向力传递构件提供张力用的拉紧器 |
|||||||
申请号 | CN99813793.6 | 申请日 | 1999-11-30 | 公开(公告)号 | CN1328623A | 公开(公告)日 | 2001-12-26 |
申请人 | 日本发条株式会社; | 发明人 | 石井和夫; 高桥茂正; 天野种平; 小林贵雄; 川锅贤治郎; | ||||
摘要 | 拉紧器(10)具有通过 螺纹 部(16)、(17)相互螺合的轴构件(12)、(13)。第1轴构件(12)相对壳体(11)转动自如并限制轴线方向的移动。第2轴构件(13)相对壳体(11)不能转动,但可沿轴线方向移动。第1轴构件(12)利用扭转 弹簧 (18)产生第1方向的 扭矩 。在第1轴构件(12)与壳体(11)之间设有可根椐第1轴构件(12)的转动量切换摩擦扭矩的扭矩切换构件(30)。 | ||||||
权利要求 | 1、一种拉紧器,其特征在于,包括: |
||||||
说明书全文 | 技术领域本发明涉及在使用环形皮带和环链等的力传递构件用的动力传递机构中 使传递构件确保适当张力的拉紧器。 背景技术例如,在将汽车发动机的旋转运动传向凸轮轴的动力传递机构中使用环 形皮带和链条等的动力传递机构,为使力传递构件确保适当张力,有时采用 拉紧器。图21和图22分别表示以往的拉紧器的剖面。该拉紧器具有壳体1。 在壳体1中插入有第1轴构件2和筒状的第2轴构件3。壳体1设置有固定发 动机等机器用的安装孔1a的凸缘部1b。在第1轴构件2的外面形成阳螺纹部。 在第2轴构件3的内面形成阴螺纹部。这些阳螺纹部和阴螺纹部相互螺合。 第1轴构件2的后端部2a被插入在壳体1内部形成的嵌合孔9中。该后端部 2a的端面与壳体1的内面接触。在第1轴构件2的外周侧设有扭转弹簧4。 扭转弹簧4的一端4a与第1轴构件2固定,另一端4b与壳体1固定。一旦 扭转该弹簧4,因弹簧4的反弹力而产生使第1轴构件2转动的扭矩。第1 轴构件2相对壳体1转动自如。 圆筒状的第2轴构件3被插入在轴承5上形成的滑动孔5a中。如图22 所示,第2轴构件3的外周面和滑动孔5a的内周面都是非圆形。由此,容许 第2轴构件3相对轴承5沿轴向移动,并可阻止转动。因此,一旦第1轴构 件2因弹簧4的反弹力而转动,第2轴构件3即不转动,并产生轴向推力。 例如,该弹簧4的反弹力作用于使第2轴构件3从壳体1凸出的方向。通过 向所述皮带或链条等的力传递构件提供这种推力,就可给于力传递构件适度 的张力。一旦第2轴构件3推压力传递构件,该轴构件3即受到来自力传递 构件的反力。该反力(输入负荷)和由扭转弹簧4产生的轴构件3的推力将 轴构件3沿轴向移动到平衡的位置。因此,以往的拉紧器具有输入负荷与第2 轴构件3的移动量为成比例的线性特性。 根据例如发动机的不同运转条件,链条和皮带等力传递构件的张力状态 每时每刻都会变化。然而,以往的拉紧器因具有线性特性,故存在难以适应 大范围的输入负荷变化的问题。 这里说明一下拉紧器推压力传递构件的力(推力)与拉紧器的变位振幅 σ之间的关系。拉紧器的刚性可用第2轴构件对受到来自力传递构件的负荷 的移动量(即变位振幅σ)表示。推力大、刚性高的拉紧器可承受大的输入 负荷;反之,变位振幅σ就小。如果减小拉紧器的推力,虽可增大变位振幅 σ,但不能适应较大的输入负荷。例如,对于大排气量的发动机,一旦拉紧 器的刚性高,则变位振幅σ就小。即,刚性高的拉紧器因不得不在狭小的变 位振幅σ的范围内设计功能等,存在着拉紧器设计上的自由度小的问题。 