用3D传感器监测的设备

申请号 CN201110445586.9 申请日 2011-11-15 公开(公告)号 CN102608614B 公开(公告)日 2015-09-16
申请人 塞德斯股份公司; 发明人 B·德科伊;
摘要 本 发明 提出一种利用3D 传感器 监测 门 的设备,包括:检测到监测区内的物体的距离作为第三维的3D传感器,被设置在壳体内;固定设置在壳体中的发射装置,用于发射测量束;以及设置在壳体中的接收装置,用于接收反射的测量束,还包括控制单元,被设计成获得与设备的 位置 有关的信息条目,以及控制单元基于位置信息条目评估测量束。设备被设计为安装在 水 平 基础 安装位置和相对于该位置的至少两个其它不同的安装位置,用于壳体的安装装置被设计为无论壳体的安装位置如何而获得总是相同的安装取向,且安装装置和壳体相互匹配,使得壳体在安装装置上的至少两个其它安装位置的唯一取向通过安装装置确定。
权利要求

1.一种监测的设备,包括:3D传感器,其能够检测到监测区内的物体的距离作为第三维,其中所述3D传感器被设置在壳体内;并且其中在所述壳体中设置用于发射测量束的固定设置的发射装置以及用于接收反射的测量束的接收装置,其特征在于,还具有控制单元,其被设计成获得与关于基础安装位置的设备的位置有关的信息,以及基于位置信息由所述控制单元评估所述测量束,并且其中所述控制单元被设置为通过基于所述位置信息评估所述测量束,确定安装后的设备的安装高度,以及采用该安装位置的高度作为用于限定监测区的参数,其中所述传感器被调节为限定监测体积。
2.如权利要求1所述的设备,其特征在于具有位置检测装置,其设计为自动地检测相对于所述壳体的水平面的绝对位置,且将所述位置发送给控制单元。
3.如权利要求1所述的设备,其特征在于所述设备被设计为安装在水平基础安装位置和相对于该水平基础安装位置的至少两个其它不同的安装位置,用于壳体的安装装置被设计为无论所述壳体的安装位置如何而获得总是相同的安装取向,且所述安装装置和壳体以这样的方式相互匹配,即所述壳体在所述安装装置上的各个至少两个其它安装位置的唯一取向通过所述安装装置确保。
4.如权利要求3所述的设备,其特征在于所述至少两个其它安装位置与在要监测的门的部区域对设备的设置有关,所述安装装置允许对于角部区域所述壳体以倾斜方式安装,使得,仅通过使监测区的限定的监测束至少大致平行于要监测的门的边缘传播的方式,监测3D传感器相对于门的取向。
5.如权利要求3所述的设备,其特征在于所述安装装置仅确切地允许所述壳体的三个安装位置。
6.如权利要求3所述的设备,其特征在于所述安装装置包括围绕所述壳体的框架
7.如权利要求1至6中任一项所述的设备,其特征在于所述壳体内的3D传感器包括接收器阵列和/或发射器阵列。
8.如权利要求1至6中任一项所述的设备,其特征在于所述3D传感器为成像传感器,其中使用该成像传感器将物体点成像为关联的传感器点。
9.如权利要求7所述的设备,其特征在于所述3D传感器为成像传感器,其中使用该成像传感器将物体点成像为关联的传感器点。

说明书全文

用3D传感器监测的设备

技术领域

[0001] 本发明涉及根据权利要求1的前序部分的一种用3D传感器监测门的设备。

背景技术

[0002] 如果自动门和旋转门门扇前面的危险区没有被监测,那对于使用者来说会变得危险。由于危险组件在开关门过程中移动,被监测的危险区也随着移动。进一步地,要被监测的该区域的尺寸在移动时一定有可能变化。这就导致有必要随着危险组件而伴随地移动监测传感器,在这种情况下希望适应各种各样的不同门尺寸和必要的监测区。经济因素也要求提供具有可容易适应的监测特性的一种通用传感器。
[0003] 考虑到特定的需要,该行业正寻求具有可变评估能的传感器解决方案,例如,其可评估与被监测的物体和传感器间的距离相关的第三维。这样的传感器还可用于特定监测区的监测应用的静态安装。
[0004] 现有技术公开了有源红外传感器,其安装在门扇上,在几个地点监测门平面前面的区域。作为替代,公知使用光束扫描监测区域并利用转动机构移动的激光传感器。然而,这样的传感器非常复杂且因此涉及可观的产品成本。另外,这些传感器由于必需对准多个光学部件,因此在安装和适用到监测区的过程中具有非常局限的便利性。

