红外传感器

申请号 CN201110374905.1 申请日 2011-11-17 公开(公告)号 CN102565803B 公开(公告)日 2015-09-02
申请人 三星电子株式会社; 发明人 洪准杓; 苏堤允; 尹详植;
摘要 一种红外 传感器 模 块 ,包括:第一红外传感器,包括第一光发射单元和第一光接收单元,第一光发射单元被配置为将红外光发射到物体,第一光接收单元被配置为检测从物体反射的红外光的量;第二红外传感器,包括第二光发射单元和第二光接收单元,第二光发射单元被配置为将红外光发射到物体,第二光接收单元被配置为检测从物体反射的红外光的量; 控制器 ,使用第一光接收单元的峰值 输出 电压 来测量物体的反射率,并且不仅使用测量的物体反射率而且使用第二光接收单元的输出电压来测量到物体的距离。其结果是,可不管物体的反射率来正确地测量从红外传感器到物体的距离。
权利要求

1.一种红外传感器,包括:
第一红外传感器,包括第一光发射单元和第一光接收单元,第一光发射单元被配置为将红外光发射到物体,第一光接收单元被配置为检测从物体反射的红外光的量;
第二红外传感器,包括第二光发射单元和第二光接收单元,第二光发射单元被配置为将红外光发射到物体,第二光接收单元被配置为检测从物体反射的红外光的量;
控制器,使用第一光接收单元的峰值输出电压来测量物体的反射率,并且不仅使用测量的物体反射率而且使用第二光接收单元的输出电压来测量到物体的距离,其中,第一红外传感器的第一光发射单元和第一光接收单元排列在红外传感器模块的外侧,第二红外传感器的第二光发射单元和第二光接收单元排列在红外传感器模块的内侧。
2.如权利要求1所述的红外传感器模块,其中,在测量物体反射率时,控制器控制第一光发射单元交替地发射具有两种或更多种发射强度的红外光。
3.如权利要求2所述的红外传感器模块,其中,在测量到物体的距离时,控制器控制第二光发射单元发射一种强度的红外光。
4.如权利要求2所述的红外传感器模块,其中,在测量到物体的距离时,控制器控制第二光发射单元发射具有两种或更多种发射强度的红外光。
5.如权利要求3所述的红外传感器模块,还包括:
存储器,不仅存储反射查找表,而且存储距离查找表,所述反射查找表指示与具有两种或更多种发射强度的红外光的发射相关的与第一光接收单元的峰值输出电压相应的反射率,所述距离查找表不仅取决于与第二光发射单元的一种强度的红外光的发射相关的反射率,而且取决于第二光接收单元的输出电压。
6.如权利要求4所述的红外传感器模块,还包括:
存储器,不仅存储反射查找表,而且存储距离查找表,所述反射查找表指示与具有两种或更多种发射强度的红外光的发射相关的与第一光接收单元的峰值输出电压相应的反射率,所述距离查找表不仅取决于与第二光发射单元的具有两种或更多种强度的红外光的发射相关的反射率,而且取决于第二光接收单元的输出电压。
7.如权利要求5或6所述的红外传感器模块,其中,控制器被配置为在与具有两种或更多种发射强度的红外光的发射相关的第一光接收单元的峰值输出电压的基础上使用反射查找表或者基于反射查找表使用插值方法来测量物体反射率。
8.如权利要求5所述的红外传感器模块,其中,控制器被配置为在与第二光发射单元的一种强度的红外光的发射相关的第二光接收单元的输出电压的基础上使用距离查找表或者基于距离查找表使用插值方法来测量到物体的距离。
9.如权利要求6所述的红外传感器模块,其中,控制器被配置为在与第二光发射单元的具有两种或更多种发射强度的红外光的发射相关的第二光接收单元的输出电压的基础上使用距离查找表或者基于距离查找表使用插值方法来测量到物体的距离。

说明书全文

红外传感器

技术领域

[0001] 本公开的实施例涉及一种能够使用红外传感器来测量到障碍物(物体)的距离的红外传感器模块。

背景技术

[0002] 通常,保洁机器人在将被清洁的目标区域周围移动(而无需从用户接收控制信号)并且收集杂质,从而能够自动地清洁目标区域。保洁机器人通过障碍物传感器来测量保洁机器人到安装在目标区域中的障碍物(物体)(例如,家具、办公器材和墙)的距离,并且通过使用测量的距离信息在目标区域周围移动而不会与障碍物碰撞,从而清洁目标区域。
[0003] 各种传感器可用作障碍物传感器,例如,声波传感器、位置灵敏探测器(PSD)传感器、红外传感器等。上述传感器中最流行的障碍物传感器是红外传感器,原因在于红外传感器最便宜。
[0004] 图1是示出包含在传统红外传感器中的光发射单元和光接收单元中的排列的示意图。参照图1,红外传感器10通常包括光发射单元11和光接收单元12,光发射单元11具有用于发射红外光的红外发光二极管(IRED),光接收单元12包括用于检测反射光的量的光敏电阻(PTR)或者光敏二极管(PD)。红外传感器10检测当从光发射单元11发射的光从物体的表面反射并且随后入射在光接收单元12上时产生的光量,并且使用检测的光量来测量从红外传感器10到物体的距离。在这种情况下,红外传感器10的光发射单元11和光接收单元12以这样的方式排列:当红外传感器10逐渐接近物体或者物体接近红外传感器10时,以在反射光量测量部分M的中心点(即,图1中的菱形的平对点)获得的反射光的特性曲线达到峰值点的方式,来决定从红外传感器10到物体的距离。在这里,反射光量测量部分M被建立,以在已经检测到物体(障碍物)的保洁机器人期望停止或者缓慢移动的情况下,从红外传感器10到物体包括特定距离(例如,20mm)。具体地讲,所述特定距离位于在反射光量测量部分M中反射光的量的特性曲线的最大值附近。
[0005] 图2的部分(a)和(b)显示了示出传统红外传感器中的光发射单元和光接收单元的电路图。参照图2的部分(a),光发射单元11包括发光二极管(IN_IRED)、限流电阻器R1和用于接收发光二极管(IN_IRED)的开/光控制信号的发光控制开关元件(IN_CTRL_ON_OFF)。同时,如图2的部分(b)所示,光接收单元12包括光接收元件(IN_PTR(NPN))、输出电阻器(R2)和输出电压端子(V_OUT)。
