用于确定透平机械的装配有转子叶片的转子的直径的方法

申请号 CN201180068302.7 申请日 2011-12-30 公开(公告)号 CN103384754A 公开(公告)日 2013-11-06
申请人 西门子公司; 发明人 卡斯滕·克莱因;
摘要 本 发明 涉及一种用于测定透平机械的装配有 转子 叶片 (114)的转子的直径的方法。为了实现 转子叶片 的相对高的使用寿命和同时透平机械的特别高的效率而提出,使具有转子 叶片环 的转子处于旋转运动中,并且在转子叶片环的区域之外设置分配给所述转子叶片环的间距测量装置(124),以便随后测量相对于转子叶片环的旋转经过间距测量装置(124)的转子叶片(114)的间距,由此能够结合在 传感器 和转子的轴线之间的间距测定转子直径。另外,在透平机械的构造中能够考虑转子直径。
权利要求

1.一种用于确定透平机械的装配有转子叶片(114)的转子的直径的方法,其中使具有转子叶片环的所述转子处于旋转运动中,
在所述转子叶片环的区域之外设置分配给所述转子叶片环的间距测量装置(124),以及
测量相对于所述转子叶片环的旋转经过所述间距测量装置(124)的转子叶片(114)的间距,并且用所述间距来确定所述转子的直径。
2.根据权利要求1所述的方法,
其中在所述转子叶片环的区域之外设置分配给所述转子叶片环的第二间距测量装置(124),
确定所述第二间距测量装置相对于所述第一间距测量装置(124)的相对位置,以及测量相对于所述转子叶片环的旋转经过所述第二间距测量装置(124)的转子叶片(114)的间距。
3.根据上述权利要求之一所述的方法,
其中在第二转子叶片环的区域之外设置分配给所述第二转子叶片环的第三间距测量装置(124),以及
测量相对于所述第二转子叶片环的旋转经过所述第三间距测量装置(124)的转子叶片(114)的间距。
4.根据上述权利要求之一所述的方法,
其中在所述转子的轴向方向上移动相应的间距测量装置(124)。
5.根据上述权利要求之一所述的方法,
其中使用光学的间距测量装置(124)作为相应的间距测量装置(124)。
6.根据权利要求5所述的方法,
其中使用激光间距测量装置(124)作为光学的间距测量装置(124)。
7.根据上述权利要求之一所述的方法,
所述方法在所述转子的平衡期间和/或平衡系统中进行。
8.根据上述权利要求之一所述的方法,
其中预设用于旋转运动的最小转速。
9.根据权利要求8所述的方法,
其中在所述测量期间转速与所述转子的额定转速相比是相同的、几乎相同的或更大的。
10.根据上述权利要求之一所述的方法,
其中在构造和/或装配所述透平机械的内壳体时考虑所述转子的直径。
11.一种透平机械,
所述透平机械借助于根据上述权利要求之一所述的方法构造。
12.一种具有根据权利要求11所述的透平机械的发电站。
13.一种用于透平机械的转子的测量系统,所述测量系统具有:用于转子的保持设备,所述转子具有形成转子叶片环的多个转子叶片(114);包围所述转子的平衡壳体;驱动设备,所述驱动设备构成为用于使所述转子处于旋转运动中;以及设置在所述平衡壳体中的间距测量装置(124),所述间距测量装置构成为用于测量相对于所述转子叶片环的旋转经过所述间距测量装置(124)的所述转子叶片(114)的间距。

