空气分离方法

申请号 CN200780029663.4 申请日 2007-06-05 公开(公告)号 CN101501431B 公开(公告)日 2013-01-02
申请人 普莱克斯技术有限公司; 发明人 H·E·霍沃;
摘要 在空气分离系统中将输入空气进料(10)中所含的氩、 氧 和氮进行 分馏 ,该空气分离系统具有多级塔布置(32),该多级塔布置(32)包括高压塔(30)和低压塔(34)以及氩塔(90),高压塔(30)和低压塔(34)用于产生富氧馏份和富氮馏份,氩塔(90)用于产生富氩馏份,用于回收氩作为氩产物。两相流(132;134)可通过使至少部分液态空气流(82)膨胀而形成或由多级塔布置(32)的高压塔(30)中形成的液态氧塔底产物(132)形成。液态空气流(82)通过对 蒸发 由氮和/或氧组成的 泵 送液流(76)将部分待分馏的空气进料(22) 液化 而形成。富氮馏份中所含有的氮蒸气(146;166)的分流使低压塔(34)中的液/气比率增加,以增加氩的回收。
权利要求

1.一种空气分离方法,所述方法包括:
将至少一种经压缩、纯化和冷却的流中所含有的氩、和氮在空气分离系统中进行分馏,所述空气分离系统具有多级塔布置,所述多级塔布置包括高压塔和低压塔以及连接至所述低压塔的氩塔,所述高压塔和低压塔用于将空气分离成富氧馏份和富氮馏份,所述氩塔用于接收含氩和氧的蒸气流,并从而产生富氩馏份,所述富氩馏份作为用于回收氩的所述氩塔中的富氩塔顶馏出物;
通过将至少部分粗制液态氧塔底产物流膨胀而形成含有富氮气相和液相的两相流,所述粗制液态氧塔底产物流由在高压塔中形成的液态氧塔底产物组成;
将至少部分富氮气相从液相分离;
将至少一部分由富氮气相组成的富氮蒸气流进行再压缩,并循环所述至少一部分富氮蒸气流以在空气分离系统的多级塔布置中进行分馏;和
将至少部分由从富氮气相分离的液相组成的液流引入低压塔中。
2.根据权利要求1所述的方法,其中将所述至少一部分富氮蒸气流在进行再压缩之前在空气分离系统的主换热器中进行加热,所述主换热器也用于冷却至少一种压缩且纯化的流,所述压缩且纯化的流用于形成至少一种经压缩、纯化并冷却的流。
3.根据权利要求2所述的方法,其中:
所述富氮蒸气流包含的氮的比例不偏离空气中的比例多于约15%;并且将所述至少一部分富氮蒸气引入空气分离系统的压缩装置中,所述压缩装置用于压缩由环境空气组成的空气流,从而形成压缩流,所述压缩流用于形成所述至少一种压缩且纯化的流。
4.一种空气分离方法,所述方法包括:
