各向异性磁片

申请号 CN200810211256.1 申请日 2008-09-19 公开(公告)号 CN101392103A 公开(公告)日 2009-03-25
申请人 JDS尤尼弗思公司; 发明人 凡拉帝米尔·P.·瑞克沙; 查尔斯·T.·麦肯特斯; 保罗·G.·库马斯; 罗杰·W.·菲利普; 保罗·T.·科尔曼; 尼尔·泰特鲍姆;
摘要 本 发明 涉及 各向异性 的反射磁片。所述片被置于液体载体中并且受外部 磁场 的作用,片互相边对边吸引并且形成能向涂层提供高反射率的带,并且其可用作鉴定物体的安全特征。
权利要求

1.一种用于形成反射涂层的各向异性磁片,其包含层状结构,所述层状结构厚度范 围为50纳米到10微米,所述层状结构为具有最长平面尺寸范围为1-500微米的二维形 状,并且所述层状结构包含:
磁性层,用于当所述片置于受外部磁场作用的液体载体中时使所述片基本平行于所 述反射涂层的表面;
其中,所述磁性层具有可提供面内磁各向异性的结构,所述面内磁各向异性与所述 最长平面尺寸形成至少20度的
2.如权利要求1所限定的片,其中,所述磁性层是不含光栅的连续磁性层,所述二 维形状具有彼此基本平行的两个边,并且,其中所述磁性层的所述面内磁各向异性基本 垂直于所述两个边,目的在于在形成所述反射涂层时,使所述置于受外部磁场作用的液 体载体中所述片与一个或多个相同结构的片并排排列。
3.如权利要求2所限定的片,其中,所述二维形状为具有相等或不相等边的矩形, 并且所述磁性层的所述面内磁各向异性与所述矩形形状的边基本平行。
4.如权利要求1所限定的片,进一步包含由所述磁性层支撑的第一反射层和第二反 射层,和分别由所述第一反射层和所述第二反射层支撑的第一介电层和第二介电层,分 别由所述第一介电层和所述第二介电层支撑的第一吸收层和第二吸收层,用来提供变色 光学效果。
5.一种如权利要求2所限定的片的制造方法,包含如下步骤:
a)提供用于支撑可剥离涂层的衬底,其包括由磁性材料制成的所述磁性层;
b)在所述可剥离涂层应用于所述衬底之前或之后,用多个具有基本垂直于第一方 向的所述两个边的所述二维形状的框架来压纹或刻蚀所述衬底;
c)用所述可剥离涂层涂覆所述衬底来提供具有沿所述第一方向的磁各向异性的所 述磁性层,其中所述可剥离涂层从所述衬底上移除后将断裂成所述片;和
d)将所述可剥离涂层从所述衬底上移除并且断裂成所述片。
6.如权利要求5所限定的方法,其中,在步骤(c)中,所述衬底沿所述第一方向移 动。
7.如权利要求5所限定的方法,其中,所述衬底是弯曲的。
8.如权利要求5所限定的方法,其中,步骤(c)包括使用至少两个所述磁性材料源 以不同角度向所述衬底的同一部分提供所述磁性材料。
9.如权利要求8所限定的方法,其中,所述至少两个磁性材料源同时向所述衬底的 所述同一部分提供所述磁性材料。
10.权利要求8所限定的方法,其中,所述至少两个磁性材料源在不同时间向所述 衬底的同一部分提供所述磁性材料。
11.如权利要求5所限定的方法,其中,步骤(c)包括将所述衬底沿所述第一方向 移动,并且使用所配置的两个磁性材料源,以使连接所述两个磁性材料源的线基本垂直 于所述第一方向。
12.如权利要求5所限定的方法,其中,步骤(c)包括将所述衬底沿所述第一方向 移动,并且使用所配置的两个磁性材料源,以使连接所述两个磁性材料源的线基本平行 于所述第一方向。
13.如权利要求5所限定的方法,其中,步骤(c)包括对在磁场中的所述磁性材料进 行退火
14.如权利要求5所限定的方法,其中,步骤(c)包括对所述磁性材料进行氙离子照 射。
15.一种涂层,包含固化载体和分散于其中的多个具有如权利要求1所限定的结构 的片,其中所述多个片中的全部片具有相同的二维形状,以使其中的两个边彼此基本平 行;并且具有所述磁性层,以使所述面内磁各向异性基本垂直于所述两个边;
并且其中,在形成所述涂层时,当所述片被分散于受外部磁场的作用的液体载体中, 一部分所述片形成具有至少三个彼此相邻的片的带,使得所述片并排排列而所述片之间 的间隙不大于50纳米。
16.如权利要求15所限定的涂层,其中,所述部分片形成两个或多个彼此相邻的带, 以使所述带并排排列而所述带之间的间隙不大于4微米,由此形成片的瓦状阵列。
17.一种鉴定在其上具有如权利要求15所限定的涂层的物体的方法,包括所述识别 带的步骤。
18.如权利要求1所限定的片,还包含具有反射率大于40%的第二反射层。
19.如权利要求2所限定的片,还包含标记。
20.如权利要求19所限定的片,其中,所述标记关于所述面内磁各向异性的方向 对称。