说明书全文

用于确定透平机械的装配有转子叶片的转子的直径的方法

技术领域

[0001] 本发明涉及一种用于测定透平机械的装配有转子叶片的转子的直径的方法。本发明还涉及一种用于透平机械的转子的测量系统。

背景技术

[0002] 透平机械通常包括持续工作的流体能量机械,例如压缩机、蒸汽轮机燃气轮机。在燃气轮机中将来自热的燃烧气体的能量转换为动能,所述动能一方面驱动设置在上游的压缩机并且另一方面典型地驱动用于产生电流的发电机。但是,燃气轮机也能够用于驱动飞机。
[0003] 燃气轮机包括一方面固定的导向叶片,所述导向叶片引导空气和燃气流;并且包括位于燃气轮机的转子上的转子叶片,所述转子叶片围绕透平机械的轴线旋转并且形成在轴向方向上相继设置的转子叶片环。典型地,转子叶片从透平机械的轴线延伸至与其同轴设置的内壁,因此所述内壁限定用于燃烧气体的流动通道。在此,转子叶片体和内壁之间的间距应当保持尽可能小,以便最小化由于沿内壁在转子叶片上流过的燃烧气体而产生的效率损耗。
[0004] 然而,由于内壁和转子叶片的热膨胀、参与的构件的离心和径向加速以及安装间隙不同,内壁和其相对置的转子叶片顶部之间的间距能够变化。为了在此避免转子叶片体或内壁的损坏,可在构造燃气轮机时计划一定的最小间距。也就是说,这种损坏能够导致转子叶片或内壁的使用寿命的降低。
[0005] 此外,不同的在透平机械的运行期间用于径向间隙测量的光学工作的系统例如从US4,049,349A1中和GB 2 069 689 A1中已知。此外,从US 6,898,547 A1已知,借助于传感器确定两个彼此相邻的转子构件的半径,以便实现转子构件的可靠的装配。