将至少一种经压缩、纯化和冷却的流中所含有的氩、氧和氮在空气分离系统中进行分馏,所述空气分离系统具有多级塔布置,所述多级塔布置包括高压塔和低压塔以及连接至所述低压塔的氩塔,所述高压塔和低压塔用于将空气分离成富氧馏份和富氮馏份,所述氩塔用于接收含氩和氧的蒸气流,并从而产生富氩馏份,所述富氩馏份作为用于回收氩的所述氩塔中的富氩塔顶馏出物;
通过使液态空气流或粗制液态氧塔底产物流膨胀来形成含有富氮气相和液相的两相流,所述粗制液态氧塔底产物流由在高压塔中形成的液态氧塔底产物组成,由于由通过多级塔布置产生的液态氧馏份和液态氮馏份的至少一种组成的增压液流的蒸发,在空气分离系统中产生液态空气流;
将至少部分富氮气相从液相分离;
将所述至少一部分由富氮气相组成的富氮蒸气流进行再压缩,并循环所述至少一部分富氮蒸气流以在空气分离系统的多级塔布置中进行分馏;和
将至少部分由从富氮气相分离的液相组成的液流引入低压塔和高压塔的至少之一中。
5.根据权利要求4所述的方法,其中将所述至少一部分富氮蒸气流在进行再压缩之前在空气分离系统的主换热器中进行加热,所述主换热器也用于冷却至少一种压缩且纯化的流,所述压缩且纯化的流用于形成至少一种经压缩、纯化并冷却的流。
6.根据权利要求5所述的方法,其中:
所述富氮蒸气流包含的氮的比例不偏离空气中的比例多于约15%;并且将所述至少一部分富氮蒸气引入空气分离系统的压缩装置中,所述压缩装置用于压缩由环境空气组成的空气流,从而形成压缩流,所述压缩流用于形成所述至少一种压缩且纯化的流。
7.根据权利要求6所述的方法,其中:
增压液流通过送由低压塔产生的液态氧塔底产物组成的液态氧流而产生;
将增压液流在主换热器中进行蒸发,以形成氧产物;
所述至少一种压缩且纯化的流是一种被分成第一副流和第二副流的压缩且纯化流;
在升压压缩机中将所述第二副流压缩为较高压
在空气分离系统的主换热器中将所述第一副流和第二副流进行冷却,从而在第二副流中产生主要液态馏份,并因此,由于液态氧流的蒸发而产生液态空气流;和将第一副流和至少部分第二副流引入高压塔中。
8.根据权利要求7所述的方法,其中:
第二副流被分成第一部分和第二部分,它们分别被引入高压塔和低压塔中;
将第二副流膨胀至适合于将第一部分引入高压塔的压力,并将第二部分膨胀至较低压力,适合于将第二副流引入低压塔;
两相流由在高压塔中形成的粗制液态氧塔底产物流形成;
将液相流引入与氩塔相连的冷凝器,使部分富氩蒸气冷凝以回流至氩塔,从而使液相流部分蒸发为蒸气馏份和液态馏份;和
将蒸气馏份和液态馏份的流引入低压塔中。
9.根据权利要求7所述的方法,其中:
两相流由第二副流形成;
将液相流泵送,然后分成第一副液相流和第二副液相流;
使第一副液相流膨胀并引入低压塔中,从而构成被引入低压塔中的至少部分液相流;

