用于产生电能的方法和设备

申请号 CN201380034091.4 申请日 2013-06-25 公开(公告)号 CN104884886A 公开(公告)日 2015-09-02
申请人 林德股份公司; 发明人 A·阿列克谢耶夫;
摘要 用于在包括电站和空气处理设施的组合的系统中产生 电能 的过程和设备。电站具有第一气体膨胀单元(300),所述第一气体膨胀单元被连接到用于产生电能的发 电机 。空气处理单元具有空气压缩单元(2)、换热系统(21)和用于液体的储罐(200)。在第一操作模式中,馈送空气在空气处理设施中在空气压缩单元(2)中被压缩并且在换热系统(21)中被冷却,包含小于40mol% 氧 的储存 流体 从被压缩且被冷却的馈送空气(101)中生成并且储存流体作为低温液体(101)被储存在用于液体的储罐(200)中。在第二操作模式中,低温液体(103)从用于液体的储罐(200)中被取出并且在超压下 蒸发 或伪蒸发并且以这种方式生成的气态高压储存流体(104)在气体膨胀单元(300)中膨胀。在第二操作模式中,低温液体的(伪)蒸发在空气处理设施的换热系统(21)中进行。
权利要求

1.一种用于在包括电站和空气处理设施的组合的系统中产生电能的方法,其中电站具有第一气体膨胀单元(300),所述第一气体膨胀单元被连接到用于产生电能的发电机,并且所述空气处理设施被形成为空气液化设施并且具有空气压缩单元(2)、换热系统(21)和液体罐(200),以及其中
在第一操作模式中
在空气处理设施中
馈送空气在空气压缩单元(2)中被压缩并且在换热系统(21)中被冷却,
包含小于40mol%的存储流体从被压缩且被冷却的馈送空气中产出,
存储流体作为低温液体(101)被存储在液体罐(200)中,其中低温液体(101)由液化空气形成,
以及在第二操作模式中
低温液体(103)从液体罐(200)中被提取并且在高压下蒸发或伪蒸发,以及因此所产生的气态高压存储流体(104)在气体膨胀单元(300)中膨胀,
其中,在第二操作模式中,低温液体在空气处理设施的换热系统(21)中(伪)蒸发,以及
还是在第二操作模式中,馈送空气在空气压缩单元(2)中被压缩,
其特征在于,在第二操作模式中,来自空气压缩单元(2)的被压缩馈送空气作为辅助空气在至少一个冷压缩机(31,32)中经受进一步压缩并且接下来与气态高压存储流体(104)混合。
2.如权利要求1中所述的方法,其特征在于,辅助空气在并联连接的至少两个冷压缩机(31,32)中被进一步压缩。
3.如权利要求1或2中所述的方法,其特征在于,电站具有气轮机系统,所述气轮机系统具有燃烧室、气轮机膨胀器和发电机,以及至少部分气态高压存储流体(104)在气轮机系统的气轮机膨胀器中膨胀,其中存储流体(104)被馈送到(伪)蒸发(21)的下游的气轮机系统。
4.如权利要求1至3中任一所述的方法,其特征在于,气体膨胀单元具有热气轮机系统,所述热气轮机系统具有至少一个加热器和一个热气轮机。
5.如权利要求3和4中所述的方法,其特征在于,气态高压存储流体在两个步骤中膨胀,其中第一步骤作为热气轮机系统中的做功膨胀进行并且第二步骤在气轮机系统中进行,其中气态高压存储流体被馈送到热气轮机系统,所述气态高压存储流体在热气轮机系统中膨胀到中等压,以及气态中等压力存储流体从热气轮机系统中被提取并且最终被馈送到气轮机系统。
6.如权利要求1至5中任一所述的方法,其特征在于,在第一操作模式中,来自空气压缩单元(2)的被压缩馈送空气的至少一部分在换热系统(21)的同一通道中被冷却,所述同一通道在第二操作模式中用于蒸发或伪蒸发。
7.一种利用包括电站和空气处理设施的组合的系统产生电能的设备,其中电站具有第一气体膨胀单元(300),所述第一气体膨胀单元被连接到用于产生电能的发电机,以及空气处理设施被形成为空气液化设施并且具有空气压缩单元(2)、换热系统(21)和液体罐(200),其中所述设备具有自动的控制装置和管道和控制元件,其中控制装置被形成使得设备能够在第一操作模式和第二操作模式中被操作,其中
在第一操作模式中
在空气处理设施中
馈送空气在空气压缩单元(2)中被压缩并且在换热系统(21)中被冷却,
包含小于40mol%氧的存储流体从被压缩且被冷却的馈送空气中产出,
存储流体作为低温液体(101)被存储在液体罐(200)中,其中低温液体(101)由液化空气形成,
以及在第二操作模式中
低温液体(103)从液体罐(200)中被提取并且在高压下蒸发或伪蒸发,以及因此所产生的气态高压存储流体(104)在气体膨胀单元(300)中膨胀,
其中,在第二操作模式中,低温液体在空气处理设施的换热系统(21)中(伪)蒸发,以及
还是在第二操作模式中,馈送空气在空气压缩单元(2)中被压缩,
其特征在于,控制装置被形成使得,在第二操作模式中,来自空气压缩单元(2)的被压缩馈送空气作为辅助空气在至少一个冷压缩机(31,32)中经受进一步压缩并且接下来与气态高压存储流体(104)混合。
8.如权利要求7所述的设备,其特征在于,具有并联连接的至少两个冷压缩机(31,32)用以进一步压缩辅助空气。

