MEMS开关

申请号 CN201180073883.3 申请日 2011-10-06 公开(公告)号 CN103843100B 公开(公告)日 2016-04-27
申请人 富士通株式会社; 发明人 豊田治; 岛内岳明;
摘要 提供一种容易制造并且能够有效抑制粘连的MEMS 开关 。MEMS开关具有:固定 支撑 部;板状挠性梁,至少一端被固定支撑在固定支撑部上,具有延伸的活动表面;活动电气触点,配置在挠性梁的活动表面上;固定电气触点, 位置 相对于固定支撑部固定,与活动电气触点相对置;第一压电驱动元件,从固定支撑部朝向活动电气触点而在挠性梁的活动表面的上方延伸,能够通过 电压 驱动使活动电气触点向固定电气触点发生位移;以及第二压电驱动元件,至少配置在挠性梁的活动表面上,通过电压驱动,向活动电气触点远离固定电气触点的方向驱动挠性梁的活动部。
权利要求

1.一种MEMS开关,其特征在于,具有:
固定支撑部;
板状挠性梁,呈板状,至少一端被固定且直接支撑在固定支撑部上,而且具有延伸的活动表面和回复
活动电气触点,配置在所述挠性梁的活动表面上;
固定电气触点,位置相对于所述固定支撑部固定,与所述活动电气触点相对置;
第一压电驱动元件,从所述固定支撑部朝向所述活动电气触点而在所述挠性梁的活动表面的上方延伸,能够使所述板状挠性梁弯曲,且能够通过电压驱动使所述活动电气触点向所述固定电气触点发生位移;以及
第二压电驱动元件,至少配置在所述挠性梁的活动表面上,通过电压驱动,向所述活动电气触点远离所述固定电气触点的方向驱动所述挠性梁。
2.如权利要求1所述的MEMS开关,其特征在于,
所述第一压电驱动元件和所述第二压电驱动元件,都具有下部电极、配置在下部电极上的压电材料层以及配置在压电材料层上的上部电极。
3.如权利要求2所述的MEMS开关,其特征在于,
所述活动电气触点配置在所述挠性梁的宽度方向的中央部,所述第二压电驱动元件具有配置在所述活动电气触点的宽度方向的两侧的一对压电驱动部。
4.如权利要求3所述的MEMS开关,其特征在于,
所述固定支撑部由SOI基板形成,所述SOI基板是在支撑Si基板上隔着层而结合活性Si层形成的,
所述挠性梁由所述活性Si层形成,具有一定的宽度,而且具有在长度方向上延伸的长条形状。
5.如权利要求4所述的MEMS开关,其特征在于,
所述挠性梁具有双支撑梁结构,所述活动电气触点和所述第二压电驱动元件配置在所述双支撑梁的中间部。
6.如权利要求4所述的MEMS开关,其特征在于,
所述挠性梁具有悬臂梁结构,所述活动电气触点和所述第二压电驱动元件配置在所述悬臂梁的自由端附近。
7.如权利要求1所述的MEMS开关,其特征在于,还具有:
第一控制电路,控制所述第一压电驱动元件;以及
第二控制电路,控制所述第二压电驱动元件。
8.如权利要求7所述的MEMS开关,其特征在于,
所述第一控制电路与所述第二控制电路通过相互感应结合。
9.如权利要求7所述的MEMS开关,其特征在于,
还具有微处理器,用于控制所述第一控制电路和所述第二控制电路。
10.如权利要求9所述的MEMS开关,其特征在于,
还包含计数器,该计数器对所述第一控制电路的运转数进行计数,
所述微处理器,针对所述第一控制电路的多次运转,使所述第二控制电路进行一次运转。

说明书全文

MEMS开关

技术领域

[0001] 本发明涉及MEMS(micro electro-mechanical system:微机电系统)开关。