21.如权利要求5所限定的片,其中,步骤(b)包含对所述衬底压纹或蚀刻有标记。
22.如权利要求1所限定的片,其中,所述磁性层具有非周期的线性光栅结构,所 述非周期的线性光栅结构包含多个彼此基本平行的脊和凹槽,并且与所述最长的平面尺 寸形成至少20度的角度。
23.如权利要求15所限定的涂层,其中,所述多个片中的每一个片均具有对称的标 记,并且所述多个片形成在所述涂层中其上具有标记的所有片中的至少70%。

说明书全文

技术领域

[0001]本发明通常涉及薄颜料片,并且尤其涉及使薄磁片沿外部磁场取向。

背景技术

[0002]反射金属光泽和变色片被用于反射和变色的油墨或涂料中。由于相邻片之间的 间隙采用较小反射性的载体来填充,所以采用油墨或涂层(其用颜料制作)印刷的图像 比单独片的反射参数或色彩参数要差。颜料浓度的增加能够提高印刷图像和涂料涂层的 反射率,但是这会导致额外的成本、涂层增厚,以及片彼此相互重叠而阻止其贴着衬底 平躺着。

发明内容

[0003]因此,本发明的目的是提供一个包含反射片或变色片的经济的、高反射涂层。 本发明的另一目的是提供用于这样的涂层或油墨的片,以及一种制造实现所述涂层的片 的方法。本发明的再一目的是提供一种鉴定在其上具有反射涂层的物体的方法。
[0004]本发明涉及一种制作反射涂层的各向异性磁片。该片具有厚度为50nm-10μm范 围的层状结构和最长平面尺寸范围为1-500微米的二维形状。所述层状结构包括磁性层, 当所述片被布置在受外部磁场作用的液体载体中时,用于使片基本上沿平行于反射涂层 的表面取向。磁性层具有可提供面内磁各向异性的结构,该面内磁各向异性与最长面尺 寸至少成20度。可选地,所述层状结构包含反射率大于50%的第一反射层和第二反 射层,用于为反射涂层提供反射率;其中,所述磁性层被隐藏在所述两个发射层之间。
[0005]本发明一个方面涉及如上所述具有特定二维形状、非常适合于制作带的片。片 的外形具有两个彼此之间基本平行的边。形成磁性层,以使其具有基本上垂直于这两个 边的面内磁各向异性,用于在形成反射涂层时,当所述片在外部磁场的作用下被置于液 态载体中时,使同一结构的一个或多个片彼此之间呈并排排列。片上不具有能提供高的 镜反射率的衍射光栅。优选片为方形。
[0006]本发明的另一个方面涉及一种制造片的方法,其中磁性层的各向异性与二维形 状片的的两个边基本垂直。该方法包含以下步骤:(a)提供一个衬底用以支撑可剥离的 涂层,该涂层包含第一和第二反射层及由磁性材料形成的磁性层;(b)在可剥离的涂层 被应用于衬底之前或之后,用多个具有两个边与第一方向基本垂直的二维形状的框架来 压纹或蚀刻衬底;(c)将可剥离的涂层涂覆衬底以提供具有沿第一方向的磁各向异性的 磁性层,其中,可剥离涂层从衬底上取下断裂成片;以及,(d)将可剥离的涂层从衬底上 移除并分割成片。在本方法的一个实施例中,使用两个源来沉积磁性材料层,这两个源 可以从不同的角度向衬底的同一部分提供磁性材料。
[0007]本发明的另外一个方面涉及一种包含固化载体和多个分散于其中的片的涂层。 所有的片具有相同的二维形状,以使其中的两个边彼此之间基本平行;并且具有磁性层, 以使面内的磁各向异性基本垂直于所述的两个边。在形成涂层时,所述的片被置于液态 载体中在外部磁场的作用下,一部分片形成至少三个片彼此相邻的带,以使片并排排列 而产生的片之间的间隙不超过500纳米。
[0008]三个或更多个片形成的带可被用作文件、钞票等的安全特征。本发明提供了一 种鉴定物体的方法,该方法包含步骤:识别包含片的涂层中的带。在一个实施例中,形 成带的片在其上具有二元光栅,它可提供用于鉴定物体的反射光束的图案。附图说明
[0009] 下面将参考代表优选实施例的附图对本发明予以更详细的描述,其中:
[0010] 图1A是根据现有技术,在外部磁场中的传统磁片的简化平面图;
[0011] 图1B是在外部磁场下图1A所示的磁片形成的链的简化平面图;
[0012] 图2是由本发明的各向异性磁片在外部磁场中形成的带的简化平面图;
[0013] 图3A是本发明中用于制作各向异性磁片的衬底的透视图;
[0014] 图3B是根据本发明制作片的方法的流程图
[0015] 图4A是根据本发明的一个实施例的磁性材料沉积的说明;
[0016] 图4B是图4A所示的衬底的平面图;
[0017] 图5A是根据本发明的一个实施例的磁性材料沉积的侧视图;
[0018] 图5B是图5A所示的衬底的平面图;
[0019] 图6A是根据本发明的一个实施例的磁性材料沉积的侧视图;
