一种从LNG中提取乙烷和重的方法

申请号 CN200580028926.0 申请日 2005-08-26 公开(公告)号 CN101160498B 公开(公告)日 2010-10-13
申请人 阿梅克帕拉贡公司; PI技术合作公司; 发明人 霍勒斯·G·温宁哈姆;
摘要 一种从LNG中提取和回收乙烷和重 烃 (C2+)的方法。本 专利 包括的方法最大限度利用了LNG的有益低温热性能从LNG中提取和回收C2+,其用独特排列的热交换设备,低温 分馏 塔,工艺参数基本消除(或大大减少)了对气体压缩设备的需求,使资本 费用 , 燃料 消耗和电 力 需求量减少到最小。此 发明 可用于如下目的中的一项或多项:调节LNG,从而由LNG接收和再 蒸发 站输送的输出气满足商业 天然气 质量 规格;调节LNG,从而制造满足LNG动力车辆和其他LNG燃料设备要求的燃料质量规格和标准的贫LNG;调节LNG,从而制造能用于制备满足商业CNG燃料规格和标准的CNG的贫LNG;从LNG中回收乙烷,丙烷和/或比甲烷更重的其他烃,以实现增加收入、利润或其他商业原因。
权利要求

1.一种从液化天然气(LNG)中提取和回收乙烷和重的方法,其减少或在某些设计方案内完全消除了对气体压缩的需求,包括如下步骤:
a)将LNG从接近大气压至压力范围高达380到550psig之间;
b)在所述泵作用之后,通过与下文e)中所述的低温分馏塔顶部产生的富甲烷的塔顶冷蒸汽流直接交叉换热,将LNG预热至接近其泡点温度
c)在所述预热之后,将LNG分成两流,其一被称为LNG冷却回流,另一被称为LNG残流;
d)加热和蒸发LNG残流以产生进料气流;
e)使用操作压力范围在350到520psig之间的低温分馏塔,从低温分馏塔顶部产生富甲烷的塔顶冷蒸汽流,和从低温分馏塔底部产生NGL产物流;
f)将来自步骤c)的LNG冷却回流进料至低温分馏塔内,其入口位于低温分馏塔的顶部理论平衡级;
g)将来自步骤d)的进料气流进料至低温分馏塔内,其入口位于低温分馏塔的顶部理论平衡级之下三到八个理论平衡级;
h)使用至少一个具有液体泄流板和连接至低温分馏塔进料气流入口之下、底部平衡级之上的回路的热交换器给低温分馏塔加热,通过直接交叉换热,把来自NGL产物回收的热提供给所述热交换器作为热源;
i)使用另一热交换器给低温分馏塔的底部加热,产生的煮沸蒸汽返回至低温分馏塔,并将低温分馏塔的底部温度保持在控制NGL产物质量所需要的温度;
j)通过利用LNG预热步骤b)中、在LNG和富甲烷的塔顶冷蒸汽流之间使用一个或多个热交换器交叉换热而回收的制冷作用,将90%到100%自低温分馏塔顶部产生的富甲烷的塔顶冷蒸汽流再液化;
k)使用气体-液体分离设备将从步骤j)所得的气体和液体分离成为尾气流和贫LNG流;
l)使用尾气流作为源供给设施燃料气体系统;
m)使用适合在低温操作的常规压缩机将比设施燃料气体系统中所用更多的尾气流压缩至管道输出压力;
n)把贫LNG流泵至管道输出压力,并将贫LNG流和压缩的过量尾气流在管道输出压力下混合,作为再液化和冷凝尾气流的方法;和
o)将包含过量的再液化尾气流的贫LNG流蒸发和加热,从而所得气流可被递送至输出气体管道。
2.根据权利要求1所述的方法,所述蒸发步骤d)和o)进一步特征在于包括,使用或是加热的常规开架LNG蒸发器,在浸没式水浴中通过气体-空气燃烧加热的常规浸没燃烧式LNG蒸发器,或者能够蒸发和加热权利要求1步骤d)中的LNG残流以及能够蒸发和加热权利要求1步骤o)中的贫LNG流的其他任何种类的热交换器的组合。
3.根据权利要求2所述的方法,其中所述其他任何种类的热交换器是蒸发器。
4.根据权利要求1所述的方法,步骤i)的热交换器进一步特征在于,其被外部热源供给热,所述外部热源限于:载热介质流体,直接火焰加热,回收自轮机/发动机排空燃烧气体的废热,电热元件,太阳能,或任何其他可适于此功用的热源。
5.根据权利要求1所述的方法,b),h)和i)要求的传热功用的进一步特征在于,使用或者制板翅式交换器,印刷电路式交换器,壳和管形热交换器,或者能够获得3°F~5°F最小接近温度的其他类型热交换器。
6.使用权利要求1所述的方法,用于:
a)调节LNG,从而由LNG接收和再气化终端递送的输出气体满足商业天然气质量规格;
b)调节LNG,从而满足LNG动力车辆和其他LNG燃料设备要求的燃料质量规格和标准;
c)调节LNG,从而使其能被用于制造满足商业CNG燃料规格和标准的CNG;和
d)处理LNG,从而由LNG中回收乙烷,丙烷和/或比甲烷更重的其他烃。
7.使用权利要求1所述的方法,用于具有各种烃组成、C2+含量范围从低至2.5摩尔%至高达25.0摩尔%的LNG。
8.使用权利要求1所述的方法,用于C2+含量在权利要求7的范围内、“高乙烷回收模式”中的LNG,从而:
a)获得的乙烷回收范围从80%到92%;
b)获得的丙烷回收范围在95%到99%之间;和
c)获得比丙烷更重的烃的回收基本上为100%。
9.使用权利要求1所述的方法,用于处理C2+含量在权利要求7的范围内、“低乙烷回收模式”中的LNG,其通过改变低温分馏塔的操作条件,包括降低压力、增加底部温度和改变回流速率的各种组合,从而将乙烷回收率降低至最小2%的乙烷回收,从而:
a)获得的丙烷回收范围在95%到80%之间;和
b)获得的丁烷和重烃回收范围在99%到95%之间。