[0002] 将具有小于等于10mm的尺寸的构成部分的电子机械部件称作MEMS。背景技术[0003] 加工技术伴随集成电路的进步而高度发达,而且适于制作MEMS。通过使用化硅膜作为粘接膜(接合氧化膜,BOX膜)在支撑Si基板上粘帖活性Si层而获得的SOI(Silicon On Insulator:绝缘硅)基板能够减小活性Si层的厚度,不仅能够形成介电隔离的高性能Si元件,而且能够利用稀氢氟酸等选择地去除氧化硅膜,能够用于制作具有活动部的MEMS。一般情况下,通过对一对Si基板中的至少一个Si基板进行热氧化,而且经由氧化硅膜对一对Si基板进行热压接来制作SOI基板。
[0004] 为了应对相对于移动电话等的高频(RF:Radio Frequency,射频)部件的小型化、高性能化的要求,正在盛行利用了MEMS技术的RF信号切换开关的研究、开发。MEMS开关可通过以下方式构成:将SOI基板的活性Si层刻画成(图案形成)长条(stripe)形状,去除接合氧化膜而形成挠性梁,在挠性梁上形成活动触点,在挠性梁上方形成固定触点。挠性梁可以具有悬臂梁(cantilever)结构,也可以具有双支撑梁结构。MEMS开关是机械式开关,能够减小寄生电容,与利用半导体元件的开关相比,损耗更小,绝缘性更佳,而且针对信号的失真特性良好。
[0005] 通过将SOI基板的活性Si层刻画成(图案形成)悬臂梁形状,通过蚀刻去除悬臂梁下方的BOX膜,能够形成挠性悬臂梁。通过在悬臂梁上形成活动电极和在其上方延伸的固定电极,只要能够使得悬臂梁能够向上方变形,就能够形成开关。作为使得挠性悬臂梁向上方变形的方法,公知有利用压电促动器的方法、利用静电促动器的方法等(例如,日本特开2006-261515号)。
[0006] 如图11A所示,通过在表面刻画具有绝缘层的活性Si层AL,去除下方的接合氧化膜BOX,能够形成具有弹性的悬臂梁(cantilever)CL。在悬臂梁CL的上表面顶端形成活动接触电极MCE,而且在必要区域形成底部导电层。通过形成从固定部向活动接触电极MCE的上方延伸的固定接触电极FCE来形成开关的触点对。在从悬臂梁CL的根部至中间位置的区域形成压电促动器PEA,包含由一对驱动电极LE、UE夹持的锆酸铅(PZT)等的压电材料层PEL。在端子部形成电金属层PL1、PL2、PL3。在电镀金属层PL2、PL3之间连接偏压电压源V。
[0007] 如图11B所示,当从偏压电压源V向压电促动器PEA的电极UE、LE之间施加电压V时,压电材料层PEL的电场方向上的尺寸(厚度)增大,由此,压电材料层PEL的面内尺寸减小,以维持其体积。
[0008] 如图11C所示,由于减小了压电促动器PEA的面内尺寸,收缩应施加至悬臂梁CL的上表面。悬臂梁CL以向上方翘曲的方式位移。通过使压电促动器PEA的一端从悬臂梁CL的固定端在固定部上延伸,能够增大悬臂梁CL的另一端的位移量。
[0009] 如图11B所示,因悬臂梁CL向上侧翘曲,使得活动接触电极MCE与固定接触电极FCE接触而闭合开关。当停止向压电材料层施加电压时,收缩应力消失,翘曲由于悬臂梁CL的弹性而消失,活动接触电极MCE离开固定接触电极FCE,从而断开开关。
[0010] 也可以取代压电驱动机构,在挠性梁的上表面形成活动电极,在该活动电极的上方形成固定电极,构成静电驱动机构,从而构成利用静电引力使挠性梁向上方位移从而闭合触点的开关。
[0011] 如果多次重复这样的MEMS开关的“开”/“关”动作,则会产生触点相互之间保持接触而不再分开的被称作“粘连”的现象,从而不能再利用梁的弹性回复力来断开开关。梁的弹性回复力越小,越容易产生粘连。为了防止粘连,优选增大梁的弹性回复力。但是,也优选降低开关的驱动电压(闭合电压),而为了降低电压,梁的弹性回复力越小越好。