说明书全文

用于产生电能的方法和设备

技术领域

[0001] 本发明涉及依据权利要求1前序部分的用于产生电能的方法和设备,以及涉及对应设备。

背景技术

[0002] “低温液体”被理解为沸点低于环境温度并且是例如200K或更低的液体,特别是沸点低于220K的液体。
[0003] 低温液体在“蒸发”期间可能受到亚临界压。然而,如果低温液体达到高于临界压力的高压下,则不存在真正的相变(“蒸发”),而是存在称为“伪蒸发”的相变。
[0004] “换热系统”以一个或多个冷流经由间接换热用来冷却用于空气处理设施的馈送空气。换热系统可以由单一换热部段或并联和/或串联连接的多个换热部段形成,例如由一个或多个板式换热器形成。
[0005] 已知的是使用液态空气或液氮用于网络控制和用于在电网中提供控制功率的方法和设备。在这种情况下,在廉价功率期间,环境空气在具有集成液化器的空气分离设施中或在单独液化设施中液化,并且存储在形成为低温存储器的液体罐中。在峰值负载时,液化空气从存储器中被提取并且液化空气的压力在中升高;液化空气接下来被加热到接近或高于环境温度。这种热高压空气接下来在膨胀单元中膨胀到环境压力,所述膨胀单元包括具有中间加热的一个或多个涡轮机。涡轮机单元中产出的机械能在发电机中转换成电能并且作为特别有价值的能源馈送到电网中。这样的系统在WO2007096656中和在DE3139567A1中描述。
[0006] 这样的方法也可以从根本上以包含40 mol%或更多的存储流体执行,并且这也是本发明的方法的情况。然而,在这种情况下,上述方案被排除,以便避免与以下系统混淆,特别富氧流体被引入所述系统中,以便支持气轮机系统中的氧化反应。
[0007] 在背景技术中提及类型的方法和对应设备从US2009293502A1已知。在此,在第二操作模式期间,低温液体不被引入单独换热器中并且例如相对于环境空气或热蒸汽蒸发或伪蒸发;而是相反,该步骤在空气处理设施的换热系统中执行,所述换热系统在任何情况下都存在用于在第一操作模式中冷却馈送空气。同样地,在第二操作模式中,馈送空气在空气压缩单元中被压缩并且在换热系统中被冷却。这产生对于使已存储的低温液体蒸发而言必要的加热介质。低温液体在空气处理设施中产出,空气处理设施在第一操作模式中形成为空气液化设施,即是说在这种情况下馈送空气不主要用于通过低温分馏产出其成分氧和/或氮;而是相反,全部馈送空气、或至少馈送空气的主要部分在第一操作模式中液化并且在不分馏的情况下作为低温液体获得。
[0008] 在本发明的范围内,类似于在US2009293502A1中那样,在第二操作模式中机械能从高压存储流体中产生,因为存储流体自身或从存储流体得到的流体在气体膨胀单元中膨胀以便做功。从存储流体得到的流体可以例如包括存储流体与一种或多种其他流体的混合物,或包括存储流体与一种或多种物质的反应产物。在存储流体包含氧并且用于使燃料燃烧的情况下,包括存储流体与一种或多种物质的反应产物可以例如为包括燃烧排气。