说明书全文

发明背景

天然气是一种清洁燃烧的燃料,其与重烃如汽油、柴油、燃油和的燃烧相比,完全燃烧时产生较少的“温室气体”。因此,天然气被看作“环境友好”燃料。近年来,对天然气的需求已经超过了其来源的供应,所述来源可用于直接连接和递送入遍及世界的气体管道输送和分配系统,特别地是在美国和欧洲如此。因此,天然气供应商,管道输送商,经销商和动设施转向液化天然气(LNG)作为传统天然气供应的补充。环天平洋地区对LNG的需求也在以显著的速度增加,对LNG需求的加速尤以韩国、日本、中国和印度较为突出。

LNG正成为一种用于交通和车辆燃料市场的有吸引力的替换性燃料。新技术和政府支持项目已使LNG成为相对于更多传统燃料形式的可行性替换选择。LNG和CNG预期可取代汽油和柴油,在接下来的十年占有更大的市场份额。

LNG主要的是液化甲烷,并含有不同量乙烷、丙烷和丁烷,以及微量戊烷和重烃组分。当在或接近大气压力下储藏或运输时,LNG是非常冷的液体,其温度范围依其组成而处于-245℉~-265℉之间。

当LNG进入商业市场时必须满足某些商业质量规格。例如,天然气管道和动力设施公司在他们的商业合同中规定,递送到其设施中的天然气必须遵守热值,或在某些情况下遵守沃伯(Wobbie)指数质量规格以及烃露点参数。当LNG被分配和用作动力汽车,快速车辆,私人车辆或其他设备的燃料时,它必须遵守某些质量规格以确保燃料在消费者发动机中获得清洁,全部和完全燃烧的特性。在燃料市场上,LNG也可作为制造压缩天然气(CNG)的天然气源使用,在此种情况下,CNG质量规格将适用于LNG。