[0006] 理论上,尽管光接收单元12必须检测与从红外传感器10到物体的距离相应的光的量,但是在使用红外传感器10测量从红外传感器10到物体的距离中的重要事项是取决于物体颜色的表面反射率(以下简称为“反射率”)。图3是示出响应于从红外传感器到物体的距离以及每个物体的反射率的光接收单元的输出电压(反射光的量)的特性曲线的曲线图。从图3可以看到,与具有相对低的反射率的物体(具有反射率18%或3%)相比,具有反射率90%的另一物体(例如,白色物体)具有更高的输出电压(更高的反射光量或更高的接收光量)。也就是,光接收单元12的输出电压根据正被感测的物体的反射率而改变。
[0007] 假设红外传感器10以这样的方式用作保洁机器人的障碍物传感器:保洁机器人在与位于前面的物体相隔预定距离的位置停止动作并且缓慢移动,因此在接收到多于预定光量的红外光时,保洁机器人被实现为停止动作或者缓慢移动。例如,如果图3的比较电压(与特定光量相应的电压)被设置为0.5V,则确定具有反射率90%的物体(白色物体)在与红外传感器10相隔90mm的特定位置被检测到,并且还确定具有反射率18%的另一物体(灰色物体)在与红外传感器10相隔27mm的特定位置被检测到。相反,保洁机器人根本不会检测到具有反射率3%的物体(黑色物体)。也就是,为了检测到高反射率物体(例如,白色物体),保洁机器人在与物体相隔一定距离处停止或者缓慢移动。为了检测到低反射率物体(例如,灰色或黑色物体),保洁机器人可在非常接近物体的位置停止或者缓慢移动,或者如果没有从物体接收到信号,则保洁机器人有时可能会与物体碰撞。
[0008] 如上所述,光接收单元12的输出电压(反射光或接收光的量)不仅受到从红外传感器10到物体的距离的影响,而且受到物体反射率的影响。因此,传统红外传感器10仅使用施加到光接收单元的光的量而不考虑接近物体的反射率,难以正确地识别从红外传感器10到物体的距离。
发明内容
[0009] 因此,本公开的一方面在于提供一种可不管物体反射率而通过使用两步测量方案来正确地测量从红外传感器模块到物体的距离的红外传感器模块,在所述两步测量方案中,红外传感器模块测量接近物体的反射率,并且随后基于测量的反射率来测量从红外传感器到物体的距离。
[0010] 将在接下来的描述中部分阐述本公开另外的方面,还有一部分通过描述将是清楚的,或者可以经过本公开的实施而得知。
[0011] 根据本公开的一方面,一种红外传感器模块,包括:第一红外传感器,包括第一光发射单元和第一光接收单元,第一光发射单元被配置为将红外光发射到物体,第一光接收单元被配置为检测从物体反射的红外光的量;第二红外传感器,包括第二光发射单元和第二光接收单元,第二光发射单元被配置为将红外光发射到物体,第二光接收单元被配置为检测从物体反射的红外光的量;控制器,使用第一光接收单元的峰值输出电压来测量物体的反射率,并且不仅使用测量的物体反射率而且使用第二光接收单元的输出电压来测量到物体的距离。
[0012] 第一红外传感器可排列在第二红外传感器的外侧。
[0013] 在测量物体反射率时,控制器可控制第一光发射单元交替地发射具有两种或更多种发射强度的红外光。
[0014] 在测量到物体的距离时,控制器可控制第二光发射单元发射一种强度的红外光。
[0015] 在测量到物体的距离时,控制器可控制第二光发射单元发射具有两种或更多种发射强度的红外光。
[0016] 红外传感器模块可还包括:存储器,不仅存储反射查找表,而且存储距离查找表,所述反射查找表指示与第一光发射单元的具有两种或更多种发射强度的红外光的发射相关的与第一光接收单元的峰值输出电压相应的反射率,所述距离查找表不仅取决于与第二光发射单元的一种强度的红外光的发射相关的反射率,而且取决于第二光接收单元的输出电压。
[0017] 红外传感器模块可还包括:存储器,不仅存储反射查找表,而且存储距离查找表,所述反射查找表指示与第一光发射单元的具有两种或更多种发射强度的红外光的发射相关的与第一光接收单元的峰值输出电压相应的反射率,所述距离查找表不仅取决于与第二光发射单元的具有两种或更多种强度的红外光的发射相关的反射率,而且取决于第二光接收单元的输出电压。
[0018] 控制器可被配置为在与第一光发射单元的具有两种或更多种发射强度的红外光的发射相关的第一光接收单元的峰值输出电压的基础上使用反射查找表或者基于反射查找表使用插值方法来测量物体反射率。
[0019] 控制器可被配置为在与第二光发射单元的一种强度的红外光的发射相关的第二光接收单元的输出电压的基础上使用距离查找表或者基于距离查找表使用插值方法来测量到物体的距离。
[0020] 控制器可被配置为在与第二光发射单元的具有两种或更多种发射强度的红外光的发射相关的第二光接收单元的输出电压的基础上使用距离查找表或者基于距离查找表使用插值方法来测量到物体的距离。
[0021] 根据本公开的另一方面,一种红外传感器模块,包括:第一红外传感器,包括第一光发射单元以及第一和第二光接收单元,第一光发射单元被配置为将红外光发射到物体,第一和第二光接收单元被配置为检测从物体反射的红外光的量;控制器,使用第一光接收单元的峰值输出电压来测量物体的反射率,并且使用测量的物体反射率和第二光接收单元的输出电压来测量到物体的距离。
[0022] 第一光接收单元可排列在第二光接收单元的外侧。
[0023] 在测量物体反射率时,控制器可控制第一光发射单元交替地发射具有两种或更多种发射强度的红外光。
[0024] 在测量到物体的距离时,控制器可控制第一光发射单元发射具有两种或更多种发射强度的红外光。