将第二副液相流引入高压塔中。
10.根据权利要求8或9所述的方法,其中:
从低压塔中提取由低压塔中的塔顶馏出物形成的氮产物流和具有比所述氮产物流更低氮纯度的废氮流;
通过间接换热至氮产物流和废氮流冷却由高压塔中产生的冷凝的塔顶馏出物组成的液氮回流流,然后将其作为回流引入低压塔中;和
在主换热器中加热经冷却液流后的氮产物流和废氮流。
11.根据权利要求10所述的方法,其中第一副流采用功进行膨胀。

说明书全文

空气分离方法

技术领域

[0001] 本发明涉及一种在具有以传热关系方式操作性连接的高压塔和低压塔以及连接至低压塔的氩塔的多级塔布置中分离空气的方法。更具体地,本发明涉及一种将液流引入低压塔某处上方的方法,在该处从低压塔除去含氩和的气流以改善低压塔中的液/气比率,从而改善氩塔中氩的回收。

背景技术

[0002] 长久以来,人们已经知道在多级塔布置中分离空气,该多级塔布置具有产生富氮馏份和富氧馏份的高压塔和低压塔,以及对从低压塔中获得的含氩和氧的气流进行精馏以产生富氩馏份的氩塔。
[0003] 在这样的空气分离系统中,将空气压缩并纯化以除去高沸点的杂质,例如一氧化、二氧化碳和。将得到的经压缩和纯化的流在主换热器中冷却至空气的露点或接近该露点的温度并将得到的冷却流引入高压塔中。空气在高压塔中被精馏以产生氮塔顶馏出物和粗制液态氧塔底产物。然后将该粗制液态氧塔底产物在低压塔中进行进一步精馏,以产生液态氧塔底产物和富氮塔顶馏出物。
[0004] 高压塔和低压塔以冷凝器-再沸器的方式以传热关系的方式操作性彼此连接,该冷凝器-再沸器将在低压塔中产生的液态氧塔底产物蒸发,而在高压塔中冷凝氮塔顶馏出物使高压塔形成回流。然后,出于回流的目的,将凝结的氮塔顶馏出物流引入低压塔。
[0005] 从低压塔除去含有氧和氩的蒸气流,然后在氩塔中进行精馏以产生富氩塔顶馏出物,可将该富氩塔顶馏出物提取作为产物或进一步精制以产生氩产物。通过冷凝器使氩塔回流。将粗制液态氧塔底产物流膨胀至低压塔的压,并由此降低其温度。之后,将该流中的至少一部分引入冷凝器中以使富氩塔顶馏出物中的一些发生凝结。氩冷凝器中的蒸发产生了气相和液相,随后将该气相和液相引入低压塔中。
[0006] 从被引入低压塔的粗制液态氧中获得的蒸气馏份的引入使得低压塔中氮的流量增加,并从而使洗掉的氩的量减少,所述氩被洗掉至塔的某处,在该处含氩和氧的气流被取出以在氩塔中进一步精制。当在压力下产生液态氧和氮产物时,会使这个问题恶化。例如,当取出液态氧以在压力下产生氧产物时,可将液态氧流送,然后在主换热器中进行蒸发。出于这种目的,在升压压缩机中将部分空气压缩以对这种蒸发进行热补偿。认为是出于这种目的的空气的液化作用会导致在高压塔中产生较少的氮蒸气,并由此产生较少的向低压塔的回流。
[0007] 为了克服这个问题,U.S.5,386,691提供了一种将在氩塔冷凝器中产生的蒸气馏份中的一部分经过膨胀并改向至废氮流的方法。如果这样做的话,会使低压塔上部的回流比增加,从而使氩的回收增加,因为在低压塔中的蒸气流量较小,这是因为引入低压塔中的富氮蒸气减少了。这改善了低压塔中高于某处的液/气比率,在该处含氩和氧的流被取出以在氩塔中进行精馏。
[0008] 通过以下的论述将使本发明变得显而易见,本发明提供了一种在多级塔布置中分离空气的改进方法,在该多级塔布置中通过增加低压塔的最上部的液/气比率而使氩的回收得到改善。

