高泄漏或杂散电感。发射功率转换单元808B进一步包含频率产生与控制子单元812和用于将功率供应到频率产生与控制子单元812的辅助转换器814。
[0087] 图16B说明用于产生LF-HF功率的LF-HF发射功率转换单元的示范性实施例。LF-HF发射功率转换单元808B′包含一个FET开关830,且LF-HF发射功率转换单元808B′中的输出功率控制是使用针对LF的f0=135kHz和针对HF的f0=13.56MHz的PWM门驱动波形来实现,这意味着在低工作循环(即,传导)下,效率可能稍微受到损害。然而,实现目标功率所需的工作循环可通过设计具有变换比n∶1(n>1)的耦合网络来增加,这意味着高初级电压变换为低次级电压。
[0088] 如果LF-HF发射功率转换单元将驱动配置为串联谐振储能电路的发射天线,那么此串联谐振储能电路接着充当通常用于E类操作的串联C-L-RL负载网络的一部分。发射功率转换单元808B′的输出处的调节网络844可用以依据耦合网络来抑制谐波和/或增加效率和匹配。这对于PWM方法可能尤其重要,因为谐波含量随工作循环减小而增加。
[0089] 图16C说明用于产生LF-HF功率的LF-HF发射功率转换单元的另一示范性实施例。LF-HF发射功率转换单元808B″包含一个FET开关830,其形成功率级。发射天线802的谐振储能电路804在DC电源电压与接地之间“悬置”,其中功率级连接到所得储能电路的“热端”。
[0090] 图16D说明用于产生LF-HF功率的LF-HF发射功率转换单元的另一示范性实施例。LF-HF发射功率转换单元808B″′包含FET开关830,其与一并联电感——电感器852串联而操作。LF-HF发射功率转换单元808B″′可驱动配置为串联谐振储能电路的发射天线802。
[0091] 关于接收器,LF-HF接收器包括两个主要部分:(1)接收天线(耦合单元);以及(2)接收功率转换单元。接收天线基本上由回路/线圈天线和反电抗器(电容器)组成以使系统处于谐振。
[0092] 图17说明根据示范性实施例的LF-HF接收器。LF-HF接收器900包含接收天线902,其说明为包含电容器C2和电感器L2的串联谐振储能电路904。图17还说明等效电阻器906,其表示天线的内部损失和归因于天线附近的物体的谐振阻尼效应而带来的外部损失。LF-HF接收器900进一步包含接收功率转换单元908,其包括AC/AC转换器子单元910以及频率产生和控制子单元912。图17进一步说明耦合到装置的负载916的LF-HF接收器900。
[0093] 一般来说,发射天线802的各种以上描述也可应用于接收天线902。供应频率产生和控制子单元912所需的功率可从接收功率转换单元908接收。在一个示范性实施例中,接收功率转换单元908通过独立于负载916(例如,电池)将功率供应到接收功率转换单元908的任何能力而产生足够的功率以对频率产生和控制子单元912进行馈送,而在“最小模式”中操作,条件是从接收天线接收的功率超过阈值。一旦频率产生和控制单元908完全操作,接收功率转换单元908就进入“正常模式”并将功率递送到负载916。
[0094] 在接收功率转换单元908中,可能需要频率以进行DC/DC转换和/或同步整流。利用同步整流器,功率流可经颠倒以使得接收器充当功率发射器。在最小模式中,AC/DC转换器910充当无源二极管整流器,其具有额外组件以感测充电电压和电流,且具有开关(未图示)以断开负载916(例如,电池)。图17还说明端口和接口指定端口电流、电压和功率。
[0095] 图18A-18H说明根据各种示范性实施例的接收功率转换单元的各种配置。图18A说明根据示范性实施例的接收功率转换单元。LF-HF接收功率转换单元908A包含AC整流器920和DC/DC转换器单元922。DC/DC转换器单元922用于通过AC整流器920的输入端口处的耦合网络来调整所见的负载阻抗以便使传送效率最大化。在各种负载范围中,如果负载阻抗改变,那么效率不会显著改变。接收负载阻抗控制还可用于调节耦合网络的发射端口处的阻抗。