本发明目的在于提供一种尽管刚性高也能加大变位振幅σ等、可适应大 范围的输入负荷变化的拉紧器。 发明概述 本发明拉紧器包括: 在壳体内部轴向的移动受限制的状态下、可转动地插入并具有第1螺纹 部的第1轴构件; 具有与所述第1螺纹部螺合的第2螺纹部、相对所述壳体可轴线方向移 动但转动受限制的第2轴构件; 使所述第1轴构件产生回转扭矩的扭转弹簧、使该轴构件的回转扭矩对 应所述第1轴构件的回转角变化的扭矩切换装置。 所述扭矩切换装置采用在所述第1轴构件的回转角小时产生较小的磨擦 扭矩、而在回转角大时产生较大的磨擦扭矩的扭矩切换构件。 在本发明的拉紧器中,从皮带和链条等的力传递构件输入所述第2轴构 件的负荷通过所述第1螺纹部和第2螺纹部使第1轴构件转动。当第1轴构 件开始转动后回转角较小时,所述扭矩切换构件产生较小的回转扭矩。一旦 第1轴构件的回转角变大,该扭矩切换构件就会产生较大的回转扭矩。这样, 可与大的支承负荷相对应,且对小变位振幅具有良好的追随性。例如,即使 对于在大排气量的发动机等中使用的力传递构件,也可对应大的支承负荷的 变化,向力传递构件提供合适的张力。 附图简单说明 图1为本发明第1实施形态的拉紧器剖视图。 图2为图1所示的拉紧器使用例的发动机局部剖视图。 图3为图1所示的拉紧器的扭矩切换构件分解立体图。 图4为图1所示的拉紧器轴向长度与扭矩之间的关系图。 图5A为图1所示的拉紧器局部剖视图。 图5B为本发明第2实施形态的拉紧器局部剖视图。 图5C为本发明第3实施形态的拉紧器局部剖视图。 图6A为本发明第4实施形态的拉紧器剖视图。 图6B为沿图6A中F6—F6线的拉紧器剖视图。 图7为图6A所示的拉紧器局部放大图。 图8A为本发明第5实施形态的拉紧器剖视图。 图8B为沿图8A中F8—F8线的拉紧器剖视图。 图9为本发明第6实施形态的拉紧器局部分解立体图。 图10A为图9所示的拉紧器局部剖视图。 图10B为本发明第7实施形态的拉紧器局部剖视图。 图11为本发明第8实施形态的拉紧器局部剖视图。 图12为本发明第9实施形态的拉紧器局部剖视图。 图13为沿图12中F13—F13线的剖视图。 图14为本发明第10实施形态的拉紧器剖视图。 图15为图14所示的拉紧器轴向长度与扭矩之间的关系图。 图16为本发明第11实施形态的拉紧器剖视图。 图17为图16所示的拉紧器轴向长度与扭矩之间的关系图。 图18为本发明第12实施形态的拉紧器剖视图。 图19为图18所示的拉紧器轴向长度与扭矩之间的关系图。 图20为本发明第13实施形态的拉紧器剖视图。 图21为以往的拉紧器剖视图。 图22为沿图21所示的拉紧器直径方向的剖视图。 实施本发明的最佳形态 下面,参照图1至图5A说明本发明的第1实施形态。在以下说明的各实 施形态中,相互通用的构件标记相同的符号。 图1所示的拉紧器10可用于例如图2所示的汽车用发动机100的动力传 递机构101。该动力传递机构101通过同步皮带或链条等无接头的力传递构件 102将发动机100的转动运动传递到凸轮轴103。拉紧器10安装在发动机100 的预定位置,并通过产生后述的推力沿箭头V所示方向推压力传递构件102。 拉紧器10具有中空的壳体11、第1轴构件12和第2轴构件13。这些轴 构件12、13通过在螺纹部16、17上相互螺合而构成轴组件S。轴组件S插入 壳体11中。在壳体11上沿着壳体11的轴向形成插入轴组件S用的空洞部14。 壳体11的前端部开口,第2轴构件13通过该开口进退。在壳体11的后端部 形成螺孔15。