[0020] 图6B是图6A所示的衬底的平面图;
[0021] 图7是根据本发明的一个实施例的磁性材料沉积的侧视图;
[0022] 图8A是传统的片在没有磁场时的随机排列的显微图像;
[0023] 图8B是传统的片在磁场下的显微图像;
[0024] 图8C是本发明中的各向异性磁片在磁场下的显微图像,片在载体中含量为 10wt%;
[0025] 图8D是本发明中在磁场下形成带的各向异性磁片的显微图像;
[0026] 图8E是本发明中在磁场下形成高反射性涂层的各向异性磁片的显微图像;
[0027] 图9A是成形的片的简化平面图;
[0028] 图9B是本发明中由片形成的带有防涂层的带的简化平面图;
[0029] 图9C是本发明中由片形成的没有防水涂层的带的简化平面图;
[0030] 图10和11是根据本发明一个实施例中片的简化横截面图;
[0031] 图12是带有反射光栅的磁片的横截面图;
[0032] 图13是带状结构的显微照片;并且,
[0033] 图14是物体鉴定方法的图示。

具体实施方式

[0034] 磁片是包含磁性材料的颜料片。众所周知不含光栅的方形磁片有易磁化轴,即 其磁矩方向沿方形的对角线,以及北极和南极位于方形相对的角。图1A是于2007年 11月27日授予Argoitia等人的美国专利号7300695中的图2a,图示出了在磁场作用下 处于液体介质中的具有边42和44的矩形磁片40。片40取向以使其对角线沿着施加的 磁场46的方向。不同的片的北磁极和南磁极相互吸引,从而使片能形成如图1B所示的 角对角的链。
[0035] 人们已经出乎意料之外的地发现是,当将其分散于液体载体中并与受到磁场的 影响结合,特定种类的方形、不含无光栅的磁片会形成不同的结构,即带状。参见图2, 带48中的片47相对于如图1B所示的边角对角相邻排列,带48中的片47成边对边并 排邻接排列。两个片47间的边对边吸引说明表明方形片47的磁极位于两个相对的边, 以及表明和磁矩的方向平行于方形片47的另外的两条边。方形片47在磁场46中的取 向以使片47的一个边沿着磁场46的线排列。
[0036] 总的来说,传统的非衍射片具有延其最长平面方向的易磁化轴,反之本发明中 的片具有与平面的最长方向成一定角度的易磁化轴或磁各向异性。 [0037]出乎意料的效果可以归因于由片制作方法带来的磁各向异性。磁各向异性的可 能类型,如磁晶各向异性、应力感生磁各向异性和由衬底形貌诱导的磁各向异性,在 Environmental Magnetism Workshop 1991年6月5-8日,Bruce M.Moskowitz的 “Hitchhiker’s Guide to Magnetism”中进行了描述。
[0038] 参考图3B,片的制造方法包括衬底制造步骤510,其中衬底为可剥离的涂层作 支撑。在衬底压纹或蚀刻步骤520中,可选其上带有涂层的衬底,将被压纹或蚀刻到衬 底上的多个框架提供给涂层,例如于2005年6月7日授予Argoitia等人的美国专利号 6902807中所教导的,和于2008年5月8日以Argoitia等人的名义公布的美国专利申请 号20080107856中所教导的,在此通过参考将它们合并入本申请中。框架的形状和取向 与各向异性的方向有关,所以框架的二维形状具有两个互相之间基本平行的边,并且与 所需要的各向异性方向基本垂直。
[0039] 然后,在涂覆步骤530中,衬底由可剥离的涂层涂覆,如于2005年1月4日和 2004年10月26日均授予Phillips等人的美国专利第6838166号和第6808806号中那样, 在此通过参考将它们合并入本申请中。可剥离的涂层包含第一反射层和第二反射层,以 及由磁性材料形成的磁性层。磁性层被沉积以在所需方向上具有磁各向异性。然后,在 涂层去除步骤540中,从衬底上取下可剥离的涂层并将其分割成本发明中的各向异性磁 片。
[0040] 在此方法的一个实施例中,由衬底提供步骤510提供的衬底在紧跟510步骤之 后的衬底压纹或刻蚀步骤520中形成图案。参考图3A,具有方502图案的衬底501 由分割沟槽503分割。作为例子,衬底501由聚酯制成,方块502是在其中压印有JDSU 符号的20×20微米的方形,以追踪方块在涂层中的方向。衬底501不是必须是方形,可 以是不同于沟槽503的图案,在下文中将参考图9A-9C来作进一步讨论。