[0025] 根据本公开的另一方面,一种红外传感器模块包括:红外传感器,包括第一和第二光发射单元以及第一光接收单元,第一和第二光发射单元被配置为将红外光发射到物体,第一光接收单元被配置为检测从物体反射的红外光的量;控制器,使用与第一光发射单元的红外光发射相关的第一光接收单元的峰值输出电压来测量物体的反射率,并且使用测量的物体反射率和与第二光发射单元的红外光发射相关的第一光接收单元的输出电压来测量到物体的距离。
[0026] 第一光发射单元可排列在第二光发射单元的外侧。
[0027] 在测量物体反射率时,控制器可控制第一光发射单元交替地发射具有两种或更多种发射强度的红外光。
[0028] 在测量到物体的距离时,控制器可控制第二光发射单元发射一种强度的红外光。
[0029] 在测量到物体的距离时,控制器可控制第二光发射单元发射具有两种或更多种发射强度的红外光。附图说明
[0030] 通过下面结合附图对实施例进行的描述,本公开的这些和/或其他方面将会变得清楚和更易于理解,其中:
[0031] 图1是示出在传统红外传感器中的光发射单元和光接收单元的排列的示意图。
[0032] 图2的部分(a)和(b)是示出包含在传统红外传感器中的光发射单元和光接收单元的电路图。
[0033] 图3是示出响应于从红外传感器到物体的距离和物体反射率的光接收单元的输出电压的特性曲线的曲线图。
[0034] 图4是示出根据本公开的实施例的红外传感器模块的控制框图
[0035] 图5是示出根据本公开的实施例的包含在红外传感器模块中的第一红外传感器、第二红外传感器的每个中所包含的光发射单元和光接收单元的排列的示意图。
[0036] 图6的部分(a)和(b)是示出根据本公开的实施例的将构造红外传感器模块以测量物体的反射率的第一红外传感器的发光强度进行二元化的电路的电路图。
[0037] 图7A是示出在发射正常强度红外光以测量物体反射率的情况下,响应于每一物体的反射率以及从红外传感器到物体的距离的光接收单元的输出电压的特性曲线的曲线图。
[0038] 图7B是示出在发射高强度红外光以测量物体反射率的情况下,响应于每个物体的反射率以及从红外传感器到物体的距离的光接收单元的输出电压的特性曲线的曲线图。
[0039] 图8的部分(a)和(b)是用于测量物体反射率的查找表的示例。
[0040] 图9的部分(a)和(b)是示出根据本公开的另一实施例的用于将包含在红外传感器模块中的第二红外传感器的发光强度二元化以测量从红外传感器到物体的距离的电路的电路图。
[0041] 图10的部分(a)和(b)是用于测量从红外传感器到物体的距离的距离查找表的示例。
[0042] 图11是示出根据本公开的实施例的使用红外传感器模块的距离测量方法的流程图
[0043] 图12是示出根据本公开的另一实施例的使用红外传感器模块的另一距离测量方法的流程图。
[0044] 图13是示出根据本公开的实施例的安装到保洁机器人的红外传感器模块的概念图
[0045] 图14是示出根据本公开的另一实施例的包含在构造红外传感器模块的红外传感器中的光发射单元和光接收单元的排列的示意图。
[0046] 图15是示出根据本公开的另一实施例的包含在构造红外传感器模块的红外传感器中的光发射单元和光接收单元的排列的示意图。

具体实施方式

[0047] 现在,将对本公开的实施例进行详细参照,其示例在附图中示出,其中,相同的标号始终表示相同的元件。
[0048] 图4是示出根据本公开的实施例的红外传感器模块的控制框图。
[0049] 参照图4,根据本公开的实施例的红外传感器模块100包括第一红外传感器110、第二红外传感器120和控制器130。
[0050] 当红外传感器110和120接近物体或者当物体接近红外传感器110和120时,第一红外传感器110可测量物体的反射率。第一红外传感器110包括具有发射红外光的光发射元件(IRED)的第一光发射单元112以及具有检测反射光的量的光接收元件(PTR或者PD)的第一光接收单元114,并且也可由第一光发射单元112和第一光接收单元114的组合组成。
[0051] 第二红外传感器120可通过考虑通过第一红外传感器110测量的物体反射率来测量从红外传感器110或120到物体的距离。第二红外传感器120包括具有发射红外光的光发射元件(IRED)的第二光发射单元122和具有检测反射光的量的光接收元件(PTR或者PD)的第二光接收单元124,并且也可由第二光发射单元122和第二光接收单元124的组合组成。
[0052] 控制器130使用第一光接收单元114的峰值输出电压来测量物体反射率,并且使用第二光接收单元124的输出电压和测量的物体反射率两者来测量到物体的距离。
[0053] 控制器130在其中包括存储器132。存储器132存储第一查找表,第一查找表用于指示对应于与红外光的发射相关的峰值点(峰值输出电压)的反射率,该红外光的发射用于测量物体反射率,存储器132还包括第二查找表,第二查找表不仅响应于与红外光的发射相关的反射率而且响应于取决于从每一红外传感器到物体的距离的输出电压等,该红外光的发射用于测量从红外传感器(110或120)到物体的距离。
[0054] 下面将参照图5至图10来描述根据本公开的实施例的使用红外传感器模块100测量从每一红外传感器110或120到物体的距离的方法。
[0055] 如前所述,使用由一个光发射元件和光接收元件组成的传统红外传感器响应于接收光的量来测量从红外传感器到物体的距离的方法根据物体发射率具有不同的反射光量特性曲线(不同的接收光量特性曲线),从而难于精确地测量从红外传感器到物体的距离。
[0056] 因此,如果红外传感器110或120接近物体或者如果物体接近红外传感器110或120,则根据本公开的红外传感器模块首先使用第一红外传感器110测量接近物体的反射率,基于通过第一红外传感器110测量的物体反射率使用第二红外传感器120来测量从每个红外传感器110或120到物体的距离,从而红外传感器模块可正确地测量从每个红外传感器110或120到物体的距离。