在该螺孔15上拧入用于壳体11内部密封用的螺栓15a。 在第1轴构件12上形成阳螺纹部16。第1轴构件12在其轴线方向上具 有形成阴螺纹部16的区域12a和扭矩调整部12b。第2轴构件13呈筒状,在 其内周面上形成阴螺纹部17。该阴螺纹部17与阳螺纹部16螺合而构成轴组 件S。这些螺纹部16、17通常是导程角大于螺纹牙,例如,采用三头螺纹等 的多头螺纹。 在轴组件S的外周侧上设有扭转弹簧18。扭转弹簧18沿轴构件12、13 的轴向延伸。扭转弹簧18的一端部18a固定在第1轴构件12上,另一端部18b 固定在壳体11上。在第1轴构件12的后端部沿该轴构件12的轴线方向形成 切缝19。该切缝19中插入扭转弹簧18的一端部18a。在壳体11的前部固定 有轴支承构件20。通过该轴支承构件20将扭转弹簧18的另一端部18b固定。 将螺栓15a从螺孔15中取出,将螺丝刀等操作件W从壳体11的外侧插入孔15 中,若将操作件W的前端插入切缝19内,就可通过操作件W转动第1轴构件 12。若使第1轴构件12向第1方向(例如顺时针方向)转动而扭转弹簧18, 该弹簧18就可积聚使第1轴构件12向第2方向(例如逆时针方向)转动的 弹性能量(初始扭矩)。 轴支承构件20被挡圈21固定在壳体11的前端部。在该轴支承构件20 上形成插通第2轴构件13的非圆形的滑动孔20a。第2轴构件13的径向剖面 与滑动孔20a对应而呈非圆状。因此,第2轴构件13虽可相对壳体11轴向 移动,但阻止了转动。在第2轴构件13的前端设有盖子22。如图2所示,通 过盖子22使第2轴构件13直接或间接地与力传递构件102抵接。 一旦通过所述操作件W使第1轴构件12沿第1方向转动,弹簧18即被 扭转。该弹簧18积聚使第1轴构件12向第2方向转动的弹性能量。另一方 面,由于第2轴构件13被轴支承构件20阻止了转动,因此,在通过所述操 作件W使第1轴构件12沿第1方向转动时,第2轴构件13就可向壳体11拉 入的方向移动。 一旦弹簧18积聚的弹性能量使第1轴构件12沿第2方向转动,该扭矩 就会作用于第2轴构件13。然而,由于第2轴构件13被轴支承构件20阻止 了转动,因此,在该轴构件13上产生从壳体11凸出方向的推力。另外,从 力传递构件102输入第2轴构件13的负荷Z起着向壳体11内推回第2轴构 件13的作用。由此产生使第1轴构件12沿第1方向转动的扭矩。与这种扭 矩对抗的力就是在第1轴构件12与壳体11之间产生的磨擦扭矩和弹簧18的 反弹力。这些对抗力使第2轴构件13移动到与所述输入负荷平衡的位置, 由此可向力传递构件102提供适度的张力。 本实施形态的拉紧器10在壳体11与第1轴构件12之间设有扭矩切换构 件30。如图3所示,扭矩切换构件30具有第1轴支承构件31和第2轴支承 构件32,本说明书中,也可将轴支承构件单纯称为“支承构件”。在第1轴 构件12的所述扭矩调整部12b上设有末端构件33。扭矩调整部12b的端部插 入在末端构件33中。通过销子34将轴构件12与末端构件33相互固定。与 轴构件12一体转动的末端构件33构成轴构件12的一部分。在该末端构件33 上形成面向第1轴支承构件31凸出的凸部35。末端构件33也可在第1轴构 件12的端部与轴构件12一体成形。 第1支承构件31为具有预定内径和外径的圆筒状并设有底部31b。如图 5A所示,第1轴构件12的端部可转动地插入在第1支承构件31中。第1轴 构件12的端面12f相对第1支承构件31的底部31b,并在以接触直径D1接 触的状态下转动。