[0041] 可剥离的涂层在步骤530中形成,包含一个或多个磁性层,也可选择非磁性层, 如在下文中参考图10和图11对非磁性层作进一步讨论的那样。非磁性层可利用任一传 统的薄膜沉积技术沉积。这一技术非限定的例子包括物理气相沉积(PVD)、化学气相沉 积(CVD)、等离子体增强(PE)的衍生方法,如PECVD或顺流式PECVD、溅射、电解沉 积、溶胶—凝胶法,和其他的类似能形成基本均匀的、连续的薄膜层的沉积方法。对于 沉积磁性层,可采用以下描述的这些技术来完成。
[0042] 在此方法的一个实施例中,涂覆步骤530包括利用至少两个源以不同的角度向 衬底的同一部分提供磁性材料来沉积磁性层。
[0043] 作为例子,在此方法的一个实施例中,涂覆步骤530包括利用至少两个源以两 个或更多的角度同时向移动的衬底的同一部分提供磁性材料来沉积磁性层。图4A和4B 示出了衬底601沿602方向移动时在衬底表面沉积磁性材料。磁性材料同时从所配备的 两个磁性材料源603和604提供给衬底601,以使连接两个磁性材料源603和604的线 610基本垂直于方向602。磁性材料的电荷被置入磁性材料源603和604中或者是坩埚 中,并且被加热。当电荷温度上升时,其蒸汽压也上升,导致产生一个很大的蒸发速度。 磁性材料的蒸汽成两道气流605从坩埚中离开,并且主要流向衬底601。气流605在非 常接近衬底601的真空室中的区域606相交。蒸发物凝聚在冷的衬底601上,在衬底601 的下面形成磁性薄膜层608。两个交叠的蒸汽流605以两个不同的角度同时到达衬底601 的一部分。我们可以理解它们为生成冷凝晶粒的微晶结构的磁性材料提供晶核和生长, 以使磁性层608获得沿方向602的面内磁各向异性,方向602基本垂直于连接蒸发源603 和604的连线。然后包括磁性层608的已沉积的可移除涂层被从衬底601上剥离,并且 沿如图3A所示的沟槽503断裂成单个的方形片。结果单个片的磁性层具有微晶结构或 畴结构,该结构能提供与方形的一边基本平行并与另一边基本垂直的磁各向异性。
[0044] 在此方法的一个实施例中,涂覆步骤530包括图5A和5B所示的沉积磁性层步 骤。采用至少两个磁性材料源以不同角度向衬底的同一部分提供磁性材料,其中两个或 更多磁性材料源103和104被设置沿衬底移动的方向102,并且相对衬底101以不同角 度取向,因此两个蒸汽流105在不同时间以不同角度到达衬底101的一部分。
[0045] 在该方法的一个实施例中,涂覆步骤530包括图6A和6B所示的在静态衬底上 沉积磁性层。两个或更多的磁性材料源203和204产生重叠的蒸汽流205到达衬底201 的区域206,以便以两个不同角度向衬底的同一部分提供磁性材料。作为选择,图6A 和6B所示的衬底206可以移动。
[0046] 在此方法的一个实施例中,在涂覆步骤530中沉积磁性层时衬底可以移动,优 选沿所需的磁各向异性方向移动。
[0047] 在该方法的一个实施例中,涂覆步骤530包含如图7所示在弯曲的衬底上沉积 磁性材料。衬底701被部分卷绕在卷绕涂覆机中的卷筒上。磁性材料气流703来自磁性 材料源704,例如电子枪。遮挡片705防止材料在到达卷筒702之前被沉积到弯曲衬底 701去。由于衬底的弯曲表面,衬底701的同一部分移动经过蒸汽流703时以实质上不 相同的角度接收磁性材料。已经被实验证明,这样沉积于衬底701上的磁性层具有沿衬 底移动方向取向的磁各向异性,因为通过从衬底上移除涂层并将其断裂而制成的片在经 受外部磁场的作用下可呈现并排排列。
[0048] 当然,这里描述的不同实施例的特征是可以被结合起来。作为例子,图4A所 示的实施例的方法可以使用如图7所示的弯曲衬底601。
[0049] 在此方法的一个实施例中,涂覆步骤530使用在磁场中对磁性材料进行退火来 提供所需方向的各向异性。在另一个实施例中,采用对刚沉积好的磁性层进行离子轰击 来实现相同的目的。作为例子,Kun Zhang发表于Nucl.Instr.和Meth.In Phys.Res.,B 243 (2006),51-57的文章“Stress induced magnetic anisotropy of Xe-ion-irradiated Ni thin films” 中所教导的氙离子照射,在此通过参考被合并入本申请中。轰击导致磁性材料微观结构 的物理变化产生应变。
[0050] 这里参考图3B描述的方法提供了预定的二维形状并且磁各向异性沿所需方向 取向的磁片,这个方向可以与该形状的最长面尺寸方向不同。本发明中的各向异性磁片 厚度范围在50纳米到10微米,二维形状900的直径,即形状900两点间的最长距离, 范围为1-500微米。