取决于制造LNG中所用天然气的组成,某些LNG源比其他LNG源含有更多的乙烷和重烃。取决于LNG中所含乙烷和重烃的质量,可能须对LNG进行处理和调节,以减少乙烷和重烃的含量,使其满足其应用所需的特定商业质量规格。

有时,乙烷、丙烷、丁烷和重烃液体产物的价格反映出溢价(premium),即超过其留在LNG中以占主要的天然气价格出售时获得的价格。因此,从LNG中提取这些产物能提高LNG源实现的总收入,具有商业吸引力。

许多年来,乙烷和重烃一直是从天然气井产生的粗天然气中提取和回收,和与原油制造结合而产生。各种设计和构造的气体处理设施,包括涡轮膨胀机、机械制冷、贫油吸收、使用干燥剂吸附和其组合应用已被用于此目的。从LNG中回收乙烷和重烃(NGL)的最常见现有技术基于如下概念,将LNG至高压,蒸发LNG,并用最广泛使用的常规低温涡轮膨胀机和/或低温J-T膨胀过程以常规气体处理技术处理所得气体。此实践没有抓住并充分使用可从LNG得到低温条件的益处。

在美国专利Nos.5114451、5588308和6604380中公开了其他三种从LNG中回收NGL的已知方法,其使用了LNG的有益低温条件和性能。

专利5114451公开了从LNG中回收NGL的方法,其中通过暖气流的热交换将LNG进料暖热,所述暖气流是来自分馏单元(一般指脱甲烷塔)的、被再压缩的塔顶再循环流。NGL产物作为液体产物从脱甲烷塔底部回收。但是,输出的气体(来自脱甲烷塔的塔顶蒸汽)必须在递送到管道系统之前加热并压缩。压缩和加热增加了此方法的资本费用和燃料消耗。

专利5588308公开了通过冷却和部分冷凝净化天然气进料而回收NGL的方法,其中一部分必需的进料冷却和冷凝任务在甲烷汽提后、通过冷凝的进料液体的膨胀和蒸发而提供,由此产生气体形式的NGL产物。在市场上,NGL作为液体产物出售和输送。要制造液体NGL需要另外的冷却和压缩,这增加了制造最终NGL产物的资本费用和的消耗。

专利6604380公开了使用部分LNG进料作为分离过程中的外回流从LNG中回收NGL的方法,其无需加热或其他处理。此方法中使用分馏塔从塔底部回收NGL液体产物,塔顶蒸汽产物为富含甲烷的残余气体,其随后被压缩、再液化、泵作用、蒸发并送入接收管道。但是,为再液化,此方法要求来自分馏塔的全部塔顶蒸汽产物流通过低压头压缩机压缩。此方法要求低压头(75到115psi)压缩,但是要求全部输出的气流被压缩。例如,如果设施被设计为处理如每天1,000百万标准立方英尺(MMscfd)输出气的容量,则压缩制动力(Bhp)可为约5到7Bhp/MMscfd级,其要求5,000到7,000Bhp的压缩机。此压缩机和它相关的燃料消耗增加了资本费用和设施操作费用。

发明简述

新处理技术的开发和优化是LNG工业持续增长和扩展的“基石”。此工业需要更加有效的方法,用以从LNG中提取和除去乙烷和重烃(NGL)。此处公开的系统和方法在提高从LNG中有效提取NGL产物的技术上为该工业迈出了一步。