在第1支承构件31上形成可使末端构件33的凸部35嵌入 的凹部36。凹部36在支承构件31的圆周方向上具有预定的长度。所述凸部 35在凹部36圆周方向的长度范围内可沿支承构件31的圆周方向移动(转动)。 凸部35在凹部36内移动时,第1轴构件12不与支承构件31一体转动。换 言之,在图3中用E表示的角度范围内,第1轴构件12可相对第1支承构件 31空转。 一旦凸部35沿圆周方向在凹部36内的所述E范围移动,则凸部35与凹 部36圆周方向的内侧面36a或36b抵接。一旦凸部35与内侧面36a或36b 抵接,第1轴构件12就不与支承构件31一体转动。 第2支承构件32通过被压入在壳体11形成的圆形第1轴支承构件37中, 固定在壳体11上。该支承构件32为具有预定内径和外径的圆筒状,并设有 底部32b。第1支承构件31可转动地插入第2支承构件32中。如图5A所示, 第1支承构件31的底部31b与第2支承构件32的底部32b相互全面接触。 这些支承构件31、33在以接触直径D2接触的状态下相对转动。 第1轴构件12通过相互嵌合的第1和第2支承构件31、32支承在壳体11 的凹部37。因此,第1轴构件12可不晃动地平滑转动。在支承构件31、32 上分别在与切缝19对应的位置形成通孔31a、32a。当扭转弹簧18产生所述 初始扭矩时,可通过这些通孔31a、32a操作件W(见图1)的前端与切缝19 嵌合。根椐壳体11的不同材质,也可不用第2支承构件32、而将第1轴构件 12的端部直接插入壳体11上形成的圆形凹部37。关于这一点,可适用于以 下说明的所有实施形态。 第1轴构件12可相对第1支承构件31沿第1、第2方向任意方向转动。 即,在该轴构件12相对第1支承构件31在所述E的范围内转动时,凸部35 在凹部36的内侧面36a、36b之间移动。在此场合,第2支承构件32和第1 支承构件31依然停止,只有轴构件12转动。即,第1轴构件12的端面12f 相对第1支承构件31的底部31b并以接触直径D1转动。因此,产生与接触 直径D1对应的较小的磨擦扭矩。 一旦第1轴构件12继续转动,则凸部35与凹部36的内侧面36a或36b 抵接。通过这一抵接,使第1支承构件31与轴构件12一体转动。即,第1 支承构件31的底部31b相对第2支承构件32的底部32b以接触直径D2转动。 因此,产生与接触直径D2对应的较大的磨擦扭矩。 图4表示的是第1实施形态的拉紧器10在第2轴构件13受到输入负荷 时产生的回转扭矩与拉紧器10的轴向长度之间的关系。当第1轴构件12因 输入负荷开始转动后,在转动初期,凸部35在凹部36内移动。此时,由于 轴构件12相对第1支承构件31以接触直径D1转动,因此产生较小的磨擦扭 矩。在轴构件12沿第1方向转动时,虽然会增加弹簧18的反弹力,但在弹 簧18的扭转量较小时,反弹力也小。因此,轴构件12因以较小的扭矩T1转 动,故向力传递构件102施加较小的推压力V。 若增大来自力传递构件102的输入负荷而将第2轴构件13继续向壳体11 内推回,则凸部35与凹部36的内侧面36a抵接。由此,第1轴构件12和第 1支承构件开始一体转动。在此场合,磨擦直径变换为D2,在增大磨擦扭矩 的同时,弹簧18的反弹力也增大。因此,如图4所示,以P1点为界限,通 过以较大的回转扭矩T2使轴构件12转动,就可向力传递构件102施加较大 的推压力V。 减小支承负荷时,也与增大支承负荷时一样,在轴构件12的回转角较小 时,通过以磨擦直径D1使轴构件12转动,产生较小的回转扭矩。