[0051] 本发明的一个实施例中,利用之前描述的方法制作的片是不含光栅、反射、各 向异性的磁片,其用于形成反射涂层。片具有特定的形状和磁各向异性,以使在将其分 散到液体载体中而且受到外部磁场的作用时能够形成带状。这些片包含两个反射层和位 于它们之间的磁性层,以及不含光栅但是可以呈现标记的光滑表面。标记可以包含符号、 标志等等。优选地,标记关于面内磁各向异性的方向对称。作为例子,字母“B”,“C”, “D”和数字“3”和“8”具有水平对称轴。具有这样的字母的磁各向异性片,其中磁各向异 性的方向与该水平对称轴的方向一致,形成具有并肩排列的字母的带。在放大情况下不 需要旋转支撑带的衬底或不需要改变观察的角度,就可很容易地识别这些字母。字母 “T”,“A”,“H”,“W”,“V”,“O”等具有垂直对称轴。如果片的磁各向异性与该垂直对 称轴一致,则易于辨别带上的这些字母,一个字母在另一个的下方。在包含具有标记的 不同片的涂层中,优选大部分片为具有对称标记的磁各向异性片,所有的片具有同一垂 直的或水平的对称轴,以便在文件中形成易于识别的带。优选地,具有对称标记的磁各 向异性片的数量至少为所有片的70%,并且更优选至少为90%。在一个实施例中,涂层 包含具有不对称标记的磁各向异性片,以使片在其一边具有为获得所需的片取向的疏水 涂层,如中国申请号200810084421.1中所教导的;在放大的情况下不需要转动文件,就 可容易地识别这样的片的带。
[0052] 参考图9A-9C,片为具有两个边基本平行的二维形状,例如方形930具有两个 平行边938。制作片以使其获得沿方向936的磁各向异性,沿方向936与彼此平行的两 个边938基本垂直。当这样的片分散于液体载体中并受外部磁场作用时能够形成如图2 所示的带。
[0053] 优选的,片具有方形,但是有不等边的矩形、平行四边形900、六角形940、八 边形950和任何具有基本彼此平行的两条边的其他形状,都适合形成带。磁各向异性 932、942或952分别由最长平面尺寸934、944或954形成,它们之间所成的角度至少 为20度。
[0054] 取决于二维形状,一些片需要疏水涂层来翻转片的合适表面,如于2008年3月 21日提交的专利申请号200810084421.1中所教导的,在此通过参考将其合并入本申请 中。作为例子,如图9B所示的在片的一个表面上具有疏水涂层的平行四边形形状的磁 片900,与如图9C所示的不含这样的涂层的片相比,形成了的更规则的带。
[0055] 磁性层可由任意磁性材料制成,如磁性和亚铁磁性材料,包括镍、钴、铁、 钆、铽、镝、铒,以及它们的合金化物。例如,可以使用钴镍合金,钴和镍的重量 比率分别大约为80%和大约20%。钴镍合金中每个金属的比例可以增加或减少10%,仍 然能获得所需的结果。因此,钴在合金中的重量比率可以从大约70%到大约90%,镍在 合金中的重量比率可以从大约10%到大约30%。其它合金的例子包括Fe/Si、Fe/Ni、 FeCo、Fe/Ni/Mo,以及它们的组合物。也可使用硬磁类的SmCo5、NdCo5、Sm2Co17、 Nd2Fel4B、Sr6Fe2O3、TbFe2、Al-Ni-Co,以及它们的组合物可以,也可使用尖晶石 铁素体类的Fe3O4、NiFe2O4、MnFe2O4、CoFe2O4、或石榴石类的YIG或GdIG, 以及它们的组合物。根据其反射特性或吸收特性以及磁性来选择磁性材料。当用作反射 体时,磁性材料被沉积至某一厚度以使其基本不透明。当用作吸收体时,磁性材料被沉 积至某一厚度以使其基本透明。当磁性材料用作吸收体时,典型的厚度大约为2-10纳 米。
[0056] 磁性层可以由具有磁性的和非磁性的颗粒材料制成,或者非磁性介质中的磁性 颗粒,例如用溶胶-凝胶技术沉积的掺杂钴的氧化锌膜。
[0057] 虽然可以使用如此宽的范围的磁性材料,但是优选软磁体。在这里使用的术语 “软磁体”是指任何展现出铁磁体特性但是在暴露于磁力后其剩磁基本为零。软磁体对于 外加的磁场表现出很快速的反应,但是具有非常弱的磁性特征(矫顽磁力(Hc)=0.05-300 奥斯特(Oe))或零磁性特征,或者在移除磁场后保留非常少的磁力线。类似地,在这里使 用的术语“硬磁体”(或称为永磁体)指任何展现出铁磁体特性并且在暴露于磁力后其具有 永久的的剩磁。铁磁体材料是任何磁导率基本大于1并且展现出磁滞特性的材料。