[0012] 为了减小闭合电压从而防止粘连,考虑有形成一种驱动机构,用于引导相接触的触点而使它们分离。例如,可以针对挠性梁设置压电驱动机构和静电驱动机构,利用其中一方进行闭合触点的动作,利用另一方进行分离触点的动作(例如日本特开2007-35640号)。
[0013] 如图12所示,从配置在支撑基板SS上的支撑部SP伸出挠性梁CL,在挠性梁CL的下表面配置活动接触电极MCE和活动驱动电极MDE,以与该活动接触电极MCE和该活动驱动电极MDE相向的方式,在基板的上表面配置固定接触电极FCE和固定驱动电极FDE,从而构成静电驱动开关。在驱动电极MDE与FDE之间施加电压,从而利用静电引力闭合接触电极MCE与FCE,由此能够闭合开关。
[0014] 在挠性梁CL的上表面配置压电材料层PEL,在该压电材料层PEL的上表面配置与该上表面相对置的篦齿状的电极CEA、CEB,构成用于断开开关的压电驱动机构。在断开开关时,切断驱动电极MDE、FDE之间的电压,在篦齿状的电极CEA、CEB之间施加电压,由此,压电材料层PEL发生收缩,从而产生使挠性梁CL向上方翘曲的力,进而积极地使接触电极MCE与FCE分离。
[0015] 通过像这样设置两个驱动机构,能够在断开开关时产生积极地使接触电极分离的力,从而能够防止粘连。但是,图12所示的结构需要在挠性梁与基板相对置的狭小间隙内形成相向的电极,因此制造工序受到严格制约。成为在利用SOI基板的活性Si层形成挠性梁时难以实现的结构。
[0016] 现有技术文献
[0017] 专利文献
[0018] 专利文献1:日本特开2006-261515号公报
[0019] 专利文献2:日本特开2007-035640号公报。

发明内容

[0020] 本发明的实施例的一个目的在于,提供一种容易制造,而且能够有效地抑制粘连的MEMS开关。
[0021] 根据一个实施例,MEMS开关具有:
[0022] 固定支撑部;
[0023] 板状挠性梁,至少一端被固定支撑在固定支撑部上,具有延伸的活动表面;
[0024] 活动电气触点,配置在挠性梁的活动表面上;
[0025] 固定电气触点,位置相对于固定支撑部固定,与活动电气触点相对置;
[0026] 第一压电驱动元件,从固定支撑部朝向活动电气触点而在挠性梁的活动表面的上方延伸,能够通过电压驱动使活动电气触点向固定电气触点发生位移;以及[0027] 第二压电驱动元件,至少配置在挠性梁的活动表面上,通过电压驱动,向活动电气触点远离固定电气触点的方向驱动挠性梁的活动部。附图说明
[0028] 图1A~1E是示出本发明的发明者们的研究内容的挠性梁的剖视图。
[0029] 图2A~2D是示出第一实施例的MEMS开关的:俯视图、沿ⅡB-ⅡB线的剖视图、立体图以及沿ⅡD-ⅡD线的剖视图。
[0030] 图3A~3D是示出通过模拟获得的挠性梁的变形的立体图、剖视图。
[0031] 图4A~4E是示出第一实施例的MEMS开关的制造工艺的SOI基板的剖视图。
[0032] 图5A、5B是示出第一实施例的MEMS开关的制造工艺的SOI基板的俯视图。
[0033] 图6A、6B是第一例的驱动电路的等效电路图和开关驱动的流程图
[0034] 图7A、7B、7C是示出利用互感元件进行的开关驱动的剖视图。
[0035] 图8A、8B是第二例的驱动电路的等效电路图和开关驱动的流程图。
[0036] 图9A、9B是示出变形例的MEMS开关的俯视图、剖视图。
[0037] 图10A、10B是示出第二实施例的MEMS开关的俯视图、剖视图。