此处公开的方法在从LNG中提取乙烷和重烃方面反映了显著的优于以前专利和现有技术的进步。与现有专利技术的实践相比,此处公开的实施方式的方法将减少资本费用,并提高燃料效率。此处实施方式的方法使用独特排列的热交换设备和处理参数而最大限度的利用了LNG的有益低温热性能,其根本消除(或大大减少)了在本领域其他专利技术中对气体压缩设备的需求。消除或最小化气体压缩设备减少了资本费用,燃料消耗或电力消耗,其降低了操作费用。当处理富含乙烷和重烃的LNG时,在用于处理1,000MMscfd输出气体的设备中使用本方法仅要求150到550马力的气体压缩。对更贫的LNG组成,本方法的气体压缩马力增加,但与此处参考的美国专利No.6604380中公开的竞争对手方法所需的5,000到7,000马力相比,对1,000MMscfd的输出容量,其仍然保持少于1,000马力。将此比较翻译成经济术语,基于1,000MMscfd的吞吐容量,此方法将导致当前的节约资本费用范围在$4.5到$5.5百万之间,每年节约燃料消耗范围在335,000到480,000MMBtus。在当前天然气价格上(假设平均$5.00/MMBtu),此燃料花费节约范围在每年$1.7到$2.4百万之间。

此处公开的实施方式涉及从处于任何接收、储藏、运输、分配或蒸发LNG的设施中的LNG中回收乙烷和/或重烃(NGL)的方法。为该应用的目的,包含多于2.5摩尔%和少于25.0摩尔%乙烷和重烃的LNG被定义为“富LNG”。在提取乙烷和/或重烃后,随后的残余富甲烷产物被定义为“贫LNG”。从富LNG中提取的乙烷和/或重烃被定义为“NGL产物”。本文中所述乙烷和重烃被称为“C2+”。所述丙烷和重烃被称为“C3+”。

此处公开的实施方式特别涉及为如下一个或多个目的而从富LNG中提取或去除C2+或C3+的方法:

a)调节富LNG,从而使由LNG接收和再气化终端递送的输出气体满足商业天然气质量规格;

b)调节富LNG用于制造满足LNG动力车辆和其他LNG燃料设备要求的燃料质量规格和标准的贫LNG;

c)调节富LNG用于制造能用于制造满足商业CNG燃料规格和标准的CNG的贫LNG;

d)从富LNG中回收乙烷,丙烷和/或比甲烷重的其他烃,以增加收入、利润或其他商业原因。

此方法具有在“高乙烷提取”或者在“低乙烷提取”模式中操作的灵活性。当在“高乙烷提取”模式中操作时,此方法的乙烷回收平范围在92%到80%之间,丙烷回收水平范围在99%到90%之间。当在“低乙烷提取”模式中操作时,此方法的乙烷回收水平范围仅在1%到2%之间,但丙烷回收水平范围在95%到80%之间。此方法的这一特性提供了在贫LNG流中留下几乎全部或任何比例乙烷的灵活性,如果商业规格,价格和其它经济因素要求需要这种操作的话。

此处公开的实施方式利用了几个处理步骤从富LNG中提取和去除乙烷和重烃,其在下文详细说明部分被公开。简言之,低压富LNG被泵至处理压力(380psig到550psig),预热,蒸发,并在底部配备有一个塔侧再沸器和主再沸器的回流低温分馏塔中分馏。预热LNG液体的分流用于为低温分馏塔提供冷却回流。剩余的预热LNG进料被蒸发,并作为蒸发流供给至分馏塔,进入顶部以下5到10理论平衡级。低温分馏塔要求15到20的理论平衡级,并被设计从底部获得液体烃产物,从顶部获得富甲烷的冷气产物。底部液体产物是NGL产物。

此低温分馏塔设计包含了生产脱甲烷或脱乙烷NGL产物的灵活性。低温分馏塔的操作参数和相关设备(即操作压力,进料温度,回流/进料分流,底部温度等)可在本方法内调整和控制,从而使贫LNG和NGL都符合各自的商业规格要求。