发明内容

[0005] 因此本发明的目的是提供一种用3D传感器监测门的设备,该设备相对于现有技术改进了安装和/或安装的便利性并具有合理成本。
[0006] 从权利要求1的前序部分以后,权利要求1的特征部分实现了本发明。有利的改进和适宜的改善体现在从属权利要求中。
[0007] 本发明的目的是发明一种用于自动门(旋转门和双开门)的通用监测传感器。在这种情况下,要监测的区域将会简便快捷地被用到相应的使用和安装位置。TOF(飞行时间)规则的应用使得确定监测区物体的距离作为第三维成为可能。这使得不仅可监测精确限定的区域成为可能,而且使得可通过了解传感器的周围条件将传感器设定到精确限定的监测体积成为可能。在这种情况下,传感器优选地包括紧凑元件,其同时包括发射器和接收器。在第一步中,要监测的场地用例如LED照亮。发射光被反射并返回到传感器,此处通过接收单元检测所述光。接收部件包括具有多个像素的TOF芯片。每个像素可接收物体反射来的测量束。例如使用调制IR光。为了确定距离,可评估接收信号和发射信号间的相移。相应的评估得到每个像素的距离值,从而得到三维/体积相关的捕获图像。光学元件被设计为使得,照明保持聚焦在各个离散的光束,这使得相应点具有高的光强度。
[0008] 使用用于监测的3D传感器使得在应用具体的细节时更加灵活。传感器提供了物体的距离值,例如以位置依赖(在x-y平面内或在垂直于传感器轴的平面内)的方式。在用2D传感器的情况下,只能说明物体是否位于所考虑的光束内。物体的位置是不可辨识的。但是,在TOF规则的情况下,距离也可用于评估,这会导致在这些信号的智能评估时出现新的可能性。
[0009] 在用3D传感器监测门的设备中,3D传感器可监测到监测区域内的物体的距离并作为第三维,该3D传感器设置在壳体内,在壳体内提供了用于发射测量束的固定地设置的发射装置以及用于接收反射的测量束的接收装置。本发明的一方面提供了一种设计成获得与设备位置有关的信息的控制单元,且该控制单元基于位置信息的条目评估测量束。结果是,监测设备的安装可简单化并可更可靠。这是由于,利用位置信息的条目,该设备可在安装到周围环境后清楚地指定被检测的测量束,并因此还可正确地评估所述光束。另外,设备可以在安装后自身对准其位置。例如,控制单元被设计成通过基于位置信息的条目评估测量束,在设备安装后确定设备的安装高度。因此不必再为了校准设备而输入安装高度。
[0010] 在本发明的一个优选改进中,控制单元还被设计成使用安装位置的高度作为限定监测区域的参数。为了可以完全地限定监测区域,在常规双开门中只需接着指定监测区的宽度。安装和输入误差因此可最小化。