[0038] 图11是示出现有技术的具有单压电型(unimorph type)压电驱动元件的MEMS开关的例子的剖视图。
[0039] 图12是示出现有技术的具有复合驱动机构的MEMS开关的例子的剖视图。

具体实施方式

[0040] 考察以下情况:利用具有上下电极层夹持压电材料层的简单结构的单压电型压电驱动机构来使挠性梁变形。能够通过施加电压进行感应的压电驱动机构的范围在一个方向上,挠性梁与压电驱动机构的层叠结构的变形也在一个方向上。
[0041] 针对以下结构进行考察:如图1A所示,在板状的挠性梁FB的表面上,层叠配置Pt等的下部电极LE、锆钛酸铅(PZT)等的压电材料层PEL、Pt等的上部电极UE,由此来形成压电驱动机构PEA。在该压电驱动机构PEA中,通过在上部电极UE、下部电极LE间之间施加电压,压电材料层PEL的厚度増加而面内尺寸减小(在面内方向上收缩),表现出向一个方向的位移。挠性梁FB、压电驱动机构PEA的层叠结构因压电驱动机构PEA的收缩而向下凸出变形。如果挠性梁FB、压电驱动机构PEA具有在图中的横向上长的长条(stripe)形状,则横向(长度方向)上的变形增大。
[0042] 如图1B所示,当压电驱动机构PEA收缩时,压电驱动机构PEA与挠性梁FB的层叠部分PEA/FB由于上侧的压电驱动机构PEA的收缩而向下凸出变形。压电驱动机构PEA的外侧的挠性梁FB在自由状态下不进行任何变形,而是笔直地延伸。
[0043] 如图1C所示,当挠性梁FB的一端,例如左端被平地支撑在支撑部SP上时,该部分不发生位移,处于自由状态的其他部分发生位移。压电驱动机构PEA的左端部保持水平,向下凸出的弯曲使挠性梁FB的右侧部分向上方大幅位移。
[0044] 考察以下情况:如图1D所示,挠性梁的两端受到支撑部SP1、SP2的支撑。挠性梁FB的两端以水平状态固定。压电驱动机构PEA从左侧支撑部SP1的上方朝向挠性梁FB的中央部而形成。当压电驱动机构PEA因被施加电压而收缩时,挠性梁FB、压电驱动机构PEA的层叠部PEA/FB向下凸出变形。当左侧支撑部SP1使右侧的层叠结构向上方发生位移时,固定在右侧支撑部SP2的挠性梁FB的右端部发挥阻力作用。由此,压电驱动机构/挠性梁层叠部分PEA/FB向下方变形,变形到与阻力相平衡的位置。在左侧支撑部SP1的右侧的部分,压电驱动机构PEA/挠性梁FB的层叠部PEA/FB一旦向下方下降,会抑制右侧支撑部SP2侧向上方的位移。该层叠部PEA/FB的右侧的挠性梁FB理应向右上方前进,但是由于受到来自右侧支撑部SP2的阻力,导致向上方凸出变形,而且向下方凸出变形,而且以此方式与右侧支撑部SP2上的水平方向部分连接。在此,在挠性梁FB的高度分布中产生高峰PK。若在该高峰部PK配置活动触点,则应可有助于降低用于产生一定位移的电压(闭合电压)。如果解除施加至压电驱动机构PEA的电压,则压电驱动机构PEA的变形驱动力消失,挠性梁FB回复到笔直的状态,由此能够断开MEMS开关。
[0045] 粘连是已闭合的MEMS触点不再分离的现象。但是如下这种情况也很多,即,即使只利用挠性梁FB的回复力无法使活动电气触点离开固定电气触点,如果施加其他驱动力,则也能够使活动电气触点离开固定电气触点。当从图1D所示的闭合状态切换至断开状态时,只要能够对高峰部PK施加向下的力,就能够有效抑制粘连。
[0046] 如图1B所示,通过施加电压,配置在呈自由状态的挠性梁FB上的压电驱动机构PEA发生向下凸出的变形。若着眼于压电驱动机构PEA的中央,则产生朝下的位移。