[0057] 图5是示出根据本公开的实施例的包含在红外传感器模块中的第一红外传感器、第二红外传感器的每个中所包含的光发射单元和光接收单元的排列的示意图。第一红外传感器110的第一光发射单元112和第一光接收单元114以这种方式排列:当红外传感器110和120逐渐接近物体或者物体接近红外传感器110和120并且从红外传感器110和120到物体的距离经过预定物体的反射率测量部分M 1的中心部分(即,图5中显示的上菱形的水平对角点)时,在反射率测量部分M1的中心部分获得的反射光量(即,第一光接收单元114的输出电压)的特性曲线达到峰值点。
[0058] 在这里,反射率测量部分M1被建立,以在已经检测到物体(障碍物)的保洁机器人期望停止或者缓慢移动的情况下,包括与从红外传感器110和120到物体的距离(例如,20mm)相隔第一设置距离(例如,10mm)的特定距离(例如,20mm+10mm=30mm)。与以上特定距离相隔第一设置距离的距离以这种方式建立:物体的反射率测量部分M1中的反射光的特性曲线具有峰值点。
[0059] 第二红外传感器120的第二光发射单元122和第二光接收单元124以这种方式排列:当红外传感器110和120逐渐接近物体或者物体接近红外传感器110和120并且从红外传感器110和120到物体的距离经过预定红外传感器和物体之间的距离测量部分M2的中心部分(即,图5中显示的下菱形的水平对角点)时,在距离测量部分M2的中心部分获得的反射光量(即,第二光接收单元124的输出电压)的特性曲线达到峰值点。
[0060] 在这里,距离测量部分M2被建立,以在已经检测到物体(障碍物)的保洁机器人期望停止或者缓慢移动的情况下,包括从红外传感器110和120到物体的特定距离(例如,20mm)。与以上特定距离相隔第一设置距离的距离以这种方式建立:物体的反射率测量部分M1中的反射光特性曲线具有峰值点,并且该特定距离位于特定点附近,在所述特定点,红外传感器和所述物体之间的距离测量部分M2中的反射光量特性曲线达到峰值点。
[0061] 也就是,当从红外传感器110和120到物体的距离相对长时(当进入物体的反射率测量部分时),使用如图5所示的第一红外传感器110来测量最初接近物体的反射率,随后,如果由于红外传感器110和120进一步接近物体或者物体进一步接近红外传感器110和120,因此从红外传感器110和120到物体的距离变得相对短,则使用第二红外传感器120来测量从红外传感器110和120到物体的距离。对于此操作,第一红外传感器110的光发射单元112和光接收单元114排列在红外传感器模块的外侧,第二红外传感器120的光发射单元122和光接收单元124排列在红外传感器模块的内侧。
[0062] 下文中将对测量接近物体的反射率的方法进行详细描述。如果红外传感器110和120接近物体,或者如果物体接近红外传感器110和120,则当从红外传感器110和120到物体的距离经过预定物体的反射率测量部分M 1时,在从第一光发射单元112发射的红外光从物体的表面反射之后,上述反射率测量方法可找出通过第一光接收单元114接收的反射光的量(即,第一光接收单元114的输出电压)的特性曲线的峰值点(即,峰值输出电压),从而基于找到的结果来计算物体反射率。
[0063] 如可从图3看出,与高反射率物体(例如,白色物体)相关的响应于从红外传感器到物体的距离的光接收单元的输出电压特性曲线具有高输出电压区别(distinction)能,从而输出电压特性曲线的峰值点可被容易地找到。相反,与低反射率物体(例如,灰色或黑色物体)相关的响应于从红外传感器到物体的距离的光接收单元的输出电压特性曲线具有低输出电压区别能力,从而难于找到输出电压特性曲线的峰值点。
[0064] 因此,根据本公开的实施例,用于将测量物体反射率的第一红外传感器110的第一光发射单元112的发光强度二元化的电路被配置为:交替地发射两种红外光(即,高强度红外光和正常强度红外光),并且如图6的部分(a)和(b)所示来配置第一红外传感器110的发光强度的二元化电路。为了测量高反射率物体的反射率(90%~18%的反射率),第一光发射单元112发射具有正常强度的红外光。为了测量低反射率物体(18%~3%的反射率),第一光发射单元112发射具有高强度的红外光。在这里,高强度指示在这样条件下的发光强度:以使第一光接收单元114的输出电压具有与具有18%或者更低反射率的物体(具有18%~3%的反射率的物体)相关的足够区别能力的大小的方式,来调整限流电阻器(OUT_R_LOW)。正常强度指示在这样条件下的光发射强度:以使第一光接收单元114的输出电压具有与具有90%~18%的反射率的物体相关的足够区别能力的大小的方式,来调整限流电阻器(OUT_R_HIGH)。此外,指示各电路元件的参考符号中的术语“OUT”指示构造位于第二红外传感器120的外侧的第一红外传感器110的电路元件。
[0065] 如可从图6的部分(a)看到,第一红外传感器110的第一光发射单元112包括光发射元件(OUT_IRED)、用于正常强度光发射的限流电阻器(OUT_R_HIGH)、用于接收光发射元件(OUT_IRED)的正常强度光发射的控制信号的正常强度光发射控制开关元件(OUT_CTRL_NORMAL)、用于高强度光发射的限流电阻器(OUT_R_LOW)、以及用于接收光发射元件(OUT_IRED)的高强度光发射的控制信号的高强度光发射控制开关元件(OUT_CTRL_STRONG)。同时,如图6的部分(b)所示,第一红外传感器110的第一光接收单元114包括光接收元件(OUT_PTR(NPN))、输出电阻器(R3)和输出电压端子(V_OUT)。