发明内容

[0009] 本发明提供了一种用于分离空气的方法。根据这种方法,可在一种具有多级塔布置的空气分离系统中将至少一种经压缩、纯化并冷却的流中所含有的氩、氧和氮进行分馏
[0010] 多级塔布置包括高压塔和低压塔,以产生至少一种经压缩、纯化和冷却的流的富氧馏份和富氮馏份。该多级塔布置中包括氩塔,氩塔被连接至低压塔以接收含氩和氧的蒸气流并从而产生富氩馏份,该富氩馏份作为用于回收氩的氩塔中的富氩塔顶馏出物。
[0011] 如在本文和权利要求中所使用的,术语“塔”是指单个塔或两个或多个塔,其中被引入该塔中的上行气相通过传质接触元件(例如整规填料或筛板)与下行液相接触。该上行气相始终富含待精制的混合物的较低沸点成分,而液相始终富含较低沸点成分。这些“较高”和“较低”沸点成分在本领域中通常是指待分离的混合物中的“轻”和“重”的成分。高压塔和低压塔可以通过结合的冷凝器-再沸器而以传热关系的方式操作性地彼此相连,从而使高压塔和低压塔形成单一装置的部分。使用分离外壳中的分离冷凝器-再沸器进一步使本发明的实施成为可能。
[0012] 通过使至少部分粗制液态氧塔底流膨胀而形成含有富氮气相和液相的两相流,该粗制液态氧塔底流由在高压塔中形成的液态氧塔底产物组成。在本发明的一种应用中,其中由于增压液流的蒸发在空气分离系统中产生液态空气流,增压液流由多级塔布置产生的液态氧馏份和液态氮馏份中的至少一种组成,该液流可由粗制液态氧塔底流或液态空气流组成。至少部分富氮气相从液相中分离。由富氮相组成的至少部分富氮气流再压缩和回收至空气分离系统的多级塔布置。如果来自粗制液态氧塔底流,由从富氮气相分离的液相组成的至少部分液流被引入低压塔中,或者如果其来自液态空气流,则被引入高压塔或低压塔中的一者或二者。富氮馏份中所含有的氮蒸气从被引入低压塔中的流(例如部分蒸发后的粗制液态氧流)的分流,使低压塔中的氮流量降低,并且这样做使低压塔中某处的液/气比率增加,在该处上方从低压塔除去含氩和氧的蒸气,从而使含氩和氧的气流中的氩增加,并由此使得能够在氩塔中回收富氩馏份。
[0013] 本发明提供了一种空气分离方法,所述方法包括:
[0014] 将至少一种经压缩、纯化和冷却的流中所含有的氩、氧和氮在空气分离系统中进行分馏,所述空气分离系统具有多级塔布置,所述多级塔布置包括高压塔和低压塔以及连接至所述低压塔的氩塔,所述高压塔和低压塔用于将空气分离成富氧馏份和富氮馏份,所述氩塔用于接收含氩和氧的蒸气流,并从而产生富氩馏份,所述富氩馏份作为用于回收氩的所述氩塔中的富氩塔顶馏出物;
[0015] 通过将至少部分粗制液态氧塔底产物流膨胀而形成含有富氮气相和液相的两相流,所述粗制液态氧塔底产物流由在高压塔中形成的液态氧塔底产物组成;
[0016] 将至少部分富氮气相从液相分离;
[0017] 将至少一部分由富氮气相组成的富氮蒸气流进行再压缩,并循环所述至少一部分富氮蒸气流以在空气分离系统的多级塔布置中进行分馏;和
[0018] 将至少部分由从富氮气相分离的液相组成的液流引入低压塔中。
[0019] 本发明还提供了一种空气分离方法,所述方法包括:
[0020] 将至少一种经压缩、纯化和冷却的流中所含有的氩、氧和氮在空气分离系统中进行分馏,所述空气分离系统具有多级塔布置,所述多级塔布置包括高压塔和低压塔以及连接至所述低压塔的氩塔,所述高压塔和低压塔用于将空气分离成富氧馏份和富氮馏份,所述氩塔用于接收含氩和氧的蒸气流,并从而产生富氩馏份,所述富氩馏份作为用于回收氩的所述氩塔中的富氩塔顶馏出物;
[0021] 通过使液态空气流或粗制液态氧塔底产物流膨胀来形成含有富氮气相和液相的两相流,所述粗制液态氧塔底产物流由在高压塔中形成的液态氧塔底产物组成,由于由通过多级塔布置产生的液态氧馏份和液态氮馏份的至少一种组成的增压液流的蒸发,在空气分离系统中产生液态空气流;