发明内容

[0009] 本发明基于以下目的,将这样的系统相对于其利润率改进并且特别是可以相对简单地构建所述设备。
[0010] 该目的以权利要求1的特征特性实现。因此,根据本发明,在第二操作模式中,在空气压缩单元中压缩的馈送空气至少部分地不液化而是作为辅助空气在至少一个冷压缩机中经受进一步压缩并且接下来与气态高压存储流体混合。因此,与通过蒸发获得的高压气体相比,基本上更多高压气体可用于在气体膨胀单元中膨胀,并且因此能够在第二操作模式中获得更多电能。
[0011] 在第二操作模式中附加地操作一个或多个冷压缩机可能首先出现缺点,在第二操作模式期间能源价格较高。然而,在本发明的范围内,已令人惊讶地发现的是,借助于附加量的高压气体,能够获得如此多的附加电能,以至于总体上得到在经济上特别有利的系统。相反的是,对于能够在第二操作模式中产生的能源的同一最大量而言,更大比例的设施部件能够制得更小并且因此更具有成本效益。与此同时,在第二操作模式中使用更少的能源。
[0012] 优选地,辅助空气在并联连接的至少两个冷压缩机中被进一步压缩。因此,该压缩步骤特别有效地执行;此外,辅助空气的量能够灵活地适应当前需要。两个冷压缩机可以具有相同入口温度,尽管它们的入口温度优选地不同。例如,用于冷压缩机的这些入口温度差别至少10K,优选地差别大于30K。
[0013] 在根据本发明的方法的第一变形中,在第二操作模式中,电能从气态高压存储流体的产出的至少一部分在气轮机电站的气轮机系统的气轮机膨胀器中执行,其中存储流体在蒸发器下游被馈送到气轮机系统。气轮机系统于是为根据权利要求1范畴内气体膨胀单元的一部分。这种使用气轮机系统自身用于从高压存储流体获取能源在权利要求5和6中并且在先前德国专利申请102011121011中和与其对应的专利申请中被更详细地描述。
[0014] “气轮机系统”具有气轮机(气轮机膨胀器)和燃烧室。在气轮机中,来自燃烧室的热气体膨胀以便做功。气轮机系统还可以具有由气轮机驱动的气轮机压缩机。在气轮机中产生的机械能的一部分通常用于驱动气轮机压缩机。另一部分大体上在发电机中被转换以产生电能。
[0015] 在该变形中,机械能从气态高压存储流体的产生的至少一部分在电站的气轮机系统中进行,即是说在存在于电站中的任何情况下,在用于将压力能转换为机械驱动能的设备中进行。在本发明的范围内,用于高压存储流体的做功膨胀的附加单独系统可以较不复杂地设计或可以完全省略。在最简单的情况下,在本发明的范围内可能的是,机械能从气态高压存储流体的全部产生都在气轮机系统中进行。高压存储流体接下来被馈送到气轮机系统,例如以低于(伪)蒸发压力的压力被馈送到气轮机系统。