[0066] 为了使得第一发射单元112发射高强度红外光,控制器130将连接控制信号输出到高强度光发射控制开关(OUT_CTRL_STRONG),并将切断控制信号输出到正常强度光发射控制开关元件(OUT_CTRL_NORMAL)。同时,为了使得第一光发射单元112发射正常强度红外光,控制器130将连接控制信号输出到正常强度光发射控制开关元件(OUT_CTRL_NORMAL),并将切断控制信号输出到高强度光发射控制开关元件(OUT_CTRL_STRONG)。
[0067] 当发射正常强度红外光以测量物体反射率时,根据从红外传感器到物体的距离的第一光接收单元114的输出电压特性曲线表现为如图7A所示,。在这种情况下,与高反射率物体(例如,白色物体)相关的第一光接收单元114的输出电压区别能力增加。
[0068] 相反,当输出高强度红外光以测量物体反射率时,响应于从红外传感器到物体的距离的第一光接收单元114的输出电压特性曲线表现为如图7B所示。在这种情况下,与低反射率物体(例如,灰色或黑色物体)相关的第一光接收单元114的输出电压区别能力变得更高。
[0069] 现今,用于实现照相机的色彩平衡和曝光调整的大量灰卡(gray cards)已经在世界范围内广泛散布并商业化。通常,灰卡由具有90%、18%或3%的反射率的材料形成。
[0070] 在灰卡被认为是接近的物体并且具有红外传感器模块100的保洁机器人执行接近移动实验的情况下,可从第一红外传感器110获得用于具有90%、18%或3%的反射率的物体的输出电压特性曲线,并且指示与正常强度红外发射相关的峰值输出电压相应的反射率的第一查找表(见图8的部分(a))以及指示与高强度红外发射相关的峰值输出电压相应的反射率的第二查找表(见图8的部分(b))可被配置。
[0071] 因此,当具有任意反射率的物体接近保洁机器人时,输出电压特性曲线的峰值点可被找到并且配置的查找表可被使用,或者可以基于查找表使用插值来估计接近物体的反射率。在这种情况下,图8的部分(a)中显示的查找表可用于测量高反射率物体的反射率(例如,90%~18%),图8的部分(b)中显示的查找表可用于测量低反射率物体的反射率(例如,18%~3%)。
[0072] 为了描述的方便以及更好的理解本公开,本公开的实施例已经示例地描述了用于通过检测输出电压特性曲线的峰值来计算物体反射率的方法。然而,如果图6的部分(b)中显示的光接收单元114的电路配置中的输出电阻器R3和光接收元件(OUT_PTR(NPN))的各位置被改变,则输出电压特性曲线形状反转,从而本公开的实施例检测输出电压特性曲线的最低点(最低输出电压)以计算物体的反射率。
[0073] 此外,为了便于描述并且更好的理解本公开,本公开的实施例已经示例地描述了用于测量物体反射率的第一红外传感器110的第一光发射单元112发射两种强度的红外光(即,高强度红外光和正常强度红外光)。然而,如果必要,根据本公开实施例的红外传感器还可发射三种或更多种强度的红外光,从而物体反射率测量的精确度可被进一步增加。
[0074] 下文中将对基于接近物体的反射率来测量从红外传感器110和120到物体的距离的方法进行详细描述。
[0075] 假设上述反射率测量方法,提出了测量从红外传感器到物体的距离的方法。也就是,在使用第一红外传感器110测量物体反射率之后,根据本公开的红外传感器模块使用第二红外传感器120来测量从红外传感器110和120到物体的距离。用于测量从红外传感器110和120到物体的距离的第二红外传感器120可包括用于执行一种发光强度的电路,或者包括考虑到红外传感器110和120的配置以及反射光量(接收光量)的特性的发光强度二元化电路。当发射一种强度的红外光时,可如图2所示来配置第二红外传感器120。当发射两种强度的红外光(即,高强度红外光和正常强度红外光)时,可如图9的部分(a)和(b)来配置第二红外传感器120。
[0076] 如从图9的部分(a)可以看出,第二红外传感器120的第二光发射单元122包括光发射元件(IN_IRED)、用于正常强度光发射的限流电阻器(IN_R_HIGH)、用于接收光发射元件(IN_IRED)的正常强度光发射的控制信号的正常强度光发射控制开关元件(IN_CTRL_NORMAL)、用于高强度光发射的限流电阻器(IN_R_LOW)、以及用于接收光发射元件(IN_IRED)的高强度光发射的控制信号的高强度光发射控制开关元件(IN_CTRL_STRONG)。同时,如图9的部分(b)所示,第二红外传感器120的第二光接收单元124包括光接收元件(IN_PTR(NPN))、输出电阻器(R4)和输出电压端子(V_OUT)。此外,指示各电路元件的参考符号的术语“IN”指示构造位于第一红外传感器110的内侧的第二红外传感器120的电路元件。
[0077] 为了使得第二光发射单元122发射高强度红外光,控制器130将连接控制信号输出到高强度光发射控制开关元件(IN_CTRL_STRONG),并将切断控制信号输出到正常强度光发射控制开关元件(IN_CTRL_NORMAL)。同时,为了使得第二光发射单元122发射正常强度红外光,控制器130将连接控制信号输出到正常强度光发射控制开关元件(IN_CTRL_NORMAL),并将切断控制信号输出到高强度光发射控制开关元件(IN_CTRL_STRONG)。
[0078] 为了描述方便和更好的理解本公开,本公开的实施例已经示例地描述了用于测量从红外传感器110和120到物体的距离的第二红外传感器120的第二光发射单元122发射两种强度的红外光(即,高强度红外光和正常强度红外光)。然而,如果必要,根据本公开的实施例的红外传感器模块也可发射具有三种或更多种强度的红外光,从而测量从红外传感器110和120到物体的距离的精确度可被进一步增加。
[0079] 如上所述,通过使用灰卡的接近移动实验,第二红外传感器的用于具有90%、18%或3%的反射率的物体的输出电压特性曲线可被获得。