[0058] 优选的,本发明中用于制作片和箔的磁性层的磁性材料的矫顽力约低于 2000Oe,较优选约小于300 Oe。矫顽力指材料用外部磁场消磁的性能。矫顽力越高, 磁场移除后材料消磁需要的磁场越高。使用的磁性层优选软磁材料(易于消磁),相对应 的硬磁材料(难于消磁)具有更高的矫顽磁力。根据本发明的磁性变色设计的箔片、颜料 或着色剂的矫顽磁力优选范围大约在50Oe-300Oe。这些矫顽磁力低于标准记录材料。 在颜料片中使用软磁性材料使片更容易分散而不会聚团。
[0059] 制成的磁性层具有的合适的物理厚度为大约200-10000埃,并且优选500-1500 埃。然而,本领域中的技术人员可理解:根据本公开,最佳的磁性层厚度可根据所使用 的特定磁性材料和其使用目的不同而变化。
[0060] 各向异性磁性片具有一个或多个基本连续的薄膜层,包括如上文所讨论的具有 磁各向异性取向的磁性层。参考图10,各向异性反射磁片(RMF)20包含如上文所讨论的 具有各向异性的磁性层22的两个主要表面上两个反射层24和26。反射层24和26可以 由不同的反射材料构成。虽然也可以使用非金属反射材料,由于金属的高反射性和易于 使用,目前优选的材料为一种或更种金属、一种或多种金属合金,或者它们的组合物。 不受本例子限制,适合于反射层的金属材料包括:、金、铂、、钯、 镍、钴、铑、铌、铬,以及它们的化合物或合金。制成的反射层合适的物理厚度大约为 40-2000纳米,并且优选大约60-1000纳米。反射层的反射率至少为40%并且优选高于 60%。
[0061] 在图10中没有显示出来,作为选择,各向异性反射磁片包含被置于反射层上 的两个保护层,保护层是由以下材料形成的介电层:硫化锌(ZnS)、氧化锌(ZnO)、氧 化锆(ZrO2)、二氧化钛(TiO2)、类金刚石(diamond-like carbon)、氧化铟(In203)、铟锡 氧化物(ITO)、五氧化钽(Ta2O5)、氧化铈(CeO2)、氧化钇(Y2O3)、氧化铕(Eu2O3)、 氧化铁如二三价混合铁氧化物(Fe3O4)和氧化铁(Fe2O3)、氮化铪(HfN)、化铪(HfC)、 氧化铪(HfO2)、氧化镧(La2O3)、氧化镁(MgO)、氧化钕(Nd2O3)、氧化镨(Pr6O11)、氧 化钐(Sm2O3)、氧化锑(Sb2O3)、一氧化(SiO)、三氧化硒(Se2O3)、氧化锡(SnO2)、三 氧化钨(WO3),以及它们的组合物等等。
[0062] 可选择的,本发明中的各向异性反射磁片可采用如图11中所示的变色片300来 提供变色光学效果。该变色片300包含:RMF 342,由磁性层和磁性层两个表面上的两 个反射层形成;两个介电层344和346,由RMF 342的反射层支撑;两个吸收层348和 350,由介电层344和346支撑。适于磁性层、反射层和介电层的材料与以上参考图10 列出的相同。采用变色片300制成的涂层为在其中形成带的高反射率的变色涂层。
[0063] 适合的吸收体材料的非限制性例子,包括金属吸收体,如:铬、铝、镍、银、 铜、钯、铂、钛、、钴、铁、锡、钨、钼、铑和铌,以及它们对应的氧化物、硫化物 和碳化物。其它适合的吸收体材料包括碳、石墨、硅、锗、金属陶瓷、氧化铁或其他金 属氧化物、介电基体中的金属混合物和其它在可见光谱中能作为均匀或选择性吸收体的 物质。以上吸收体材料组合物、混合物、化合物或者合金可用于形成片300的吸收体层。
[0064] 以上吸收体材料合适的合金的例子包括:铬镍铁合金(NiCr-Fe),、不锈、哈氏 系列合金(例如Ni-Mo-Fe;Ni-Mo-Fe-Cr;Ni-Si-Cu)和钛基合金如与碳混合的钛(Ti/C), 与钨混合的钛(Ti/W),与铌混合的钛(Ti/Nb),与硅混合的钛(Ti/Si),以及它们的组合。 如上面所提及的,吸收层也能由吸收性金属氧化物、金属硫化物、金属碳化物,以及它 们的组合组成。例如,一种优选的吸收性硫化物为硫化银。其他适合作吸收层的化合物 的例子包括钛基化合物,如氮化钛(TiC)、碳氮化钛(TiNxCz)、碳氮氧化钛(TiNxOyCz)、 硅化钛(TiSi2)、化钛(TiB2),以及它们的组合。在TiNxOy和TiNxOyCz情况下,优选 x=0-1,y=0-1和z=0-1,在TiNxOy中x+y=1,而在TiNxOyCz中x+y+z=1。对于 TiNxCy,优选x=0-1和z=0-1,其中x+z=1。作为选择的,吸收层可以由置于钛基体 中的钛基合金组成或者由置于钛基合金基体中的钛组成。
[0065] 可选择的,形成带的各向异性磁片具有磁性层,作为例子,镍形成的片,具有 如上文所讨论的形状和各向异性,并不支撑任何反射层。然而,至少需要一个反射层来 为涂层提供高反射率。