[0096] 图18B说明LF-HF接收功率转换单元的另一示范性实施例。LF-HF接收功率转换单元908A′包含四二极管全波全桥整流器920′和DC/DC转换器单元922′。此外,还预期整流器920的整流器结构变化。
[0097] 在各种实际应用中,负载916(例如,电池)具有低电压(例如,4V)和高电流(例如,1A),因此强加需要步降转换器的低电阻低(例如,4欧姆)。因此,DC/DC转换器的使用尤其有利,因为DC/DC转换器允许整流器920在较高输入电压VA2下操作,其中二极管的阈值电压具有较少影响,因此增加整流器920的效率。理论上,DC/DC步降转换器922′可在经确定以实现最大效率的不同频率下切换。可借助PWM切换波形的工作循环而调整负载电流。
[0098] 图18C说明LF-HF接收功率转换单元的另一示范性实施例。LF-HF接收功率转换单元908B是基于同步整流,这意味着使用有源FET开关(未图示)对所接收LF-HF功率进行整流。切换波形必须与所接收信号同步,且必须调整波形的相位。调整可使用电压/电流感测来实现。
[0099] 频率产生与控制单元912产生切换波形且可借助PWM而执行负载功率和阻抗控制。在此示范性实施例中,AC/DC转换器924可视为变压器隔离AC/DC电源的次级部分。耦合网络充当隔离变压器但具有高泄漏或杂散电感。
[0100] 图18D说明AC/DC转换器的示范性实施例。在示范性实施例中,AC/DC转换器924A和AC/DC转换器924B经配置以还根据单一FET同步整流器926来执行同步整流。需要时钟恢复和相角控制928以适当地将FET驱动波形与所接收波形对准,使得同步整流器在右V-I象限中操作。这些功能可视为频率产生与控制子单元912的一部分。FET同步整流器926可以减少/增加的工作循环来操作以控制转换器输入阻抗和功率。AC/DC转换器924A可应用于接收天线中的并联谐振储能电路,且AC/DC转换器924B可应用于接收天线中的串联谐振储能电路。
[0101] 如果AC/DC转换器924A耦合到接收天线中的串联谐振储能电路,那么可能需要并联电容器Cp2930以及通过FET同步整流器926在零伏处切换以避免FET切换应力。然而,电容器Cp2930趋向于减小转换器输入阻抗,其可在强耦合体系(发射器和接收器紧密接近)中起相反作用。如果AC/DC转换器924B耦合到接收天线中的并联谐振储能电路,那么可能需要串联电感器Ls2932,且FET同步整流器926应仅在零电流下断开以避免FET切换应力。
[0102] 图18E说明LF-HF接收功率转换单元的另一示范性实施例。LF-HF接收功率转换单元908C是基于无源二极管整流器934,且被认为尤其适于其中最终传送效率可能不是主要问题的极小形状因数微功率装置。然而,无源二极管整流器通常可能在负载阻抗匹配和输出功率方面难以控制。因此,接收器应根据在所构想应用或使用情况中最有可能的耦合体系而经设计和优化。可例如通过使用静态FET开关改变二极管整流器的配置而仍然并入有限的控制。二极管整流器和整流器一般来说可进行分类,如所示:
[0103]  电流汇   电压汇
  单二极管(半波)   类型a   类型b
  双二极管(全波,半桥)   类型c   类型d
  四二极管(全波,全桥)   类型e   类型f
[0104] 图18F说明无源二极管整流器的示范性实施例。在示范性实施例中,无源二极管整流器934A为与接收天线中的并联谐振储能电路协作的适宜结构。无源二极管整流器934A展现比其负载阻抗高的输入阻抗,因此执行电压下降转换。无源二极管整流器934B为与接收天线中的串联谐振储能电路协作的适宜结构。