一旦轴构 件12的回转角增大,则通过凸部35与凹部36的内侧面36b抵接,就可使轴 构件12和支承构件31以磨擦直径D2一体转动。由此产生较大的回转扭矩。 采用该第1实施形态,通过将第1轴构件12转动时的接触直径对应其回 转角切换为D1或D2,即可确保较大的振幅变位,并可提高支承负荷大时的力 传递构件的刚性。由此,该力传递构件可对应于任何大小的输入负荷。例如, 在使用发动机等时,即使从力传递构件102输入拉紧器10的负荷较小的场合, 也可因较小的振幅变位而使第2轴构件13具有良好的随从性,其结果可确保 力传递构件102适当的张力。 图5B为本发明第2实施形态。在本实施形态中,在第1支承构件31上 形成朝向其中央厚度增大的锥形面38。由此,第1轴构件12与第1支承构件 31之间的接触直径D1比第1实施形态中的所述接触直径D1更小。 图5C为本发明第3实施形态。在本实施形态的场合,在第1支承构件31 的下面中央部形成凹部49。因此,第1支承构件31在凹部49圆周的环状端 面处相对于第2支承构件32以接触直径D2接触,这样,即使支承构件有某 种程度的磨损,也能确保接触直径D2稳定。图5B和图5C仅示出为说明接触 直径D1、D2所表示的必要部分,除此之外的部分与第1实施形态一样。 从图6A至图7表示本发明第4实施形态。本实施形态的扭转弹簧18的 一端部18a向第1支承构件31的直径方向伸出,并嵌入第1支承构件31的 凹部36。此时,在第1支承构件31的圆周方向上,弹簧18的一端部18a 在凹部36内可获得一定程度的移动。在该可移动的范围内,即使第1轴构件 12转动,第1支承构件31也停止不动。一旦轴构件12的回转角增大,则通 过弹簧18的一端部18a与凹部36的内侧面36a或36b抵接,第1支承构件31 就会与轴构件12一体转动。本实施形态的弹簧18的一端部18a由于具有与 第1实施形态的末端构件33同样的效果,因此可减少拉紧器10的零件数。 图8A和图8B表示本发明的第5实施形态。在本实施形态中,在切缝19 中插入弹簧18的一端部18a和接合片39。接合片39向第1支承构件31的径 向延伸,接合片39的端部39a位于第1支承构件31的凹部36的内侧。在第 1轴构件12转动时,接合片39的端部39a在凹部36内可移动的范围内,第 1支承构件31不转动。一旦轴构件12的回转角增大,则通过接合片39的端 部39a与凹部36的内侧面36a或36b抵接,使第1支承构件31和轴构件12 一体转动。因此,该接合片39具有与第1实施形态的末端构件33同样的功 能。在第4和第5的实施形态中,可通过将第1轴构件12的端面12f的转动 接触直径切换为D1或D2来切换回转扭矩。 图9和图10A表示本发明第6实施形态。在本实施形态的场合,在第2 支承构件32上形成一对凹部40。在第1支承构件31上形成一对凸部41。凸 部41位于凹部40的内侧,并可设支承构件32的圆周方向在凹部40的长度 范围内移动。如图10A所示,在第1支承构件31的底面形成朝向中央厚度增 大的锥形面42。这样,就可使第1支承构件31与第2支承构件32之间的接 触直径D2小于第1支承构件31与第1轴构件12之间的接触直径D1。 在本实施形态(图9和图10A)的场合,当第1轴构件12转动时,第1 支承构件31在凸部41可在凹部40内移动的范围中与轴构件12一体转动。 此时的接触直径为D2,产生的磨擦扭矩较小。一旦轴构件12的回转角增大, 通过凸部41与凹部40的内侧面40a或40b抵接,使第1支承构件31的转动 停止,只有轴构件12以大的接触直径D1转动。