[0066] 为了比较本发明中的片和传统片的磁特性,制作了两种形式的片。
[0067] 使用传统的方法,可用间歇膜机(batch coater)将可剥离的薄膜涂层 MgF2/Al/Ni/Al/MgF2涂覆在图3所示的网状结构上。直到所有的颗粒沿断裂沟槽503 断开,所沉积的涂层从衬底和底板上剥离。将所得片与透明的紫外光固化油墨连接料(ink vehicle)以20wt%浓度混合来生成磁性颜料。将油墨丝网印刷(screen-printed)到纸片 上然后用紫外光固化。图8A中的显微图像示出了片的随机排列。此外,将相同类型的 片与油墨连接料以低的浓度(2wt%)混合,后被印刷到另一张纸片上并且被插入到两个永 磁体801和802之间,如图8B所示,其中片的对角线基本沿着磁场方向803取向。
[0068] 无栅的、各向异性的、反射的、磁性的片使用本发明图4A和4B所示的方法制 造,其中如图7所示的衬底601在卷绕式镀膜机(roll coater)中成拱形。可剥离的涂层 MgF2/Al/Ni/Al/MgF2被沉积在衬底上,然后直到所有的小板断裂成方块,涂层从衬底和 底板上剥离。将所得片与同样的油墨连接料以10wt%浓度混合并被印刷到纸片上。如图 8C中所示,包含磁片的湿印刷版置于两个磁体801和802之间。所施加的磁场的方向 如箭头803所示。根据本发明制造的片具有沿方形一个边的方向的磁矩,片沿平行于所 施加的磁场803的边的方向取向。片浓度的增加使它们像图8D所示的那样聚集成长的 带。浓度的进一步增加使片互相之间更近(图8E),在纸片上形成更高反射率的涂层。
[0069] 本发明中无栅的、各向异性的、反射的磁片,在此也被称为反射片,设计用于 形成高反射率涂层,在印刷工业中特别的需要。增加金属颜料的反射率的传统方法包括 用诸如脂肪酸表面活性剂对金属片作表面进行改性。表面活性剂降低片的表面能并使 其浮在涂层的表面上。然而,表面活性剂大大减少了涂层的磨损。磁取向方形片,聚集 成长带并常常延伸跨越平行于油墨表面的整个印刷标记,充分利用了颜料的整个反射平 面。可选择的,如果片是变色各向异性反射性磁片,涂层能提供变色效果。反射片具有 基本光滑的表面用于提供涂层的高的镜面反射。片没有栅,但是可能在其上具有标记。
[0070] 于2006年11月23日公布的Argoitia的美国专利申请号20060263539中已经教 导:具有由分离的条纹形成的衍射光栅或磁性层的磁片取向使栅凹槽或条纹沿施加的磁 场的磁力线排列,在此通过参考将其合并入本申请中。然而,至今还不知道:如何排列 具有连续磁性层的光滑表面的片使其一个边平行于外部磁场的方向。也不知道如何将片 集合成等宽的长、平的带。
[0071] 为制作反射涂层,载体和分散于其中的多个片被提供到物体的表面上,然后施 加磁场以使片沿平行于涂层表面的方向取向。
[0072] 载体通常是液体,用来使片在载体蒸发或硬化之前的一段时间内可以稍许的移 动。例如,油墨可能有挥发性的载体,载体蒸发固定了片,或者透明的涂料载体,如透 明的涂料基体,可以固化来固定片。同样的,分别的,在应用于表面之前、之中或之后, 未固化的热固性树脂或受热的热塑性树脂可能使片在固化或冷却之前取向。作为例子, 载体是丙烯酸树脂基的载体,其他载体为本领域中技术人员所熟知。
[0073] 载体的例子包括聚乙烯醇,聚乙烯醋酸聚乙烯吡咯烷,聚(乙氧基乙烯),聚(甲 氧基乙烯),聚(丙烯)酸,聚(丙烯酰胺),聚(氧乙烯),聚(来酸酐),羟乙基纤 维素,醋酸纤维素,例如阿拉伯胶和果胶的多糖,例如聚乙烯醇缩丁的聚缩醛,例如 聚氯乙烯和聚氯乙烯撑的聚乙烯醇的卤化物,例如聚丁二烯的双烯聚合物,例如聚乙 烯的聚烯烃,例如聚丙烯酸甲酯的丙烯酸酯聚合物,例如聚甲基丙烯酸甲酯的甲基丙烯 酸酯聚合物,例如聚(氧羰基氧环己烷)(poly(oxycarbonyl oxyhexamethylene))的聚碳 酸酯,例如聚对苯二甲酸乙二酯的聚酯,聚酯,聚硅氧烷,聚硫化物,聚砜,聚乙氰, 聚丙烯腈,聚苯乙烯,如聚2,5-二羟基-1,4苯撑乙烯的聚苯,聚酰胺,天然橡胶,甲醛树 脂,其他聚合物以及聚合物的混合物,带有溶剂的聚合物和光聚合物。
[0074] 为保证涂层具有至少40%的高反射率,片具有的反射层的反射率要高于50%, 并且优选高于60%,并且片具有特定的形状和磁各向异性用以盖瓦般覆盖所涂覆的物体 的表面,彼此相邻的片基本上使表面不暴露,只要片的浓度足够高。