[0080] 在灰卡被认为是接近的物体并且具有第二红外传感器120的保洁机器人执行接近移动实验的情况下,可从第二红外传感器120获得用于具有90%、18%或3%的反射率的物体的输出电压特性曲线,并且取决于反射率和与正常强度红外发射相关的输出电压(与到物体的距离相关)的第一距离查找表(见图10的部分(a))以及取决于反射率和与高强度红外发射相关的输出电压(与到物体的距离相关)的第二查找表(见图10的部分(b))可被配置。
[0081] 其结果是,可使用距离查找表或插值方法来估计从红外传感器110和120到物体的距离,其中,基于通过反射率测量处理获得的物体反射率以及从红外传感器110或120和物体之间的距离测量部分M2获得的第二光接收单元124的输出电压,来配置距离查找表。在这里,在通过发射单一强度的红外光来测量红外传感器110或120和物体之间的距离的情况下,必要时,图10的部分(a)中显示的距离查找表(当发射正常强度红外光时使用)或者图10的部分(b)中显示的另一距离查找表(当发射高强度红外光时使用)可被使用。
此外,当通过发射两种强度的红外光来测量从红外传感器110或120到物体的距离时,图10的部分(a)中显示的距离查找表可用于测量与高反射率物体(例如,具有90%~18%的反射率的物体)相关的从红外传感器110或120到物体的距离,图10的部分(b)中显示的另一距离查找表可用于测量与低反射率物体(例如,具有18%~3%的反射率的物体)相关的从红外传感器110或120到物体的距离。
[0082] 下文中,将参照图11来描述根据本公开实施例的使用红外传感器模块的距离测量方法。
[0083] 本公开的实施例提供一种在从红外传感器110或120和物体之间的距离测量部分M2发射具有一种强度(例如,高强度或正常强度)的红外光的条件下,测量从红外传感器110或120到物体的距离的方法。
[0084] 作为用于描述本公开的实施例的操作的初始条件,假设控制器130的存储器132包括用于指示与用于测量物体反射率的红外发射相关的峰值输出电压相应的反射率的查找表、以及不仅取决于用于测量从红外传感器110或120到物体的距离的红外发射的反射率而且取决于与反射率相关的输出电压(与到物体的距离相关)的距离查找表。
[0085] 为了描述方便,由“V1”来表示用于指示第一红外传感器110的第一光接收单元114的输出电压的参数,由“V2”来表示用于指示第二红外传感器120的第二光接收单元
124的输出电压的参数。此外,在第一光发射单元112输出高强度红外光的情况下,假设由“V1_STRONG_HIGHEST”来表示用于指示第一光接收单元114的峰值输出电压的参数,并且由“V1_STRONG_CURRENT”来表示用于指示第一光接收单元114的当前输出电压的参数。此外,当第一光发射单元112发射正常强度红外光时,由“V1_NORMAL_HIGHEST”来表示用于指示第一光接收单元114的峰值输出电压的参数,并且由“V1_NORMAL_CURRENT”来表示用于指示第一光接收单元114的当前输出电压的参数。
[0086] 首先,控制器130交替地将连接控制信号发送到第一光接收单元112的高强度光发射控制开关元件(OUT_CTRL_STRONG)和正常强度光发射控制开关元件(OUT_CTRL_NORMAL),从而高强度红外光和正常强度红外光被交替地施加到物体。其后,在操作202,控制器130确定存储在“V 1_STRONG_CURRENT”参数中的值或存储在“V1_NORMAL_CURRNET”中的值是否非常接近于零“0”。
[0087] 如果在操作202存储在“V1_STRONG_CURRENT”参数中的值或存储在“V1_NORMAL_CURRNET”中的值非常接近于零“0”,则控制器130确定物体离红外传感器110和120非常远,确定物体已经消失,或者确定包括红外传感器110和120的保洁机器人已经被收起,从而在操作204,所有的参数被初始化(即,V1_STRONG_HIGHEST=0,V1_STRONG_CURRENT=0,V1_NORMAL_HIGHEST=0,V1_NORMAL_CURRENT=0),并且返回操作202。
[0088] 同时,如果在操作202存储在“V1_STRONG_CURRENT”参数中的值或存储在“V1_NORMAL_CURRNET”中的值并非非常接近于零“0”,则在操作206,控制器130确定红外传感器110和120接近物体或者确定物体接近红外传感器110和120,将连接控制信号发送给第一光发射单元112的高强度光发射控制开关元件(OUT_CTRL_STRONG),从而第一光发射单元
112可发射高强度红外光。
[0089] 其后,在操作208,控制器130将通过第一光接收单元114接收的输出电压存储在V1_STRONG_CURRENT参数中。
[0090] 为了交替地将高强度红外光和正常强度红外光发射到物体,控制器130将连接控制信号发送给第一光发射单元112的正常强度光发射控制开关元件(OUT_CTRL_NORMAL),从而在操作210,第一光发射单元112可发射正常强度红外光。
[0091] 其后,在操作212,控制器130将通过第一光接收单元114接收的输出电压存储在V1_NORMAl_CURRENT参数中。
[0092] 接下来,在操作214,控制器130确定存储在V1_STRONG_CURRENT参数中的值是否饱和。
[0093] 如果在操作214存储在V1_STRONG_CURRENT参数中的值饱和,则控制器130确定接近的物体是高反射率物体(例如,白色物体),并且在操作216确定存储在V1_NORMAL_CURRENT参数中的值是否高于存储在V1_NORMAL_HIGHEST参数中的值。