[0016] 在第二变形中,气体膨胀单元具有热气轮机系统,所述热气轮机系统具有至少一个加热器和一个热气轮机。电能从气态高压存储流体的产生接下来在热气轮机系统中至少部分地作为做功膨胀进行,所述热气轮机系统具有至少一个加热器和一个热气轮机。在此,能源从高压存储流体的产生在气轮机系统外部进行。
[0017] “热气轮机系统”可以被形成为具有加热器和单一阶段涡轮机的单一阶段。替代地,热气轮机系统可以具有多个涡轮机阶段,优选地具有中间加热。在任何情况下适宜的是在热气轮机系统的最后阶段的下游提供另一个加热器。热气轮机系统优选地被耦连到用于产生电能的一个或多个发电机。
[0018] “加热器”在此被理解为用于在加热流体与气态存储流体之间间接换热的系统。因此可以将余热或废热传递到存储流体并且使用该热量用于在热气轮机系统中产生能源。
[0019] 本发明的两个变形还可以被组合,在于气体膨胀单元具有一个或多个热气轮机以及一个或多个气轮机系统。气态高压存储流体接下来在两个步骤中膨胀,其中第一步骤作为热气轮机系统中的做功膨胀进行,并且第二步骤在气轮机系统中进行,其中气态高压存储流体被馈送到热气轮机系统,气态高压存储流体在热气轮机系统处膨胀到中等压力,并且气态中等压力存储流体从热气轮机系统被提取并且最终被馈送到气轮机系统。
[0020] 优选地,在第一操作模式中,来自空气压缩单元的被压缩馈送空气的至少一部分在换热系统的同一/相同通道中被冷却,所述同一/相同通道在第二操作模式中用于蒸发或伪蒸发。特别是在第一操作模式中,至少50mol%(摩尔百分比)、特别是至少80mol%或至少90mol%的馈送空气流经这些共享通道。
[0021] 本发明还涉及一种根据权利要求7或8的用于产生能源的设备。“自动控制装置”在这种情况下被理解为至少在第一操作模式期间和在第二操作模式期间自动地控制系统的设备。所述自动控制装置优选地能够自动地执行从第一操作模式到第二操作模式的转变并且反之亦然。根据本发明的设备可以由与从属方法权利要求的特征对应的设备特征补充。附图说明
[0022] 本发明和本发明的进一步细节将会在下文中参照在附图中代表的示例性实施方式被更详细地描述,其中:
[0023] 图1a和1b分别在第一操作模式和第二操作模式中示出本发明的基本原理,[0024] 图2a和2b示出空气处理设施的实施方式,本发明能够借助于所述空气处理设施实现,
[0025] 图3a和3b示出在两种操作模式中的空气处理设施的另一实施方式,以及[0026] 图4示出气体膨胀单元的可能实施方式。