此时产生的磨擦扭矩就比以 接触直径D2转动时大。因此,在本实施形态中,可将第1轴构件12的回转 扭矩切换两个档次。 图10B表示本发明第7实施形态。本实施形态的基本结构虽然与第6实 施形态一样,但在第7实施形态中,在第2支承构件32的底部32b的中央形 成比周围厚度大的部分43。这样,就可使第1支承构件31与第2支承构件32 之间的接触直径D2小于第1支承构件31与第1轴构件12之间的接触直径D1。 因此,本第7实施形态与第6实施形态一样,可将回转扭矩切换两个档次。 图11表示本发明第8实施形态。本实施形态的基本结构虽然与第6实施 形态(图10A)相同,但在第8实施形态的场合,为使第1接触直径D1与第 2接触直径的D2大致相同,在第1支承构件31的底部形成锥形面42。 如本实施形态所示,在D1与D2相等时,由于轴构件12与支承构件31 之间的接触部上的表面特性和支承构件31、32相互间的接触部上的表面特性 互不一样,因此,使两者的磨擦扭矩产生差异。例如,通过使施加在上述两 个部位的接触部上的电镀种类、表面硬度或材质等相互不同,就可使回转扭 矩T1、T2产生差异。这样,通过在接触部上实施适当的表面处理或改变表面 材质等,就可调整回转扭矩的大小。这种技术构思也可适用于上述第1实施 形态至第7实施形态。 图12和图13表示本发明第9实施形态的拉紧器。本实施形态的拉紧器 包括:可转动地插入末端构件33的第1支承构件31、可转动地插入该支承构 件31的第2支承构件32以及可转动地插入第2支承构件32的第3支承构件 45。第3支承构件45被固定在壳体11的底面上。 如图13所示,末端构件33上形成的凸部35嵌入在第1支承构件31上 形成的凹部36中。凸部35可沿第1支承构件31的圆周方向在凹部36的内 侧面36a、36b之间移动。在第1支承构件31上形成与末端构件33的凸部35 相同的凸部46。在第2支承构件32上形成可嵌入凸部46的凹部47。凸部46 可沿第2支承构件32的圆周方向在凹部47的内侧面47a、47b之间移动。在 轴构件12转动时,因其回转角较小,凸部35在凹部36内移动,故第1支承 构件31和第2支承构件32停止不动。由于此时的轴构件12的接触直径是D1, 因此回转扭矩最小。一旦轴构件12的回转角增大某一程度,首先,第1凸部 35与凹部36的内侧面36a或36b抵接。这样,第1支承构件31和轴构件12 一体转动。当第1支承构件31的回转角较小时,因第2凸部46在凹部47内 移动,故第2支承构件32不转动。由于此时的接触直径是D2,因此回转扭矩 处于中档。一旦轴构件12继续转动,则凸部46与凹部47的内侧面47a或47b 抵接。这样,第2支承构件32也和轴构件12一体转动。由于此时的接触直 径是D3,因此回转扭矩最大。这样,第9实施形态的拉紧器可使轴构件12的 回转扭矩更精确地在三个档次中变化。由于本实施形态的所述3个部位的接 触部的磨擦扭矩相互不同,因此,也可使施加在各构件上的电镀种类、表面 硬度或材质等互不相同。 图14表示本发明第10实施形态。本实施形态的拉紧器10设有离合机构 的连接弹簧50。另外,扭转弹簧18设在第1轴构件12的外周侧。而前述各 实施形态的拉紧器10的扭转弹簧18则被设置在第1轴构件12和第2轴构件 13上。然而,所有实施形态的扭转弹簧18都共同具有向第1轴构件12提供 扭矩的基本功能。这些实施形态中记载的扭转弹簧18的反弹力可产生从壳体 11推出轴构件13方向的作用。