[0105] 如果无源二极管整流器934A耦合到接收天线中的串联谐振储能电路,那么可能需要并联电容器Cp2936以避免二极管切换应力。然而,电容器Cp2936趋向于减小转换器输入阻抗,其可在强耦合体系(即,发射器和接收器紧密接近)中起相反作用。如果无源二极管整流器934B耦合到接收天线中的并联谐振储能电路,那么可能需要串联电感器Ls2938以避免二极管切换应力。
[0106] 图18G说明无源二极管整流器的示范性实施例。在示范性实施例中,无源二极管整流器934C、934D为双二极管整流器。无源二极管整流器934C为与接收天线中的并联谐振储能电路协作的适宜结构。无源二极管整流器934C展现比其负载阻抗高且比以无源二极管整流器934A所实现的输入阻抗高的输入阻抗。无源二极管整流器934D为无源二极管整流器934B的双二极管结构,且较适于从接收天线中的串联谐振储能电路驱动。然而,无源二极管整流器934D展现比其负载阻抗低且比以无源二极管整流器934B所实现的输入阻抗低的输入阻抗。
[0107] 如果无源二极管整流器934C耦合到接收天线中的串联谐振储能电路,那么可能需要并联电容器Cp2940以避免二极管切换应力(高dV/dt)。然而,并联电容器Cp2940趋向于减小转换器输入阻抗,其可在强耦合体系(发射器和接收器紧密接近)中起相反作用。如果无源二极管整流器934D耦合到接收天线中的并联谐振储能电路,那么可能需要串联电感器Ls2942以避免二极管切换应力(高dI/dt)。
[0108] 图18H说明无源二极管整流器的示范性实施例。在示范性实施例中,无源二极管整流器934E、934F为四二极管整流器,且可视为以“推-拉”形式(反相)操作的一对半桥(D类)整流器。无源二极管整流器934E作为电流汇而操作,且是与接收天线中的并联谐振储能电路协作的适宜结构。无源二极管整流器934E展现比其负载阻抗高且是以无源二极管整流器934C所实现的输入阻抗的两倍的输入阻抗。无源二极管整流器934F作为电压汇而操作,且是无源二极管整流器934D的双结构,因此较适于从接收天线中的串联谐振储能电路驱动。
然而,无源二极管整流器934F展现比其负载阻抗低且是无源二极管整流器934D的输入阻抗的两倍的输入阻抗,这在强耦合体系中是有利的。
[0109] 如果无源二极管整流器934E耦合到接收天线中的串联谐振储能电路,那么可能需要并联电容器Cp2944以避免二极管切换应力(高dV/dt)。然而,并联电容器Cp2944趋向于减小转换器输入阻抗,其可在强耦合体系(发射器和接收器紧密接近)中起相反作用。如果无源二极管整流器934F耦合到接收天线中的并联谐振储能电路,那么可能需要串联电感器Ls2946以避免二极管切换应力(高dI/dt)。
[0110] 图19说明根据示范性实施例的用于接收无线功率的方法的流程图。用于接收无线功率的方法1000由本文描述的各种结构和电路支持。方法1000包含步骤1002,其用于当接收天线与发射天线近程耦合时在接收天线的串联配置的谐振储能电路处接收由发射天线产生的近磁场中的无线功率。方法1000进一步包含步骤1004,其用于当接收天线与发射天线近程耦合时在接收天线的串联配置的谐振储能电路处接收由发射天线产生的近磁场中的无线功率。此外,方法1000进一步包含步骤1006,其用于当接收天线与发射天线接近耦合时在接收天线的寄生谐振储能电路处接收由发射天线产生的近磁场的无线功率。方法1000进一步包含步骤1006,其用于对无线功率进行整流。
[0111] 图20说明根据示范性实施例的用于发射无线功率的方法的流程图。用于发射无线功率的方法1100由本文描述的各种结构和电路来支持。方法1100包含步骤1102,其用于当接收天线与发射天线近程耦合时在发射天线的串联配置的谐振储能电路处产生近磁场中的无线功率。方法1100进一步包含步骤1104,其用于当接收天线与发射天线接近耦合时在发射天线的寄生谐振储能电路处产生近磁场的无线功率。