[0022] 将至少部分富氮气相从液相分离;
[0023] 将所述至少一部分由富氮气相组成的富氮蒸气流进行再压缩,并循环所述至少一部分富氮蒸气流以在空气分离系统的多级塔布置中进行分馏;和
[0024] 将至少部分由从富氮气相分离的液相组成的液流引入低压塔和高压塔的至少之一中。
[0025] 优选地,在空气分离系统的主换热器中实施再压缩之前,将富氮气流或至少部分待再压缩的富氮气流加热,该空气分离系统的主换热器也被用来冷却至少一种经压缩和纯化的流,并从而形成至少一种经压缩、纯化和冷却的流。这使得由膨胀产生的致冷效应的恢复,所述膨胀被用于形成两相流。而且,优选地,富氮气流包括一定比例的氮,所述比例相对于用于形成至少一种压缩、纯化和冷却流的环境空气中的比例来说未偏离大于约15%。然后,可将富氮气流或部分富氮气流引入空气分离系统的压缩装置中,该压缩装置用于压缩由环境空气组成的空气流,从而形成压缩流。将该压缩流纯化,并且在主换热器中将通过经纯化后压缩流形成的至少一种压缩纯化流进行冷却,以形成至少一种压缩、纯化和冷却的流。通常,压缩机是具有多个级的多级装置,在级间具有级间冷却。这使得富氮气流与空气一起引入压缩机以节省在提供用于压缩富氮气流的分离压缩机的情况下出现的资金成本。
[0026] 在液体泵送的情况下,可通过泵送液态氧流来产生增压的液体流,该液态氧流由在低压塔中产生的液态氧塔底产物组成。增压的液体在主换热器中被蒸发以形成氧产物。至少一种压缩并纯化的流可以是被分成第一副流(subsidiary stream)和第二副流的一个流。可在升压压缩机中将第二副流压缩为高压。然后将第一副流和第二副流在空气分离系统的主换热器中进行冷却,从而产生第二副流中的主要液态馏份,并由此产生液态空气流,该液态空气流是由于液态氧流蒸发而产生的。
[0027] 将第一副流和至少部分第二副流引入高压塔。如上文所探讨的,这会使上文指出的问题恶化,即在其上方除去含氩和氧的气流的低压塔中没有足够的回流。在泵送的液态氧产物产生处,可将第二副流分成第一部分和第二部分,并将第一部分和第二部分分别引入高压塔和低压塔。将第二副流膨胀至适合于将第一部分引入高压塔的压力,并将第二部分膨胀至适合于将第二副流引入低压塔的较低压力。然后,可由液态塔底产物流形成两相流。将液相流引入与氩塔相连的冷凝器,使部分富氩蒸气凝结以使氩塔回流,从而将液相部分蒸发为蒸气和液态馏份。然后将液态蒸气和液态馏份的流引入低压塔中。
[0028] 两相流可以由第二副流形成。在这种情况下,可将液相流泵送并将其分成第一液相副流和第二液相副流。可使第一液相副流膨胀并将其引入低压塔,从而构成至少部分被引入低压塔中的液相流。可将第二液相副流引入高压塔。
[0029] 在任何实施方案中,氮产物流可由低压塔的塔顶馏出物形成,而在低压塔中也会产生氮的纯度低于氮产物流的废氮流。将两种流从低压塔中引出。通过间接交换热至氮产物流和废氮流,然后作为回流物引入低压塔中,可冷却由在高压塔中产生的凝结的塔顶馏出物组成的液氮回流流。将冷却液流后的氮产物流和废氮流在主换热器中进行加热。
[0030] 在任何实施方案中,可采用功使第一副流膨胀。这样的功可以在用来压缩第一副流的机器中得到恢复。然而,也可在系统的其他地方使用功。这种膨胀使第一副流冷却以致冷空气分离系统。附图说明
[0031] 虽然本说明书通过清楚地指出了主题名称(申请人视其为他的发明)的权利要求而得出结论,可以认为,结合以下附图将更好地理解本发明:
[0032] 图1是可用于实施本发明方法的装置的示意图;以及
[0033] 图2是图1的供选实施方案。