具体实施方式

[0027] 图1a和1b的总体设施包括三个单元:空气处理设施100、液体罐200和气体膨胀单元300。
[0028] 图1a示出第一操作模式(廉价电力阶段,通常在夜间)。在这种情况下,环境空气(AIR)作为馈送空气被引入空气处理设施100中。低温液体101在空气处理设施中产出,所述低温液体例如形成为液态空气。空气处理设施作为液化器(特别是作为空气液化器)操作。低温液体101被引入液体罐200中,所述液体罐以小于2巴的低压LP操作。空气处理设施在第一操作模式中的能耗被标记为P1。
[0029] 图1b示出第二操作模式(峰值电流阶段–通常在日间)。在这种情况下,空气处理设施用作蒸发器。低温液体103(例如液态空气)从液体罐200被提取,以升高的压力MP2(大于12巴,例如大致20巴)被引入泵中,在空气处理设施中蒸发并且被加热到大致环境温度。(伪)蒸发和加热接下来使用换热系统21的同一通道,所述同一通道在第一操作模式中用于冷却待液化的馈送空气。用于蒸发所需的热量由馈送空气的附加流102提供,所述附加流从周围被吸入。利用附加空气流的协助,不仅可以蒸发和加热液态空气,而且可以将附加空气流压缩到压力MP2(关于细节参见以下图2b)。因此,相应地更高压气体可用作能源载体,其中需要能源开支P2并且使用使液体蒸发产生的制冷。蒸发的高压存储流体和已加压的附加空气一起经由管线104被馈送到气体膨胀单元300。第二操作模式中的功率P2是例如第一操作模式中的功率P1的20%到70%、优选地40%到60%。
[0030] 这种连接方案确保被馈送以膨胀的被压缩空气的量基本上大于从液态空气存储器200被提取的量,因为附加空气与所述被压缩空气的量混合。因此,基本上更多空气被馈送到气体膨胀单元300中并且在所述气体膨胀单元处产生的功率P3基本上增加(P3>>P2)。取决于被压缩空气膨胀单元的配置(参见图4),P3能够达到可与P1相比的值。
[0031] 低温液体的产出和低温液体的蒸发通常在两个不同的过程单元中进行。在本发明的情况下,已可以将方法配置成使得这些过程单元能够以可观的程度被合并。
[0032] 图2a和2b示出用于空气处理设施的实施方式,本发明能够借助于所述空气处理设施实现。
[0033] 图2a涉及第一操作模式。在此,环境空气(AIR)由空气压缩单元2吸入并且被压缩到压力MP(4至8巴,特别是5至6巴);所述环境空气接下来在预冷却装置3中被冷却并且在分子筛吸附站4中被干燥并且被净化去污染物,诸如除去CO2和氢化合物。空气接下来被分离成两个流动部分。
[0034] 被压缩且被净化的空气的第一部分在第一单级后压缩机(助推器)5a中被进一步压缩到压力MP1>MP2(MP1=6至15巴),所述第一部分在后冷却器中被冷却到大致环境温度,此后所述第一部分在换热系统21中被冷却到140至180K的中间温度;所述第一部分接下来在第一冷涡轮机5b中膨胀到低压LP(<2巴,特别是大致1.4巴),以便做功。冷涡轮机5b经由共用轴驱动第一后压缩机5a。馈送空气的膨胀以便做功的第一部分以压力LP被馈送通过换热系统21,所述第一部分在换热系统中被加热。在换热系统21的热端处,所述空气的一部分被释放到周围环境(amb)。另一部分6被用作用于分子筛吸附站的再生气体。
再生气体由蒸汽、电加热器或天然气火焰(热量Q)加热。
[0035] 被压缩且被净化的空气的第二部分被馈送到单独压缩机,即环路压缩机11,所述第二部分在所述环路压缩机中首先从压力MP被压缩到20至40巴的更高压力HP;所述第二部分接下来在后冷却器中被冷却到大致环境温度并且继而在第二单级后压缩机(助推器)12a中被进一步压缩到40至80巴的仍然更高压力HP1(并且接下来再次在后冷却器中被冷却到大致环境温度)。