[0112] 所属领域的技术人员将了解,可使用多种不同技术和技艺中的任一者来表示信息和信号。举例来说,可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子或其任何组合来表示可能在整个以上描述中所参考的数据、指令、命令、信息、信号、位、符号及码片。
[0113] 所属领域的技术人员将进一步了解,可将结合本文中所揭示的实施例而描述的各种说明性逻辑、模块、电路和算法步骤实施为电子硬件、由计算机软件控制或两者的组合。为清楚说明硬件与软件的此互换性,上文已大致关于其功能性而描述了各种说明性组件、块、模块、电路及步骤。所述功能性是实施且控制为硬件还是软件取决于特定应用及施加于整个系统的设计约束。所属领域的技术人员可针对每一特定应用以不同方式实施所述功能性,但此等实施决策不应被解释为会导致脱离本发明的示范性实施例的范围。
[0114] 结合本文所揭示的实施例所描述的各种说明性逻辑块、模块及电路可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件,或其经设计以执行本文所描述的功能的任何组合来控制。通用处理器可为微处理器,但在替代例中,处理器可为任何常规的处理器、控制器微控制器或状态机。处理器还可实施为计算装置的组合,例如,DSP与微处理器的组合、多个微处理器的组合、一个或一个以上微处理器与DSP核心的联合,或任何其它此配置。
[0115] 结合本文中所揭示的实施例而描述的方法或算法的步骤可直接包含于硬件中、由处理器执行的软件模块中或所述两者的组合中。软件模块可驻留于随机存取存储器(RAM)、快闪存储器、只读存储器(ROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、寄存器、硬盘、可装卸盘、CD-ROM或此项技术中已知的任何其它形式的存储媒体中。示范性存储媒体耦合到处理器,使得所述处理器可从存储媒体读取信息及将信息写入到存储媒体。在替代方案中,存储媒体可与处理器成一体式。处理器及存储媒体可驻留于ASIC中。ASIC可驻留于用户终端中。在替代例中,处理器及存储媒体可作为离散组件驻留于用户终端中。
[0116] 在一个或一个以上示范性实施例中,所描述的控制功能可实施于硬件、软件、固件或其任一组合中。如果实施于软件中,则可将功能作为计算机可读媒体上的一个或一个以上指令或代码而加以存储或传输。计算机可读媒体包括计算机存储媒体与包括促进计算机程序从一处传递到另一处的任何媒体的通信媒体两者。存储媒体可为可由计算机存取的任何可用媒体。以实例方式(且并非限制),所述计算机可读媒体可包含RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置,或可用于载送或存储呈指令或数据结构的形式的所要程序代码且可由计算机存取的任何其它媒体。同样,可恰当地将任何连接称作计算机可读媒体。举例来说,如果使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)或例如红外线、无线电及微波的无线技术从网站服务器或其它远程源传输软件,则同轴电缆、光纤电缆、双绞线、DSL或例如红外线、无线电及微波的无线技术包括于媒体的定义中。如本文中所使用,磁盘及光盘包括紧密光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)、软盘及蓝光光盘,其中磁盘通常磁性地复制数据,而光盘使用激光光学地复制数据。上文的组合也应包括在计算机可读媒体的范围内。
[0117] 提供所揭示示范性实施例的先前描述是为了使所属领域的技术人员能够制作或使用本发明。所属领域的技术人员将易于了解对这些示范性实施例的各种修改,且在不脱离本发明的精神或范围的情况下,本文中界定的一般原理可应用于其它实施例。因此,不希望将本发明限于本文中所展示的实施例,而是赋予其与本文所揭示的原理及新颖特征一致的最广范围。
QQ群二维码
意见反馈