[0094] 如果在操作216存储在V1_NORMAL_CURRENT参数中的值高于存储在V1_NORMAL_HIGHEST参数中的值,则在操作218存储在V1_NORMAL_CURRENT参数中的值被存储为V1_NORMAL_HIGHEST参数,从而最高电压值被更新。随后,控制器返回到操作206,从而高强度红外光和正常强度红外光可被连续且交替地发射到物体。
[0095] 同时,如果在操作216存储在V1_NORMAL_CURRENT参数中的值不高于存储在V1_NORMAL_HIGHEST参数中的值,则在操作220,控制器130确定当从存储在V1_NORMAL_HIGHEST参数中的值中减去存储在V1_NORMAL_CURRENT参数中的值时获得的结果值是否高于预定设置的值。
[0096] 如果在操作220当从存储在V1_NORMAL_HIGHEST参数中的值中减去存储在V1_NORMAL_CURRENT参数中的值时获得的结果值不高于预定设置的值,则控制器130返回操作206,从而控制器130可继续交替地将高强度红外光和正常强度红外光发射到物体。
[0097] 另一方面,如果在操作220当从存储在V1_NORMAL_HIGHEST参数中的值中减去存储在V1_NORMAL_CURRENT参数中的值时获得的结果值高于预定设置的值,则在操作222,控制器130确定与第一光发射单元112的正常强度红外光的发射相关的第一光接收单元114的输出电压特性曲线经过第一光接收单元114的峰值输出电压并且当前位于下降点,并且基于存储在V1_NORMAL_HIGHEST参数中的值来使用与正常强度红外光的发射相关的反射率查找表(见图8的部分(a)),或者基于该查找表使用插值来测量接近物体的反射率。
[0098] 返回参照操作214,如果存储在V1_STRONG_CURRENT参数中的值没有饱和,则控制器130确定接近的物体是具有相对低反射率的物体(例如,灰色或黑色物体),并且在操作224确定存储在V1_STRONG_CURRENT参数中的值是否高于存储在V1_STRONG_HIGHEST参数中的值。
[0099] 如果在操作224确定存储在V1_STRONG_CURRENT参数中的值高于存储在V1_STRONG_HIGHEST参数中的值,则在操作226控制器130将存储在V1_STRONG_CURRENT参数中的值存储为V1_STRONG_HIGHEST参数的值,从而更新最高电压值。随后,控制器130返回到操作206,从而控制器130可连续并交替地将高强度红外光和正常强度红外光发射到物体。
[0100] 同时,如果在操作224,V1_STRONG_CURRENT参数的值不高于V1_STRONG_HIGHEST参数的值,则在操作228控制器130确定当从存储在V1_STRONG_HIGHEST参数中的值减去存储在V1_STRONG_CURRENT参数中的值时获得的结果值是否高于预定设置的值。
[0101] 如果在操作228当从存储在V1_STRONG_HIGHEST参数中的值减去存储在V1_STRONG_CURRENT参数中的值时获得的结果值不高于预定设置的值,则控制器130返回操作206,从而将高强度红外光和正常强度红外光连续且交替地发射到物体。
[0102] 另一方面,如果在操作228当从存储在V1_STRONG_HIGHEST参数中的值减去存储在V1_STRONG_CURRENT参数中的值时获得的结果值高于预定设置的值,则在操作230,控制器130确定与第一光发射单元112的高强度红外光的发射相关的第一光接收单元114的输出电压特性曲线经过第一光接收单元114的峰值输出电压并且当前位于下降点,并且基于存储在V1_STRONG_HIGHEST参数中的值使用与高强度红外光的发射相关的反射率查找表(见图8的部分(b)),或者基于查找表使用插值来测量接近物体的反射率。
[0103] 为了基于通过操作202至230测量的物体反射率来测量从红外传感器110或120到物体的距离,控制器130将连接控制信号发送给第二光发射单元122的光发射控制开关元件(IN_CTRL_ON_OFF),从而在操作232第二光发射单元122可发射一种强度的红外光(通常是正常强度红外光或高强度红外光)。
[0104] 其后,在操作234,控制器130从第二光接收单元124接收与正常强度红外光或高强度红外光相关的输出电压V2。
[0105] 接下来,控制器130使用第一距离查找表(见图10的部分(a))、第二距离查找表(见图10的部分(b))、或者基于这些查找表的插值方法中的任何一个来测量从红外传感器110或120到物体的距离。在这种情况下,在第二光接收单元124的输出电压V2的基础上,基于第一距离查找表或者第二距离查找表来测量从红外传感器110或120到物体的距离。
第一距离查找表基于反射率以及与正常强度红外光的发射相关的输出电压,第二距离查找表基于反射率以及与高强度红外光的发射相关的输出电压(操作236)。
[0106] 下文中,将参照图12对根据本公开的另一实施例的使用红外传感器模块的距离测量方法进行描述。
[0107] 本公开的另一实施例提供一种当从每个红外传感器110或120和物体之间的距离测量部分M2发射两种强度的红外光(即,高强度红外光和正常强度红外光)时,测量从红外传感器110或120到物体的距离的方法。
[0108] 为了描述的方面和更好的理解本公开,假设由“V2_STRONG”来表示指示当第二光发射单元122发射高强度红外光时第二光接收单元124的输出电压的参数,并且由“V2_NORMAL”表示指示当第二光发射单元122发射正常强度红外光时第二光接收单元124的输出电压的参数。
[0109] 用于测量接近物体的反射率的操作302至330与图11的操作202至230相同,因此为了描述方便这里将省略其详细描述。