[0011] 为了还能够使得自动确定位置并发送到控制单元,还提出具有位置检测装置,其设计成自动检测位置,特别是相对于壳体平面的绝对位置,并将所述位置发送到控制单元。例如可提供倾斜传感器用于设备位置的全面检测。还可设想为控制单元提供位置信息,例如通过输入元件,比如DIP开关。
[0012] 还可以例如通过传感器装置(如开关元件)自动检测相对于预安装基板的位置。
[0013] 但是,还可设想尽可能地无误差地使用合适地设计的安装装置进行安装。例如,该设备设计成在水平基础安装位置安装,并在相对于该水平基础安装位置的至少两个另外不同的安装位置安装,壳体的安装装置设计成安装取向总是相同的,不管壳体的安装位置如何,该安装装置和该壳体以这样的方式互相匹配,即通过安装装置提供安装装置上的壳体在各个至少两个其它安装位置的唯一取向。
[0014] 明确基础位置和具有限定位置形式的至少两个其它安装位置的操作,使得其对于安装者来说更加容易地安装并取向相应的3D传感器,其结果是可避免定位误差和导致的故障。
[0015] 为了使得安装更加可靠,另外提出至少两个其它安装位置与要被监测的门的转区域的设备的设置有关,安装装置允许转角区域的壳体以倾斜的方式安装,其中,仅以监测区的限制监测光束至少大致平行于被监测的门的边缘传播的方式,监测3D传感器相对于门的取向。在这种连接下,仅容许壳体的三个安装位置。因此可以使用用于三个位置的安装装置,以总是相同的正确的安装排除安装误差。
[0016] 为了简单地将设备的壳体安装到安装装置,还优选,安装装置包括围绕壳体的框架。该框架以支架的方式,例如,穿过壳体的前端和壳体的侧壁延伸至安装装置。
[0017] 为了获得3D传感器的高分辨率,还提出壳体内的3D传感器包括接收器阵列和/或传感器阵列。接收器阵列使得评估大量的测量束成为可能,特别是同时,在该情况下发射器阵列可用于扫描相对大的区域,特别是具有多个测量束的区域。
[0018] 特别是使用发射器阵列和接收器阵列。
[0019] 为了实现可靠的物体检测和评估,还优选该3D传感器为成像传感器,其中物体点被成像为关联的传感器点。附图说明
[0020] 在示例实施例的范围内,
[0021] 图1a示出了在基础安装位置的安装后的3D传感器;
[0022] 图1b示出了传感器壳体和用于安装传感器的设备的分解示意图;
[0023] 图2a示出了根据图1a的该基础安装位置的前视图;
[0024] 图2b示出了第一其它安装位置;
[0025] 图2c示出了第二其它安装位置;
[0026] 图3a示出了关闭状态下的安装设备;
[0027] 图3b示出了打开状态下的安装设备;
[0028] 图4示出了安装设备的和3D传感器的后侧示意图;
[0029] 图5示出了不带安装设备的3D传感器的前视图;以及
[0030] 图6示出了安装位置的实例示意图。