[0036] 高压空气中处于HP1的部分接下来在第二涡轮机12b中膨胀到压力MP,以便做功。第二涡轮机12b的入口温度高于第一涡轮机的入口温度,从而使得第二涡轮机也被称作“暖”涡轮机。如所示出的,空气能够被直接地馈送到第二涡轮机12b中;替代地,所述空气首先在换热系统21中被稍微冷却。在做功膨胀期间,空气冷却。所述空气接下来以压力MP通过换热系统被馈送到环路压缩机11的抽吸管。流动部分(焦-汤姆逊流,有时也被称作节流)以最高压力HP1被馈送通过换热系统直到冷端并且接下来在分离器23中膨胀(22),所述分离器以压力MP操作。在此,蒸汽部分从液体中分离并且通过换热系统21被馈送到环路压缩机的抽吸管。被分离的液体在子冷却器24中被进一步冷却并且接下来在分离器26中膨胀(25)到所需的低压。蒸汽部分还在此被分离并且与来自冷涡轮机5b的空气一起被发送通过换热系统21;液体部分形成“低温液体”并且被馈送到液体罐200中。
[0037] 在第一操作模式中,能源P1=P1a+P1b以用于空气压缩单元的驱动功率P1a和用于环路压缩机的P1b、以及用于加热再生气体的热量Q的形式被供给。没有能源被去除(除了经由压缩机的后冷却器);而是相反,能源以低温液态空气的形式被存储在液体罐200中。
[0038] 第二操作模式现在将会参照图2b被描述。在此,两个涡轮机5b和12b、环路压缩机11和焦耳-汤姆逊阶段(两个节流22和25、两个分离器23和26和子冷却器24)被关断并且两个冷压缩机31和32被连接到换热器的对应管道。
[0039] 从液体罐200被提取的液态空气(LAIR)103在泵27中被提升到高压MP2(在此>12巴)并且在空气处理设施的换热系统21中蒸发以给出气态高压存储流体104。
[0040] 用于蒸发所需的热量由另一附加空气流提供,在此被称作“辅助空气”。与第一操作模式类似的是,所述辅助空气作为馈送空气从周围环境被吸入、在空气压缩单元2中被压缩到压力MP、被预冷却(3)并且在分子筛吸附站4中被干燥并且被净化除去污染物,诸如除去CO2和碳氢化合物。该辅助空气接下来被分离成两个流动部分。两个流动部分都通过使液态空气蒸发在换热系统中被冷却,第一流动部分被冷却到140至180K的中间温度并且另一流动部分被冷却到90与120K之间的温度,并且在冷压缩机31或32中被进一步压缩到压力MP2。来自较冷的冷压缩机31的空气在其与来自较暖的冷压缩机32的已蒸发液态空气和被压缩空气混合之前被馈送通过换热系统。处于压力MP2下的空气混合物被馈送到气体膨胀单元300。
[0041] 在该方法实施例的情况下,空气压缩单元2即使在第二操作模式中也不需要被关断,而是在第一操作模式和第二操作模式中都持续运行。空气处理设施的换热系统21既被用于液化(在第一操作模式中)并且又被用于(伪)蒸发(在第二操作模式中)。
[0042] 在第二操作模式中,能源P2=P2a+P2b+P2c以用于空气压缩单元的驱动功率P2a和分别用于两个冷压缩机31、32的P2b和P2c、以及用于加热再生气体的热量Q的形式被供给。能源以压力MP2以被压缩空气流的形式被去除(除了经由压缩机的后冷却器)到气体膨胀单元300。
[0043] 图3a和3b中的连接方案与在前连接方案的区别在于,“冷”涡轮机/后压缩机组合5a/5b以压力HP1与MP之间被连接到环路压缩机下游。然而,“暖”涡轮机/后压缩机组合12a/12b直接从空气压缩单元2接收空气并且相应地将所述空气膨胀到低压LP。因此,空气压缩单元2和空气净化器3能够被制成比图2a和2b中稍微更小。
[0044] 图4示出气体膨胀单元300的可能实施方式。在实施方式4a和4b中,使用常规气轮机用于膨胀,来自空气处理设施的被压缩空气被引入燃烧室上游的气轮机中。烟气在出口处的热量能够被用在热回收蒸汽发生器(HRSG)中(4a);替代地,所述热量以另一种方式被使用,例如以预加热来自空气处理设施的被压缩空气(4b)。
[0045] 在实施方式4c和4d中,被转换的气轮机被用于膨胀;在该气轮机中,压缩机部分被去除。来自空气处理设施的被压缩空气被引入气轮机的余下部分的燃烧室中。烟气的热量能够以类似方式被用于利用气轮机的方法。
[0046] 在实施方式4e中,来自空气处理设施的被压缩空气首先在多个串联连接的涡轮机/涡轮机阶段中被加热并且膨胀;空气在各个膨胀阶段之间被附加地加热。这表示用于气体膨胀单元的示例性实施方式,所述气体膨胀单元具有热气轮机系统,所述热气轮机系统具有至少一个加热器和一个热气轮机,在这种情况下分别存在两个加热器和热气轮机;替代地,热气轮机系统还可以具有两个以上的阶段。
[0047] 实施方式变形4a和4b,以及4c和4d,可以互相组合。
QQ群二维码
意见反馈