具体实施方式

[0034] 参见图1,示出了空气分离系统1,其被设计为产生高纯度氮产物和高压氧产物,以及任选液态氧产物。然而,可以理解的是,这仅仅是出于解释说明的目的,本发明同样可以应用于不产生高压氧产物的系统。
[0035] 空气分离系统1被设计为将进料空气流10中所含有的氩、氧和氮进行分馏。将进料空气流10在压缩装置12中进行压缩,该压缩装置12可包括具有级间冷却的多个级。进料空气流10的压缩产生压缩流14,压缩流14在纯化装置16中被纯化。纯化装置16除去存在于进料空气流10中的高沸点杂质,例如二氧化碳、水和有可能存在的一氧化碳。这样的装置可以是变温吸附装置,该变温吸附装置具有异相操作的氧化和/或分子筛吸附剂的床以吸附存在于进料空气流10中的这样的杂质。纯化产生压缩和纯化的流18。
[0036] 压缩和纯化的流18被分成第一副流20和第二副流22。通常,第一副流20占该压缩和纯化的流18的约65%至约70%。第二副流22占该压缩和纯化的流18的约30%至约35%。然后将第二副流22在升压压缩机24中进行压缩,以使泵送和增压的液态氧产物蒸发,以下将对此进行讨论。
[0037] 空气分离系统1具有主换热器26,其通常是板翅式设计的一个或多个装置。在主换热器26中将第一副流20进行冷却,通常将其冷却至温度范围为约125°K至约190°K的温度。之后,将该第一副流20在透平膨胀机28中膨胀至压力与高压塔30相容的露点温度或近似该露点温度。然后将膨胀的第二副流20引入高压塔30的基部作为初始空气进料。可以认为透平膨胀机28采用功进行膨胀。尽管未示出,这种功通常会被施加到压缩第一副流20的压缩机。
[0038] 高压塔30是多级塔布置32的一部分,该多级塔布置32还具有经由冷凝器再沸器36与高压塔30操作性连接的低压塔34,该冷凝器再沸器36具有位于其外壳内的芯38。低压塔34之所以被称为低压塔是因为其在比高压塔30的压力低的压力下进行操作。如前文所指出的,高压塔30和低压塔34可以是一系列相连的塔。高压塔30和低压塔34中的每一个都包含传质接触元件,对于高压塔30是传质接触元件40和42,对于低压塔34是传质接触元件46、48、50、52和53。
[0039] 可将冷凝器再沸器36整合入塔以及高压塔30和低压塔34中是本领域公知的。冷凝器再沸器36对蒸发的液态氧塔底产物使高压塔30的顶部收集到的氮塔顶馏出物凝结,所述液态氧塔底产物是在低压塔34中产生的并在冷凝器-再沸器36中收集为液态氧塔底产物56。将由氮塔顶馏出物组成的凝结的氮流58分成用于回流高压塔30的第一氮回流流60和在换热器64中进行进一步冷却的第二氮回流流62。之后可以取部分的第二氮回流流
62作为氮产物流66。然而,可以利用焦-汤姆逊阀68将全部的第二氮回流流62膨胀至低压塔34的压力,然后用于回流低压塔34。
[0040] 在高压塔30中,在透平膨胀机28中进行膨胀后并引入高压塔30中的第一副流产生上升的气相,该上升的气相富含低沸点或较轻的组分,例如氮,其上升到传质元件40和42以在高压塔30中形成氮塔顶馏出物。蒸发的液态氧塔底产物56在低压塔34中形成上升的气相,该上升的气相富含较轻的组分氮。起始于第二氮回流流62的下降的液相富含较重且较少挥发的组分氧。
[0041] 如前文所指出的,空气分离系统1被设计为产生高压氧产物。像这样,通过利用泵72泵送使氧流70增压,该氧流70由在低压塔34中产生的液态氧塔底产物56组成。可使增压液体部分提取为增压的液态氧流74。然而,剩余部分76(如果不除去增压的液态产物流74,该剩余部分76可以是液流70的全部)在主换热器26中对液化第二副流22而被蒸发。
[0042] 将经过压缩并冷却后的第二副流22通过焦耳-汤姆逊阀80膨胀至高压塔30的压力,然后将其分成第一部分82和第二部分84。将部分82引入高压塔30的中间位置作为饱和液体。经由焦耳-汤姆逊阀86使部分84膨胀并将其引入低压塔34中作为在其中间位置处的对这样的流来说具有适当浓度的两相流。
[0043] 空气分离系统1及其多级塔布置32还包括氩塔90,该氩塔90具有传质接触元件92以使在氩塔90中形成的上升的气相与下降的液相接触。将含氩和氧的蒸气流94引入氩塔90中产生上升的气相以分离氧。在相当于低压塔34的压力下操作氩塔90。可在氩塔90中对含氩和氧的蒸气流94进行精馏以产生作为富氩塔顶馏出物的接近纯的富氩馏份。将由富氩塔顶馏出物组成的塔顶馏出物流96在具有芯101的冷凝器100中进行冷凝。将得到的液态富氩流110分成可取出作为产物的第一部分120和用于回流氩塔90的第二回流部分122。贫氩富氧塔底产物124在氩塔90中形成并将其通过泵126泵送回到低压塔34中作为流128。