发明内容

[0006] 因此,本发明的目的是,提出一种实现转子叶片的相对高的使用寿命并且同时实现透平机械的特别高的效率的方法。
[0007] 根据本发明实现所述目的,其方式在于:确定具有转子叶片的转子的直径;使具有转子叶片环的转子处于旋转运动中;在转子叶片环的区域之外,分配给所述转子叶片环的、所设置的间距测量装置检测相对于转子叶片环的旋转经过间距测量装置的转子叶片的间距,并且使用检测出的间距来确定转子的直径。
[0008] 在此,本发明以下述思想为出发点:在优化的效率的同时能够通过有控制地降低在内壁和转子叶片顶部之间的最小间距来实现相对高的使用寿命。在此,所述最小间距尤其因此是必需的,因为转子叶片在装入到转子中时在冷态下具有必须融合到相应的公差模型中的一定的间隙。所述间隙引起在相应的叶片环上装有转子叶片的转子的直径的波动
[0009] 在转速足够时,在旋转的状态中,以相应地保持在转子上的方式通过离心力消除转子叶片的间隙。因此,对于具有转子叶片的转子的直径的检测应当在旋转运动期间进行,因为在此由于不存在间隙,在到内壁的最小间距方面的明显更小的公差可被计划。为此,在转子叶片环的区域之外设置有分配给所述转子叶片环的间距测量装置,并且所述间距测量装置测量相对于转子叶片环的旋转经过间距测量装置的转子叶片的间距。因此,结合预设的进而已知的在传感器和转子的轴线之间的间距能够通过计算确定绝对的转子直径。为了确定转子半径,从已知的间距中减去检测出的间距。
[0010] 在此,在有利的设计方案中,在转子叶片环的区域之外设置有分配给所述转子叶片环的第二间距测量装置。也就是单独的间距测量装置能够仅测量转子叶片到固定的参考系统的间距,但是不必已知与转子的固定的轴线的关系。通过与第二间距测量装置组合以及相应地校准两个测量装置,实现自动地测量绝对转子直径。为此,测定第二间距测量装置相对于第一间距测量装置的相对位置并且测量相对于转子叶片环的旋转经过第二间距测量装置的转子叶片的间距。
[0011] 典型地,透平机械的转子的直径在轴向方向上变化。因为在燃气轮机的涡轮部分中气体膨胀,所以在此朝向排气口的直径变得更大。因此,为每个具有单独的转子叶片长度的转子叶片环进行另外的直径确定,以便在此实现到内壁的最小间距的优化。为此,有利地,在第二转子叶片环的区域之外设置有分配给所述第二转子叶片环的第三间距测量装置,并且测量相对于所述第二转子叶片环的旋转经过第三间距测量装置的转子叶片的间距。一个或多个间距测量装置的这种附加的设置实现同时以及可靠地测定在转子的每个轴向区域中的直径。
[0012] 在方法的替选的或附加的有利设计方案中,相应的间距测量装置在转子的轴向方向上移动。通过这种以能移动的方式设置的间距测量装置实现在达的不同的轴向区域中的不同转子叶片环上的测量,而不必使用大量的间距测量装置。
[0013] 有利地,作为相应的间距测量装置,使用光学的间距测量装置,在特别有利的设计方案中使用激光间距测量装置。由此,实现间距的特别准确的测量,由此还能够更精确地调整内壁到转子叶片的最小间距。
[0014] 在特别有利的设计方案中,在转子的平衡期间和/或平衡系统中执行所述方法。在平衡期间,在所述转子最终被安装在透平机械中之前,排除转子的不平衡。为此,使转子处于旋转,并且测量相应的不平衡。所述转子叶片的间隙通过旋转而消除的过程,能够以双重使用的方式也用于间距的所述测量,使得在此实现用于测定转子直径的特别快速且经济的过程。
[0015] 有利地,预设在实施测量期间的旋转运动的最小转速。所述最小转速选择为,使得产生可靠地消除转子叶片的间隙的离心力并且排除相应的公差。在此,最小转速应当特别地借助于转子的参数而确定。
[0016] 优选地,转速——以所述转速进行测量——与转子的额定转速相比是相同的或至少几乎相同的,或者甚至更大。这具有的优点是,例如在常规的使用中,在构件上、尤其在透平机械叶片和压缩机叶片和透平机械盘和压缩机盘中产生取决于离心力的长度变化,在确定绝对的转子直径时考虑所述长度变化。只要这种叶片的叶身是扭曲的,那么甚至能够产生取决于离心力的、对转子的直径产生影响的伸直,在确定和决定内壁的直径时也考虑所述伸直。借助于这样确定的转子直径,能够比迄今为止更准确地预设内壁直径,使得能够实现比迄今为止更小的在叶片顶部和内壁之间的径向间距尺寸。因此,在运行中,这样设计的透平机械能够实现比迄今为止更为提高的效率并且能够可靠地避免由于在构造中径向间隙选择为过小而引起的转子叶片在内壁上的擦过。
[0017] 转子的以这种方式检测的直径有利地使用在透平机械的内壳体的构造中。在此,由于在转子直径中现在明显减小的公差,能够减小最小间距,并且实现更高的效率。
[0018] 有利地,透平机械借助于所描述的方法来构造,并且在有利的设计方案中使用在发电站中。
[0019] 本发明根据用于透平机械的转子的测量系统来实现,其方式在于,使测量装置包括用于具有多个形成转子叶片环的转子叶片的保持设备;包围转子的平衡壳体;还包括驱动设备,所述驱动设备构成为用于使转子处于旋转运动;并且包括间距测量装置,所述间距测量装置构成为用于测量相对于转子叶片环的旋转经过间距测量装置的转子叶片的间距的方式来实现。随后,测量系统能够结合在传感器和转子的轴线之间的间距测定转子直径。
[0020] 所述措施实现同时地检测可能的转子的不平衡和转子的直径,而无需用于转子的直径的检测的另外的连续的工作步骤。由此,制造方法保持为节省时间的。
[0021] 此外,传感装置能够设置在平衡壳体的内侧上,这在构造上设计为比透平机械的内部或在单独的支架上明显更简单的。在此,传感器或传感器头与转子之间的间距与在从现有技术中已知的、总是在透平机械中用于确定径向间隙的传感器中相比也能够明显更大——例如大几分米。这使测量结构更加简单并且避免传感器的成本高的安装。其他优点是,传感器仅须承受在均衡时出现的温度而不是燃气轮机的运行温度。
[0022] 这显著地扩大了可能的传感器和测量法的选择,并且也允许使用价格便宜的传感器。优选地,使用光学传感器
[0023] 借助于本发明实现的优点尤其在于,通过在旋转期间测量转子直径实现转子直径的更准确的确定,使得在构造中减少到内壁的间距进而能够提高透平机械的效率。这通过精确地预测转子直径和与之相关联的公差和出口尺寸才实现。因此,优化地控制转子直径引起制造过程的优化。附图说明
[0024] 借助于附图阐述本发明的实施例。其中示出:
[0025] 图1示出燃气轮机,以及
[0026] 图2示出在平衡过程期间转子的理想化的剖视图。
[0027] 相同的部件在所有的附图中设有相同的附图标记。