来自塔顶馏出物的冷却气体产物通过与在预热步骤中的富LNG热交换而被再液化。此再液化的冷却气体塔顶产物是贫LNG。取决于LNG组成,一小部分冷却气体产物可不冷凝,此处称其为“尾气”。

需要有小低温压缩机来将没有被预热交换步骤再液化的尾气压缩至气体管道输出压力。如果总设施对燃料气体存在需求,则尾气能被用作燃料气体源,其减少了要求压缩的气体量。本方法中尾气的体积非常小,当富LNG进料组成包含多于8摩尔%的C2+时,尾气范围在总气体吞吐容量的0到5摩尔%。富LNG进料中更低的C2+含量导致本方法中尾气馏分增加。对仅包含2.5摩尔%C2+的进料,本方法的尾气将高至总气体吞吐容量的7到10摩尔%。

贫LNG被泵至气体管道输出压力,然后压缩尾气和贫LNG在输出压力(通常1,000到1,100psig,但可升高或降低)下再混合。在输出压力下与贫LNG混合时,压缩尾气被吸收并压缩进入液体LNG相。然后,所得贫LNG流被蒸发和加热,用于递送入天然气管道。

本方法操作的设定值(set point)能根据要求调整,以使贫LNG符合气体管道市场递送,在LNG车辆燃料市场中作为LNG燃料使用,或在制造高压CNG燃料中使用的质量规格。当此方法用于服务LNG车辆燃料市场或者任何其它要求贫LNG处于或接近大气压的本地市场时,则要求附加设备处理和再液化闪蒸气体,其当贫LNG压力减少到大气储藏压力时被输出。

附图简述

此处公开的实施方式和它的优点通过如下所述图可被更好理解。图1是此方法一个实施方式的示意流程图

此图说明了实践此方法的一个特定实施方式。此图无意从本发明范围内排除对所公开特定实施方式的正常和预期修改而得到的其他实施方式,所述修改容纳了对组成,商业规格和操作条件不同于此图所述的应用和实践。