[0044] 冷凝器100中的传热负荷被高压塔30中产生的部分粗制液态氧塔底产物所吸收。然而,正如前文所述,液态氧产物流70的除去及其增压以产生增压的氧产物会导致输入的空气流的不可忽视部分的液化。这会导致引入高压塔30中的氮蒸气较少,而这又会导致以第二氮回流流62的方式引入低压塔34中的氮回流较少。同时,如果在氩塔中使用由所有粗制液态氧组成的流来凝结氩,那么低压塔34中的氮流量会增加,导致较少的氩被洗脱到某一级,在该级能够将其除去以作为用于最后回收的含氩和氧的气流94。因此,当将液态氧产物增压,然后在主换热器中将其蒸发时,这个问题就恶化了。
[0045] 为了克服这个问题,在本发明中,在焦耳-汤姆逊阀132中将粗制液态氧流130进行阀膨胀,以产生两相流134。在相分离器136中,气相(即富氮气相)从液相分离。然后将由液相组成的液流138引入冷凝器100中由于液相流138的部分蒸发而产生分别由气态馏份和液态馏份组成的流140和142。然而,由于在进入冷凝器100之前就已经将闪蒸气流146除去,因此低压塔34的顶部的氮流量会较小,从而增加了低压塔34的含氩和氧的气流94被除去区域上方中的液/气比率。这里应注意,尽管示出了一个相分离器,但可以存在连续级闪蒸分离,其中在上游相分离器中产生的液体随后被阀膨胀并引入下游相分离器中,以从该下游相分离器产生液相流。
[0046] 通常利用泵143将液流138泵送回冷凝器100。注意不需将所有的液流138都送至氩冷凝器。可将一部分直接送至低压塔34。此外,可将液流138与其他已知流的另一个流一起直接送至塔中,该已知流的使用与冷凝器100有关。在示例性实施方案中,管道的作用是将液流138的压力降低至适合于将流140和142引入低压塔134中。由于氩塔的长度以及其被设计为产生纯的氩产物,泵送是必需的。因此,高压塔中没有足够的压力以将其升高至冷凝器100的水平。然而,本发明不限于此特定实施方案,并且如果在较短的塔中进一步处理粗制氩馏份的话,就有足够的压力驱动液流138进入冷凝器100。在这种情况下,焦耳-汤姆逊阀可用于降低压力,并从而允许将流140和142引入低压塔34中。
[0047] 将由富氮馏份组成的富氮流146在主换热器26中进行加热,然后将其引入压缩装置12的适当级中。在富氮流146的组成为其中的氮成分不多于空气中存在的氮成分约±15%,这是可能的。请注意,可将富氮流146进行冷压缩,尽管这具有会使其制冷值(refrigeration value)损失的缺点。也可以不必将所有的富氮流进行再压缩。事实上,本发明关注这种流或这些流的仅部分,如果使用两个或多个闪蒸分离阶段,则可以再循环回去以进行压缩。可将适当情况下的剩余部分进行阀膨胀或功膨胀,然后将其排空或送回塔中。
[0048] 还应注意的是,可从低压塔34的顶部和较低位置提取富氮流148和具有富氮流148的较低氮浓度的废氮流150。将这些流在换热器64和主换热器26中进行加热以冷却第二氮回流流64,并同时促进输入流的冷却。
[0049] 参照图2,在空气分离系统1的一种可替代的实施方案中,示出了空气分离系统1’,在阀132中使粗制液态氧流130膨胀,然后将其引入氩塔冷凝器100以产生流140和
142。在这种实施方案中,经过冷却、液化并在阀80中阀膨胀后的第二副空气流22用于产生两相流152,该两相流152在相分离器154中相分离为液流156,该液流156由可在泵158中泵送或通过阀阀膨胀的液态馏份组成。然后将在阀161中阀膨胀后达到高压塔的压力的第一部分160引入高压塔30的中间位置处。然后将在阀164中阀膨胀后达到低压塔34的压力的第二部分162引入低压塔34中。注意可将所有的液流156引入高压塔30或低压塔
34中。然后在主换热器26中将由富氮相组成的富氮流166加热并回收至压缩机装置12。
另外,以类似于空气分离系统1的方式来操作空气分离系统1’,因此不再重复解释相同的标号表示的元件。
[0050] 尽管已经参照优选实施方案描述了本发明,但对于本领域技术人员来说,在不背离本发明的精神和范围的前提下,可以进行多种改变、添加和省略。
QQ群二维码
意见反馈