[0075] 由于特定的形状和磁各向异性,一部分的片互相边对边的吸引并且形成一个或 多个如上文参考图2所描述的带,如图8D所示。带可理解为具有至少三个片并排相邻, 片间的间隙不超过500纳米。对于1-20微米尺寸的片间隙可以忽略。当片的尺寸范围 为20-500微米,间隙尺寸可从0变化到500纳米。当然,带的形成取决于载体中片的 浓度。
[0076] 为形成高反射率涂层,几乎所有的涂层下的物体的表面都应该用反射片覆盖, 片间不留下或留下很少的空隙;其中,涂层具有低的本征反射率,与在物体的表面没有 反射片的载体的反射率相对应。因而,片的聚集表面片的聚集至表面,例如即被转向观 察者的所有片的表面之和,相当于涂层下至少80%的表面区域。优选的,片聚集表面大 于涂层下90%的表面区域。这样的片的浓度提供了物体表面的基本由如图8E所示的片 的基本瓦形的阵列形成的带所全部覆盖。瓦形阵列可理解为包含至少两条彼此相邻的 带,以使并排排列产生的带间间隙不大于4微米。
[0077] 为了利用传统片提供这样的覆盖,需要具有多层片的厚涂层,使下一层片部分 覆盖上几层随机分散的片之间的间隙。另外,高浓度的片与片重叠的更高可能性相关联, 并且使涂层的成本更高。有利的是,本发明中的片提供了薄的、成本低的和高反射性的 涂层。此外,沿带排列的片为物体提供安全特征而不需要额外的成本和努力。所应用的 传统图像识别技术通过涂层反射图像来识别是否有任何带存在于其中。
[0078] 在一个实施例中,具有非线性周期栅的各向异性的、反射性的磁片分散于载体 中用来形成带有明确的带的涂层,这可以用作安全特征。带有非线性周期栅的片具有与 上文所描述的非衍射性的、各向异性的、反射性的磁片相同的层状结构和二维形状。这 个实施例中的片可以是反射型的或变色的,它们具有非相称性和非周期性结构的光栅, 从而使产生的衍射色彩减少。
[0079] 栅是任何本质上同一的平行和拉长的单元的规则间隔的集合。在一些场合,栅 可以是非同一的平行拉长的单元的非周期性和非规格间隔的集合。光栅可以是衍射的、 全息的、反射的和二元的等等。光栅可以是具有栅特性的一幅图片。在包装业、安全性 应用及本领域中,全息光栅被广泛用来制作全息图。衍射光栅也可用作包装。衍射片可 通过在具有衍射栅的衬底表面上沉积光学膜堆来制作。当用光线照射时,这些片可提供 衍射色彩。磁性衍射片使栅其光沿平行于外加磁场的方向取向。当分散于油墨中并在磁 场中排列,不同尺寸的无定形的衍射片形成与图1B所示相似的链。
[0080] 具有反射光栅的磁片如图12所示。光栅单元的宽度彼此之间并不相等,以及它 们的高度彼此之间也不相等:即:W1≠W2≠W3≠W4≠W5,和H1≠H2≠H3。一个单 独的颜料片只需要几个(1-4个)凹槽来实现片沿场取向。片的大小可以是2微米×2微米 到200微米×200。栅单元的高度H(图12)可以是10-100纳米。栅单元的宽度可以是10-90 纳米。被分散于油墨连接料中并暴露于外部磁场中的所有具有同样形状的矩形磁性反射 光栅片,其自身沿磁场方向取向并聚集成如图13所示的等宽的长带状结构。
[0081] 磁各向异性的方向为非周期性光栅的方向。因此,为了形成涂层中的带,具有 非周期性光栅的各向异性的、反射性的磁片具有两个边彼此之间基本平行的二维形状, 并且非周期性光栅基本垂直于这两个边。
[0082] 薄膜组分MgF2/Al/Ni/Al/MgF2被沉积在结构衬底的顶部,该结构衬底具有多 个20微米×20微米的方形浮雕图案。每个方块由四个平浮凸单元(山)和三个窄凹入单元 (谷)组成。浮凸单元和凹入单元的宽度不同以减少从片反射的光的衍射组分。涂覆结构 被从衬底和底板上剥离下来。参考图13,片与透明的油墨连接料470混合,通过丝绢网 印花法片被印刷到透明聚酯片上,然后将片暴露于平行磁场中。油墨成分用紫外灯固化 并且通过显微分析。如图13所示,方形磁反射片480形成连续的固定宽度的明确的带, 通常从印刷涂层的一边延伸到另一边。
[0083] 图14示出了一种鉴定具有印刷涂层420的物体(如银行票据430)的方法。涂 层420包括具有二元(扇出)光栅的衍射的、各向异性的、反射的磁片,如于2008年4 月23日的中国专利申请号200810093943.8中所公布的,在此通过参考将其合并入本申 请中。片用疏油/疏水材料涂覆以使其在油墨的表面排列。为了识别二元光栅提供的带和 图案,从激光400射出的单色射束光410照射包含带的印刷涂层420。形成预定图案的 反射束440,被与计算机460或阅读器连接的图像传感器或CCD相机450所接收。计 算机460对图案进行解码,以便对银行票据430进行鉴定。
QQ群二维码
意见反馈