具体实施方式

此方法的一个实施方式用于调节富LNG,从而使由LNG接收和再气化终端递送来的输出气体满足商业天然气质量规格,如图1所示。接下来的设计描述基于富LNG进料中C2+含量范围在25.0到2.5摩尔%,并以“高乙烷提取”模式操作。所报告的处理条件为某一范围,这反映了此方法定义的组分范围。
流1(来自LNG储存罐的富LNG)进入泵2(罐内泵),在泵内其被泵至压力约100psig,并从泵2作为流3输出。
图1示出一部分流3被送入带有至流3的回路的去过热冷凝器系统。图1所示煮出气体压缩机、运输蒸汽返回压缩机和去过热冷凝器系统并非本发明的实施方式,因此不做讨论。
流3进入泵4(LP输出泵),其被泵作用并提高至范围在380到550psig的处理压力,从泵4输出流5。
然后,流5(从泵4输出的富LNG)被进料至热交换器6(LNG/气体交换器),在此处其被加热至温度接近其泡点温度,并从热交换器6作为流7输出。热交换器6(LNG/气体交换器)的热源通过与来自塔12(低温分馏塔)的塔顶冷却气体产物流13交叉换热而提供。热交换器6(LNG/气体交换器)具有双重功用,它加热流5(富LNG流)至接近泡点温度(流7),并再液化几乎全部(100%到90%)流13(来自低温分馏塔的塔顶冷却气体产物),其输出流14。
热交换器6(LNG/气体交换器)有相对大的传热任务,其要求小的最小接近温度以获得此方法要求的效率。热交换器6(LNG/气体交换器)的设计性能规格要求在流13和7之间的最小接近温度大约为3℉到5℉,以最大限度再液化输出热交换器的流14。壳和管形交换器能潜在地用于此功用,但其会十分巨大并相当昂贵。更具有经济效益的设计可通过使用制板翅式交换器或者印刷电路式交换器获得此功用。
来自热交换器6(LNG/气体交换器)的流7分成两个流(流8和流9)。
流8作为冷却回流进入塔12(低温分馏塔),并使用流量比控制仪保持其流量在流7总流量的65%到45%范围内。流8对流7总流量的流量比是此方法用来控制从富LNG中提取和回收乙烷水平的参数之一。概括地说,偏流更高的流量至流8可增加富LNG中乙烷的提取,而降低流8流量则可减少乙烷的提取。流8流量比设定点的选择取决于设施和富LNG组成所需要的特定操作性能期望的乙烷提取水平。
流9进料至蒸发器10(第一级蒸发器),此处其被蒸发并加热而产生流11,然后流11进入塔12(低温分馏塔)。从蒸发器10(第一级蒸发器)输出的流11温度范围为30℉到70℉,几乎全部是蒸汽而没有液体。流11通过位于塔12顶部之下4到8理论平衡级的入口进入塔12。蒸发器10(第一级蒸发器)或者是使用海水作为暖流体的开架蒸发器(ORV),或者是在浸没式水浴中使用气体-空气燃烧用于加热的浸没燃烧式蒸发器(SCV),或者是其他种类加热器或者交换器的组合,其可利用此处可用的工业用热或废热。如果有适用的海水资源,推荐使用开架蒸发器(ORV),其可显著提高该方法中总体燃料效率。
塔12(低温分馏塔)是再沸分馏塔,其被设计成从底部获得NGL产物,从顶部获得具有高甲烷含量的冷却气体塔顶产物。塔12(低温分馏塔)由三部分构成,并在额定压力350到520psig之间操作。顶部要求比下面两部分更大的直径,因为此部分具有相对高的混合塔进料蒸气装载(流8加流11)。每部分包含内部设备(未示出)以获得分馏塔通常要求的平衡级传热和传质。内件类型可包括泡罩塔盘,筛板,散装填料,或结构填料。为此功用,具有合适液体分配器和填料载体的合适几何设计的散装填料或结构填料,都可为塔内低温流体流通提供更好的传质。应该咨询专业经营分馏塔内件的经销商或厂商决定此功用所需内件的最佳选择。
工艺计算表明塔12(低温分馏塔)共需16个理论平衡级,在塔三个部分中的划分如下:顶部5个理论平衡级,中部7个理论平衡级,底部4个理论平衡级。但是,理论平衡级的总数目可在15到20级之间变化,这取决于所需富LNG组成和特定回收性能。塔12的实际设计需依许多因素而进行改变,包括例如富LNG的组成,乙烷提取水平的期望范围。
流8作为塔的冷液体回流被供给至塔12(低温分馏塔)的顶部。流8液体通过内部分配器(未示出)均匀分配在填充的顶部12a,并向下流经顶部12a润湿填充内件并接触向上的蒸汽流。几乎全部为蒸汽的流11进入塔12的顶部12a和中部12b之间。流11的蒸汽和来自塔12填充的中部12b的其他向上蒸汽流混合,混合的蒸汽流向上流经填充的顶部12a并接触向下的冷液体回流。冷却回流液体起到吸收和冷凝来自向上流经填充的顶部12a的蒸汽流中的乙烷和重烃的作用。来自填充的顶部12a的蒸汽从塔12(低温分馏塔)作为流13(塔顶冷气体产物)输出。
流11中的液体(如有的话)在进入塔12后,和来自填充的顶部12a向下的液体混合,混合液通过位于中填充部12b顶部的内部分配器(未示出)均匀分配在中填充部12b。均匀分配的液体持续向下流经填充的中部12b,润湿填充内件并接触向上的蒸汽流。通过这样,在塔12中实现蒸馏操作,液体中较轻的易挥发成分(即甲烷和氮)被转换成气相,蒸汽中较重的不易挥发成分(即乙烷和重烃)被转换成液相。