[0110] 为了基于通过操作302至330测量的物体反射率来测量从红外传感器110或120到物体的距离,控制器130初始化参数(V2_STRONG=0,V2_NORMAL=0)(操作332)。
[0111] 其后,在操作334,控制器130确定通过操作302至330测量的物体反射率是否高于参考反射率(例如,18%)。
[0112] 如果在操作334测量的物体反射率高于参考反射率(例如,18%),则控制器130确定接近的物体是高反射率物体(例如,白色物体),并且将连接控制信号发送给第二光发射单元112的正常强度光发射控制开关元件(IN_CTRL_NORMAL),从而在操作336第二光发射单元122可发送正常强度红外光。
[0113] 接下来,在操作338,控制器130将从第二光接收单元124接收的输出电压存储在V2_NORMAL参数中。
[0114] 其后,在操作340,控制器130基于存储在V2_NORMAL参数中的值使用距离查找表(见图10的部分(a))或者使用基于距离查找表的插值方法来测量从红外传感器110或120到物体的距离。在这种情况下,基于反射率和与正常强度红外光的发射相关的输出电压来配置距离查找表。
[0115] 返回参照操作334,如果在操作334测量的物体反射率不高于参考反射率(例如,18%),则控制器130确定接近的物体是低反射率物体(例如,灰色或黑色物体),并且将连接控制信号发送给第二光发射单元122的高强度光发射控制开关单元(IN_CTRL_STRONG),从而在操作342控制器130控制第二光发射单元122发射高强度红外光。
[0116] 接下来,在操作344,控制器130将通过第二光接收单元124接收的输出电压存储在V2_STRONG参数中。
[0117] 其后,在操作346,控制器130基于V2_STRONG参数的值使用距离查找表(见图10的部分(b))或者基于距离查找表使用插值方法来测量从红外传感器110或120到物体的距离,其中,距离查找表基于反射率和与高强度红外光的发射相关的输出电压。
[0118] 图13是示出根据本公开的实施例的安装到保洁机器人R的红外传感器模块100的概念图。在图13中显示的红外传感器模块100的排列中,在测量物体反射率测量部分M1中的接近物体的反射率之后,在每个红外传感器110或120和物体之间的距离测量部分M2中,基于测量的反射率使用三个第二红外传感器120中的每一个的第二光接收单元124的输出电压,来测量从红外传感器110或120到物体的距离。
[0119] 如从上述描述可以看出,使用由第一光发射单元112和第一光接收单元114组成的第一红外传感器110来测量物体反射率,并且使用由第二光发射单元122和第二光接收单元124组成的第二红外传感器120来测量从红外传感器110或120到物体的距离(即,使用两个光发射单元和两个光接收单元)。然而,图14中显示的红外传感器包括用于将红外光发射到物体的一个光发射单元(第一光发射单元112)和均检测从物体反射的红外光的量的两个光接收单元(即,第一光接收单元114和第二光接收单元124)的组合。此外,可使用第一光接收单元114的峰值输出电压来测量物体反射率,并且可使用第二光接收单元124的输出电压以及测量的物体反射率来测量从红外传感器110或120到物体的距离(即,一个光发射单元和两个光接收单元被使用)。在这种情况下,当从红外传感器到物体的距离相对长时(当进入物体反射率测量部分时),在使用与第一光发射单元112的红外光的发射相关的第一光接收单元114的峰值输出电压来首先测量接近物体的反射率之后,如果红外传感器进一步接近物体或者物体进一步接近红外传感器,从而从红外传感器到物体的距离减小(当进入用于测量从传感器到物体的距离的部分时),使用与第一光发射单元112的红外光的发射相关的第二光接收单元124的输出电压来测量从每个红外传感器到物体的距离。对于此操作,如图14所示,第一光接收单元114排列在红外传感器模块100的外侧,第二光接收单元124排列在红外传感器模块100的内侧。
[0120] 如图15所示,红外传感器模块包括用于将红外光发射到物体的两个光发射单元(即,第一光发射单元112和第二光发射单元122)以及用于检测从物体反射的红外光的量的一个光接收单元(即,第一光接收单元114)的组合。此外,使用与第一光发射单元112的红外光的发射相关的第一光接收单元114的峰值输出电压来测量物体反射率,并且可使用测量的物体反射率以及与第二光发射单元122的红外光的发射相关的第一光接收单元114的输出电压来测量从红外传感器到物体的距离(即,两个光发射单元和一个光接收单元被使用)。在这种情况下,当从红外传感器到物体的距离相对长时(当进入物体反射率测量部分时),在使用与第一光发射单元112的红外光的发射相关的第一光接收单元114的峰值输出电压来首先测量接近物体的反射率之后,如果红外传感器进一步接近物体或者物体进一步接近红外传感器,从而从红外传感器到物体的距离相对减小(当进入用于测量从传感器到物体的距离的部分时),则使用与第二光发射单元122的红外光的发射相关的第一光接收单元的输出电压来测量从每个红外传感器到物体的距离。对于此操作,如图15所示,第一光发射单元112排列在红外传感器模块100的外侧,第二光发射单元122排列在红外传感器模块100的内侧。
[0121] 从以上描述清楚的是,根据本公开的实施例的红外传感器模块可不管物体反射率而使用两步测量方案来正确地测量从红外传感器模块到物体的距离,在所述两步测量方案中,红外传感器模块测量接近物体的反射率并且随后基于测量的反射率来测量从红外传感器到物体的距离。
[0122] 尽管已经显示和描述了本公开的一些实施例,但是本领域的技术人员应该理解,在不脱离本发明的原理和精神的情况下,可以在这些实施例中进行改变,其中,由权利要求及其等同物限定本发明的范围。
QQ群二维码
意见反馈