具体实施方式

[0031] 详细地,图1a示出了根据本发明用于监测门的设备的壳体1的示意图。所述壳体1至少部分地由与所述壳体1的后侧的安装板3接合的安装框架2围绕。以这种方式,所述壳体1保持在由安装框架2和安装板3形成的安装装置上。
[0032] 图1b示出了以下部件的分解示意图:壳体1,安装框架2和安装板3。
[0033] 图2a示出了根据图1a的配置的前视图。所述壳体1具有对应其右部和左部外侧的弧形设计,其半径适应安装框架,特别是以匹配其内侧的方式。
[0034] 图2b示出了壳体1在安装框架2内的第一枢转位置,在本例中示出,其上发射用于监测门的信号的壳体的下部已被枢转到右侧。该安装框架2在左部和右部侧壁的半径处夹持住壳体1,结果是壳体1被作为安装装置的安装板3(此处未示出)和安装框架2保持。
[0035] 图2c示出了根据本发明监测门的设备的配置,该配置已相应地枢转到左侧。
[0036] 图3a示出了安装装置的示意图,包括安装框架2以及安装板3,此处未设置壳体。该安装装置通过将安装板3安装到门进行预安装,然后其中包括3D传感器的壳体1引入安装装置。该安装板用于一直是同一个安装位置,例如水平位置。
[0037] 图3b示出了由安装框架2和安装板3形成的安装装置的分解示意图。在这种情况下,该安装框架2在其端部具有对着安装板3的闭钩2a,所述闭锁钩2a以形状适配的方式接合到安装板3上相应的插孔3a中。安装板3还具有两个安装凹槽3b,其使得安装者可以在门扇上进行简单精确的安装。
[0038] 图4示出了设置在安装框架内的壳体1。在这种情况下,根据本发明所述壳体1在其后侧具有多个销。在这种情况下,此处的中心销4居中地设置在壳体1的半径内,从而根据图2b和2c壳体1可转动地绕中心销4安装。优选地可具有闭锁夹具的两个横销5沿壳体1的水平方向被设置在中心销4的左右侧。
[0039] 该安装板3如图所示,在其中心具有用于接纳中心销4的中心孔6。根据图2a至2c所示的安装位置,横销5可插入相应的支撑孔,所述支撑孔总是设置成以关于中心孔6旋转地对称的方式对角相对。从而该第一支撑孔7a表示该水平的平面安装位置。该第二支撑孔7b对应右侧光束路径的枢转(如图2b所示),第三支撑孔7c对应根据图2c的图示。
在这种情况下,安装者具有一简单的预限定的形式,其极大地简化了监测门的设备的安装,而没有接受关于安装精度的不利情况。
[0040] 图5示出了其内包括3D传感器的壳体1的示意图,操作元件18a-18e,例如以电位器或类似的形式,设置在壳体1的前侧。该操作元件设置在操作元件区域8,其位于壳体前侧从而使得对于安装者容易达到。安装者可调节例如安装位置,和/或可通过相应的调节参数设定监测门的设备的检测范围。一旦安装框架2沿壳体1设置,该安装框架覆盖了可接触操作元件的中心区8,这种覆盖还可额外地作为所有安装位置的封闭。
[0041] 图6通过实例示出了作为根据本发明的监测门的设备的3D传感器的配置,在本例中双开门16被固定在一侧。在这种情况下,在门16的左上侧角部区域17以安装框架2设置所述壳体1。在本例中,门扇9通过铰链10紧固在左侧,并在其右侧具有门把手11。监测门的设备以这种方式取向,即其具有带外侧测量束15a的检测束路径12,该束路径如图2b所示已枢转到右侧。在对着铰链10的左侧,该束路径以这种方式取向,即测量束15b实际上垂直于地面传输,也就是说以实际上沿门扇侧13的边缘14平行的方式。因此,铰链10所设置其上的壁构件在门扇9枢转时未被检测。
[0042] 壳体1安装在门16上,例如位于高度h。相应的设置,无论是以不同方式紧固到门的中心还是顶部右侧,都是可以的。中心的设置对于双扇门是有利的。如果必要,壳体紧固到门框架或墙上,而不是门上。
[0043] 其中,门的高度还可通过测量到反光基底的距离,用门扇侧13上的竖向光束确定。在本例中,门的高度应参考安装装置2、3的限定的安装位置进行表示,其中,这可通过安装者例如为门边缘提供安装模板而容易地进行。
[0044] 例如,根据图2a、2b和2c,在设备内提供检测取向的位置传感器
[0045] 作为位置传感器的替代,还可以想到监测横销和/或支撑孔7a-7b的相应传感器,例如借助按钮,以确定用于监测门的设备的取向。
[0046] 根据本发明,当设置该设备时,可通过适当地调节的评估部件,确定门的危险区内的各个物体的精确位置,而不必要实施复杂且高精密的安装步骤。
[0047] 参考符号列表:
[0048] 1 壳体
[0049] 2 安装框架
[0050] 2a 闭锁钩
[0051] 3 安装板
[0052] 3a 插孔
[0053] 3b 安装凹槽
[0054] 4 中心销
[0055] 5 横销
[0056] 6 中心孔
[0057] 7a 第一支撑孔
[0058] 7b 第二支撑孔
[0059] 7c 第三支撑孔
[0060] 8 操作元件区
[0061] 9 门扇
[0062] 10 铰链
[0063] 11 把手
[0064] 12 检测束路径
[0065] 13 门扇侧
[0066] 14 门扇边缘
[0067] 15a 测量束
[0068] 15b 测量束
[0069] 16 双开门
[0070] 17 角部区域
[0071] 18a-18e 操作元件
QQ群二维码
意见反馈