在塔12填充的中部12b的底部,需要有液体泄流板(未示出)。离开填充的中部12b底部的液体被收集在此泄流板,并从塔12(低温分馏塔)作为流36输出。交换器34(侧再沸器)加热和部分蒸发流36,然后其作为流37重新进料至塔12,进入填充的底部12c的液体分配器(未示出)。
来自此分配器的液体被均匀分配在填充的底部12c上,向下流经填充的底部12c,润湿填充内件并接触向上的蒸汽流。通过这样,在塔12中再次实现蒸馏操作,液体中较轻的易挥发成分(即氮,甲烷和少量乙烷)被转换成气相,蒸汽中较重的不易挥发成分(即乙烷和重烃)被转换成液相。来自填充的底部12c中的液体从塔12(低温分馏塔)作为流26输出,并进入热交换器27(再沸器)。
热交换器27(再沸器)加热和部分蒸发流26。来自热交换器27(再沸器)的流26蒸发部分作为流28流回塔12(低温分馏塔),进入塔12填充的底部12c的下面。流26的液体部分作为流29(NGL产物)从热交换器27(再沸器)输出,并被送至罐30(可选的NGL产物缓冲罐)。
罐30(其可选)是保存为泵32进料用的NGL产物的缓冲罐,以提供操作灵活性。流29是包含乙烷和重烃以及少量甲烷馏分(通常少于1摩尔%甲烷)的混合物的NGL产物,其从罐30作为流31输出,并任选地通过泵32(NGL增压泵)增加大约50psig的压力,从该泵作为流33输出。取决于特定应用,可使用储藏和泵作用的交替排列。
然后,流33在热交换器34(侧再沸器)中冷却,并作为流35输出。热交换器34(侧再沸器)执行双重功用,并提高了总工艺的燃料效率。从流33回收的热能用于提供侧再沸热,作为流37进入塔12(低温分馏塔)填充的中部12b和底部12c之间,相应的,流35(NGL产物流)被冷却。从热交换器34(侧再沸器)中的流33回收热减少了热交换器27(再沸器)的加热负载,其进而减少了总工艺的加热要求,导致了操作此系统所需总燃料量的减少。当富LNG中的C2+含量高时(C2+>10摩尔%),从来自热交换器34(侧再沸器)的NGL产物中回收的热减少了15%到30%的工艺加热系统负载。如果富LNG中的C2+含量低(C2+<10摩尔%),则工艺加热系统负载减少2%到15%。在特定设计方案和市场选择中,可能需要辅助冷却器在运输或储藏前冷却NGL产物。NGL产物辅助冷却器在图1中未示出,其将位于热交换器34(侧再沸器)的下游以冷却流35。
然后,流35(离开侧再沸器的冷却NGL产物流)被泵38(HP运输泵)泵至管道运输压力,计量并递送至NGL产物管道。取决于特定应用,可利用储藏和泵的交替排列。其他替代图1中所示管道运输方法的移动NGL产物的运输方法包括,但不仅限于卡车路和海运(冷冻运货船)。此类替换性方案不再需要HP运输泵38。
从热交换器6(LNG/气体交换器)输出的流14为再液化的“贫”LNG,其可包含称为尾气的少部分未冷凝气体(0%到10%,以摩尔为尺度)。流14被送入罐15(LNG闪蒸罐)以从贫LNG中分离出任何未冷凝尾气。来自罐15的流20(贫LNG)通过泵21(HP输出泵)被泵至管道输出压力,并从泵21作为流22输出。
未冷凝的尾气从罐15作为流16和流17输出。流16代表了来自罐15的部分未冷凝尾气,用作高压燃料气体源。流17代表了来自罐15的部分未冷凝尾气,其超过了用作高压燃料气体的部分。流17(尾气)通过压缩机18(尾气压缩机)压缩至管道输出压力,并从压缩机作为流19输出。在某些情况下,取决于再液化LNG的组成,流14可全部被冷凝,而不需要压缩机18。
流19(压缩尾气)和流22再混合。气体流19(压缩尾气)和液体流22(处于输出压力的贫LNG)的混合引起流19(压缩尾气)被冷凝,并被吸收进入贫LNG中,得到为100%液体的流23。然后,流23(包含再液化尾气的贫LNG)在蒸发器24(第二级蒸发器)中蒸发,并作为流25(管道输出气体)输出,然后,其被计量并递送至气体管道。蒸发器24(第二级蒸发器)或是使用海水作为暖液的开架蒸发器(ORV),或是使用在浸没式水浴中使用气体-空气燃烧作为热源的浸没燃烧式蒸发器(SCV),或为其他种类加热器或者交换器的组合,其可利用此处可用的工业用热或废热。如果有适用的海水资源,推荐使用开架蒸发器(ORV),其可显著提高该工艺中总体燃料效率。