[0047] 图1E示出在活动电气触点附近的区域形成压电驱动机构PEA2的情况。压电驱动机构PEA2,在包含MEMS开关的触点对的区域,形成在挠性梁FB上。通过施加电压,压电驱动机构PEA2发生收缩,压电驱动机构PEA2/挠性梁FB的层叠部向下凸出变形,从而层叠部的中央部向下方发生位移。如果在层叠REA2/FB的中央部配置触点,则只使朝下的力作用在触点上,从而抑制粘连。
[0048] 图2A~2D示出第一实施例的MEMS开关。图2A是从上观察获得的俯视图,图2B是沿图2A的ⅡB-ⅡB线的剖视图,图2C是立体图,图2D是沿图2A的ⅡD-ⅡD线的剖视图。
[0049] 如图2A、2B所示,在左右的支撑部SP1、SP2之间支撑有挠性梁FB,跨越其中间部而配置有具有开关的固定触点FCE的固定导线FW。如图2D所示,在与固定触点FCE相向的位置,在挠性梁FB上配置有活动触点MCE。固定导线FW被支撑在挠性梁FB两侧的支撑部SP3、SP4上。活动触点MCE与图2A、2B所示的活动侧导线MW连接。
[0050] 如图2B所示,接地导线GR从固定部SP1的上方越过挠性梁的中央部,形成在与支撑部SP2分离的区域。如图2A所示,接地导线GR在挠性梁的根侧是一根粗导线(宽度宽),但是在前端侧分成两根细导线(宽度窄),而且在中间形成活动触点容纳空间。
[0051] 如图2B所示,压电材料层PEL1和上部电极UE1,以从支撑部SP1的上方延伸至挠性梁FB的中间位置的方式形成在粗的接地导线GR上,构成上抬(闭合)用促动器RA。当在上部电极UE与接地导线GR之间施加电压时,发生如图1D所示的变形,即,抬起上抬用促动器RA的前端,使活动触点MCE位于高峰。
[0052] 如图2B所示,离开上抬用促动器RA而在细的接地导线GR上形成有压电材料层PEL2、上部电极UE2,如图2A所示,该压电材料层PEL2、上部电极UE2构成两个下降(断开)用促动器DA1、DA2。通过图2C的立体图,可以了解上抬用促动器RA与下降用促动器DA1、DA2之间的相向配置关系。
[0053] 在本实施例中,从双支撑型挠性梁FB的左侧支撑部的上方向挠性梁中间延伸的压电驱动元件RA,可产生向上方驱动活动触点MCE的驱动力,活动触点MCE两侧的压电驱动元件DA1、DA2可产生使活动触点MCE向下方下降的驱动力。
[0054] 图3A~3D示出通过模拟获得的挠性梁的变形。图3A、3B是驱动上抬用促动器RA时的立体图、剖视图,图3C、3D是驱动下降用促动器DA1、DA2时的立体图、剖视图。可以发现,当驱动上抬用促动器时,促动器部分呈卵形地凹陷,其前端形成高峰,当驱动下降用促动器时,作为高峰的部分发生凹陷,形成向下方凸出的变形。此外,示出了利用配置在活动触点两侧的两个构件构成下降用促动器的情况,但是,不是必须要有两个下降用促动器。可以省略其中的一个。但是,通过在活动触点的两侧配置下降用促动器,能够在挠性梁上作用均等的力,因此是优选的。
[0055] 参照图4A~4E的剖视图、图5A、5B的俯视图说明第一实施例的MEMS开关的制造工艺。
[0056] 如图4A所示,准备一种SOI基板,该SOI基板通过以下方式获得,即,在例如厚度为300μm~500μm的单结晶Si基板51上,隔着例如厚度为10μm~50μm的接合氧化硅膜52,结合例如厚度为10μm~20μm而且具有大于等于500Ωcm的高电阻率的活性单结晶Si层53。活性Si层53的表面由氧化硅层等的绝缘膜覆盖。在活性Si层53的表面上通过溅射沉积厚度在300nm~1000nm之间的Pt层。在Pt层上形成抗蚀剂图形,通过使用Ar的铣削(milling,磨削)去除抗蚀剂图形外的Pt层,由此来刻画出(图形化)Pt层,从而形成接地导线GR。此外,Pt层的图形化也可以如下进行:先在活性Si层53上形成抗蚀剂图形,然后利用溅射形成Pt层,然后利用剥离方法去除抗蚀剂图形上的Pt层。覆盖被图形化的接地导体GR,在活性Si层的上方利用例如溅射形成厚度为1μm~3μm的PZT等的压电材料层PEL。也可以利用溶胶—凝胶法形成PZT层。形成在Pt的下部电极上的PZT膜具有整齐的结晶方位,从而表现出强介电性、强压电性。