具体实施方式

[0028] 燃气轮机101,如在图1中所示出,具有用于燃烧空气的压缩机102、燃烧室104以及用于驱动压缩机102和未示出的发电机或做功机械的涡轮单元106。为此,涡轮单元106和压缩机102设置在共同的、也称作涡轮转动件的涡轮轴108上,发电机或做功机械也与所述涡轮轴连接,并且所述涡轮轴以能围绕其中轴线109转动的方式支承。所述单元形成燃气轮机101的转子。以环形燃烧室的方式实施的燃烧室104装配有多个用于燃烧液态的或气态的燃料燃烧器110。
[0029] 涡轮单元106具有多个与涡轮轴108连接的、能旋转的转子叶片112。转子叶片112环形地设置在涡轮轴108上进而形成多个转子叶片环或转子叶片排。此外,涡轮单元
106包括多个固定的导向叶片114,所述导向叶片同样环形地固定在涡轮单元106的导向叶片承载件116上以形成导向叶片排。转子叶片112在此用于通过由流过涡轮单元106的工作介质M的动量传递来驱动涡轮轴108。相反,导向叶片114用于在每两个在工作介质M的流动方向上看来相继的转子叶片排或转子叶片环之间引导工作介质M流动。由导向叶片
114的环或导向叶片排和由转子叶片112的环或转子叶片排构成的相继的对在此也称为涡轮级。
[0030] 每个导向叶片114具有平台118,所述平台为了固定各个导向叶片114而作为壁元件设置在涡轮单元106的导向叶片承载件116上。平台118在此是相对强耐热的构件,所述构件形成用于流过涡轮元件106的工作介质M的燃烧气体通道的靠外的边界。每个转子叶片112以类似的方式经由也称作叶片根部的平台119固定在涡轮轴108上。
[0031] 在两个相邻的导向叶片排的导向叶片114的彼此隔开地设置的平台118之间,分别将环形部段121设置在涡轮单元106的导向叶片承载件1上。在此,环形部段121的外表面同样暴露于热的流过涡轮单元106的工作介质M并且在径向方向上与所述涡轮单元106相对置的转子叶片112的外端通过一定间隙隔开。在相邻的导向叶片排之间设置的环形部段121在此用作覆盖元件,所述覆盖元件保护在导向叶片承载件116中的内壳体或其他壳体部件免受由于流过涡轮106的、热的工作介质M而引起的过热负荷。
[0032] 在实施例中,燃烧室104设计为所谓的环形燃烧室,其中多个在环周方向上围绕涡轮轴108设置的燃烧器110通到共同的燃烧室腔中。为此,燃烧室104整体上设计为围绕涡轮轴108定位的环形结构。
[0033] 所示出的共同形成燃烧气体通道的内壁的一侧的转子叶片112和另一侧的平台118之间的间隙保持为特别小的,以用于提高效率。这通过精确地确定转子的直径而实现。
[0034] 转子直径的测量在平衡过程期间实现。在此,如在图2中示意性示出的,具有涡轮轴108和转子叶片112的转子设置在平衡壳体122中。在平衡过程期间,使转子处于旋转运动中,并且随着转子的额定转速转动。所述额定转速例如在用于产生电流的固定式涡轮-1 -1中的转子中根据电源频率为3000min 或为3600min 。在此期间,相应的不平衡被定位和补偿。因此,旋转运动以预设的最小转速进行,并且因此也消除转子叶片112在其固定在涡轮轴108上时的间隙。由此,在所述状态中,能够实现特别准确地测量转子的直径。
[0035] 尤其基于大的转速,在转速大的情况下进行直径确定,与在模拟中相比,在运行中产生的转子直径能够明显更准确地被确定。另外,叶片无间隙地安置在其保持槽中并且其叶身在此期间承受取决于离心力的拉伸,在测定转子直径时由测量系统连带着检测所述拉伸。
[0036] 为此,在图2中,四个构成为激光间距测量装置的间距测量装置124分别成对地相对置地设置。间距测量装置124在轴向方向上能沿着中轴线109运动进而能够成对地分配给任一转子叶片环。在准备阶段精确地确定分别成对地设置的间距测量装置124的距离,使得能够通过从两侧测量相对于转子叶片112的间距来精确确定转子在每个转子叶片环上的直径。
[0037] 总而言之,本发明涉及一种用于测定透平机械的装配有转子叶片114的转子的直径的方法。为了实现转子叶片的相对高的使用寿命并且同时实现透平机械的特别高的效率而提出,使具有转子叶片环的转子处于旋转运动中,并且在转子叶片环的区域之外设置分配给所述转子叶片环的间距测量装置124,以便随后测量相对于转子叶片环的旋转经过间距测量装置124的转子叶片114的间距,由此能够结合在传感器和转子轴线之间的间距确定转子直径。另外,能够在构造和装配透平机械时考虑转子直径。
[0038] 通过所述认知,在构造燃气轮机101时能够最小化转子叶片112和内壁之间的间隙从而能够提高效率。
QQ群二维码
意见反馈