实施例:使用称为HYSYS(由AspenTech of Calgary,AlbertaCanada提供)的市售工艺模拟程序模拟如图1所示的一个工艺实施方式。HYSYS通常被石油和天然气工业用于评估和设计此类的工艺系统。使用本方法的HYSYS模型评估范围广泛的LNG进料组成。此方法的HYSYS模型计算结果总结在表1中,之下的表2为评估的其中一个LNG进料组成。表1和2给出的实施例结果旨在说明在“高乙烷回收”模式下操作用于典型LNG进料组成的此方法的性能。表1和2中的流编号和图1所述相一致。工艺工程领域的任何受训或熟练人员,特别是受益于这些公开的实施例的人员,从应用的度,将意识到改变在表1和2中公开的工艺条件的可能性。例如,此方法中温度,压力和流速的组合不同于表2所述,其取决于LNG进料组成,流速,NGL产物规格,输出气体规格和期望的乙烷和重烃回收水平。此专利公开的方法特别灵活,并已经被HYSYS模型计算所确认,对范围广泛的LNG进料组成,产物规格和期望的C2+回收水平均表现出满意的结果。在表1和2给出的实例结果将不被用于限制或约束本发明的范围,而仅用于例示为假设性应用本发明实施方式的工艺条件。
表1-组成和NGL回收水平
成分      LNG进料  燃料气体  输出气体  NGL产物N  GL%
          流1      流16      流25      流39      回收
          摩尔%   摩尔%    摩尔%    摩尔%
氮        0.131    0.404     0.145     0.000     0.00
  0.000    0.000     0.000     0.000     0.00
甲烷      89.066   99.466   98.926   2.299     0.26
乙烷      7.035    0.128    0.865    61.352    89.05
丙烷      2.412    0.002    0.057    23.124    97.89
I-丁烷    0.402    0.000    0.003    3.911     99.34
N-丁烷    0.804    0.000    0.004    7.840     99.56
I-戊烷    0.080    0.000    0.000    0.786     100.00
N-戊烷    0.070    0.000    0.000    0.688     100.00
总        100.00   100.00   100.00   100.00    N/A
表2-料流条件和流速
料流编                            流速lb
         温度℉    压力psia
号                                摩尔/小时
1        -256      15.7           47,530
3        -255      115            47,530
5        -253      485            47,530
7        -136      470            47,530
8        -136      460            28,043
9        -136      470            19,487
11       50        445            19,487
13       -133      435            42,677
14       -141      430            42,677
16       -141      420            255
17       -141      420            385
19       -22       1150           385
20       -141      430            42,037
22       -125      1150           42,037
23       -124      1150           42,422
25       40        1115           42,422
26       56        440            8,776
28       81        440            3,993
29      81      440      4,853
31      81      440      4,853
33      84      585      4,853
35      40      565      4,853
36      -39     439      8,152
37      -17     438      8,152
39      42      1015     4,853
对相关申请的交叉引用
本申请要求2004年8月27日递交的美国临时申请60/605,182的权益。
QQ群二维码
意见反馈