[0057] 如图4B所示,对压刻画(图形化)电材料层PEL。在压电材料层PEL上形成抗蚀剂图形,利用HF类的蚀刻剂来蚀刻PZT层的图形。也可以利用铣削来进行PZT层的图形化。通过溅射,在活性Si层53上沉积厚度为300nm~1000nm的Pt层,覆盖已图形化的PZT层PEL。对Pt层进行刻画(图形化),形成上部电极UE。在上部电极UE上形成抗蚀剂图形,通过利用Ar的铣削来对Pt层进行刻画(图形化)。也可以进行剥离。在接地导线GR上形成上抬用促动器RA、下降用促动器DA的结构。
[0058] 图5A是示出在挠性梁FB上形成有上抬用促动器RA、下降用促动器DA1、DA2的状态的俯视图。
[0059] 如图4C所示,在活性Si层53的整个表面上形成Ti/Au相层叠的种子层,在该种子层上形成在电镀区域具有开口的抗蚀剂图形。在由抗蚀剂图形确定的开口内进行Au的电解电镀,形成作为电极衬垫和桥柱(bridge pillar)的Au电镀层PL。然后,利用去胶机(resist remover)、抛光(ashing)等去除抗蚀剂图形,而且还利用氟化铵类溶液等去除露出的种子层。
[0060] 如图4D所示,利用化学气象沉积(CVD)等在活性Si层53上形成氧化硅等的牺牲层SAC,而且进行蚀刻来使固定触点FCE的表面和桥墩的Au电镀层的上表面露出。在被图形化的牺牲层上形成种子层,而且形成用于确定电镀层形成区域的抗蚀剂图形PR,而且进行Au层PL的电解电镀。
[0061] 如图4E所示,利用去胶机等去除抗蚀剂图形PR,利用HF溶液等去除牺牲层SAC,露出MEMS开关结构。在活性Si层上形成有包含活动触点、固定触点的开关、进行上抬的促动器RA以及进行下降的促动器DA。
[0062] 如图5B所示,利用通过深反应离子刻蚀(DRIE:Deep Reactive IonEtching)(波希工艺)实现的干法蚀刻,来形成狭缝SL,该狭缝SL贯穿活性Si层53,用于划分挠性梁FB。
[0063] 如图4E所示,利用通过深反应离子刻蚀实现的干法蚀刻来从背面形成穿透支撑Si基板51、接合氧化硅膜52而且露出挠性梁FB的开口。
[0064] 图6A示出第一例的MEMS开关的控制电路。控制电路CTL具有包含计时器的微处理器,控制第一电压源V1与上抬用促动器RA进行连接的时机(timing)以及第二电压源V22与下降用促动器DA进行连接的时机。
[0065] 图6B示出控制的流程图。步骤S0是关闭(Off)上抬用促动器RA而且关闭下降用促动器DA的开关断开(Off)状态。在闭合(On)开关的步骤S1中,启动(On)上抬用促动器RA。保持下降用促动器DA关闭。在将开关状态从闭合切换至断开的断开开关的第一步骤S2中,关闭上抬用促动器RA。保持下降用促动器DA关闭。在将开关状态从闭合切换至断开的断开开关的第二步骤S3中,在从关闭上抬用促动器RA开始经过了⊿t秒之后,启动下降用促动器DA。在上抬活动触点的力已消失的状态下,产生使活动触点下降的力。在从下降用促动器DA运转开始经过了T秒之后,在用于转移至通常的断开状态的步骤S4中,关闭下降用促动器DA。保持上抬用促动器RA关闭。
[0066] 图7A、7B、7C示出利用互感元件,通过简单的结构进行与图6相同的控制的情况。
[0067] 如图7A所示,电压源V1经由开关SW、互感元件M的初级侧而与上抬用促动器RA连接。互感元件M的次级侧一直经由电阻R而与下降用促动器DA连接。
[0068] 如图7B所示,当闭合开关SW时,在上抬用促动器RA上施加有电压V1,上抬用促动器RA成为启动状态,从而上抬活动触点而使微动开关闭合。感应电流在互感元件的次级侧流动,但是受到电阻R的限制,因此,下降力小于上抬力。
[0069] 如图7C所示,断开开关SW从而解除在上抬用促动器RA上施加的电压。在互感元件M中,初级侧电流急剧减小,从而在次级侧产生感应电动势。在上抬用促动器RA的上抬力已消失的状态下,在下降用促动器DA上施加有电压,下降力作用于活动触点。挠性梁的回复力与下降用促动器的下降力相叠加地作用于挠性梁,由此能够有效地抑制粘连。能够在不使用计算电路的情况下,使下降促动器工作。电源只需一个即可。
[0070] 图8A示出第二例的MEMS开关的控制电路。与图6A的控制电路相比,在上抬用促动器RA的驱动电路中加入了计数器CT。
[0071] 图8B示出了控制的流程图。各步骤S0~S4与图6B中的相对应的步骤相同。当将计数器设定在N次时,在通过步骤S1驱动了上抬促动器RA之后,直至第(N-1)次为止,都返回到步骤S0。在第N次,从步骤S1前进至步骤S2,驱动下降促动器DA。由此,下降促动器的驱动减少至1/N。存在以下优点:即,能够减轻由于使用下降促动器发生的触点的磨耗等。
[0072] 图9A、9B是示出两个变形例的MEMS开关的俯视图、剖视图。
[0073] 具有第一实施例的一个宽度大的上抬促动器RA。
[0074] 在图9A的变形例中,沿挠性梁的两边配置两个上抬促动器RA1、RA2。可以利用宽度相同的结构形成上抬用促动器RA和下降用促动器DA。一个宽度大的压电促动器在挠性梁上产生呈卵形的变形,而两个平行的压电促动器主要产生长度方向上的变形,而减少宽度方向上的变形。
[0075] 在图9B的变形例中,在挠性梁的长度方向上,下降用促动器DA从包含活动触点的区域延伸至支撑部SP2。压电促动器所存在的区域向下凸出变形,因此,即使延伸至支撑部也可能产生向下的力。
[0076] 图10A、10B是示出第二实施例的MEMS开关的俯视图、剖视图。本实施例的挠性梁是悬臂梁。在从支撑部SP1的上方直至挠性梁FB的中间位置,沿挠性梁FB的两边配置两个上抬用促动器RA1、RA2,在该两个上抬用促动器RA1、RA2之间配置下降用促动器和活动触点用的导线。在挠性梁FB的长度方向上,在包含挠性触点的区域,沿挠性梁FB的两边配置两个下降用促动器DA1、DA2。因为是悬臂梁,所以当驱动上抬用促动器RA1、RA2时,如图1C所示,挠性梁进行顶端上抬的动作。下降用促动器DA的动作如图1E所示向下凸出变形。
[0077] 在上述实施例中例示的材料、数值只是举例说明,不具有限制作用。也可以在Pt下部电极与底部之间形成Ti等的密接膜。压电材料除了PZT之外,也可以使用PLZT、PNN-PT-PZ等其他压电材料。压电驱动元件的电极不仅限于Pt。也可以使用未氧化的贵金属或者虽被氧化但保持导电性的贵金属。关于压电元件,可以参照日本特开2007-257807号的实施例。挠性梁的材料不仅限于单结晶Si。也可以使用金属玻璃等。所例示的工艺也不具有限定作用。关于加工工艺,例如可以参照日本特开2006-261515的实施例的记载。此外,也可以进行本领域技术人员容易想到的各种变形、置换、改良、以及组合等。
QQ群二维码
意见反馈