但因输入负荷的方向不同,该扭转弹簧18的 反弹力也可产生向壳体11内推回轴构件13方向的作用。 该第10实施形态的拉紧器10还设有固定在壳体11内部的筒状第2支承 构件32。该支承构件32具有底部32b。在该支承构件32上插有具有底部31b 的可转动的筒状第1支承构件31。在第1支承构件31上插有可转动的第1轴 构件32的端部。在第2支承构件32的底部32b的中央形成孔32d。在第1支 承构件31的底部31b的中央形成插入在孔32d中的凸起部31d。凸起部31d 通过孔32d向螺孔15的内部凸出。凸起部31d的前端形成切缝31c。 扭转弹簧18的一端部18a固定在第1支承构件31上。扭转弹簧18的另 一端部18b固定在壳体11上。在扭转弹簧18的内周面与轴构件12的扭矩调 整部12b外周面之间设有连接弹簧50。连接弹簧50的一端50a固定在第1支 承构件31上。连接弹簧50的另一端50b固定在第1轴构件12上。由扭转弹 簧18与连接弹簧50的扭转所产生的扭矩方向互为相同。 在该第10实施形态(图14)的拉紧器10中,将螺丝刀等操作件W从孔 15插入,使操作件W的前端与切缝31c嵌合。并通过转动操作件W,使弹簧18、 50的一端18a、50a分别沿第1方向转动预定圈数。第1轴构件12通过连接 弹簧50与第1支承构件31连接。因此,一旦支承构件31沿第1方向转动, 第1轴构件12通过连接弹簧50沿第1方向转动。该转动使第2轴构件13向 被拉入壳体11的方向移动。在该转动的同时,扭转弹簧18向积聚反弹力的 方向扭转,并施加初始扭矩。 在施加了初始扭矩的第10实施形态的拉紧器10上,一旦从外部输入推 压第2轴构件13方向的负荷,则该负荷通过螺纹部16、17传递到第1轴构 件12,使第1轴构件12转动。当所述支承负荷较小、连接弹簧50的扭转较 小时,即使轴构件12转动,第1支承构件31也不转动。在此场合,由于轴 构件12的端面12f相对第1支承构件31的底部31b以接触直径D1转动,因 此产生较小的磨擦扭矩。 一旦所述支承负荷增大、轴构件12的回转角增加,则随着连接弹簧50 的扭转数增加,第1支承构件31与轴构件12结合。由此,支承构件31与轴 构件12一体转动。在此场合,由于支承构件31相对第2支承构件32以接触 直径D2转动,因此,回转扭矩增大。 图15表示第10实施形态的拉紧器10的回转扭矩的变化。在使第1轴构 件12转动、其回转角较小期间(支承负荷小时),产生与接触直径D1对应 的回转扭矩T1。一旦因支承负荷增大而使第2轴构件13继续沿轴向移动,即 在图15中的P2点处通过连接弹簧50使滑动孔12与支承构件31结合。在此 场合,根据接触直径D2产生较大的回转扭矩T2。 即使在减少增大后的负荷并使轴构件12逆向转动时,接触直径也会按照 回转角而变化,并能使回转扭矩变化。 从图15中可以看出,第1档次的回转扭矩T1与第2档次的回转扭矩T2 相互连续,不存在图4所示的台阶部Q。即,在本第10实施形态中,在切换 回转扭矩时,由于连接弹簧50的弹性作用,因此可获得T1与T2连续的特性。 若采用该第10实施形态,则与前述的各实施形态相比,可使回转扭矩的变动 平缓。 图16表示本发明第11实施形态的拉紧器。该拉紧器10设有在第1轴构 件12上形成的凸起部12c以及设在该凸起部12c上的橡胶构件51。凸起部12c 和橡胶构件51位于在第1支承构件31上形成的凹部36的内侧。凸起部12c 和凹部36构成连接第1轴构件12与支承构件31的离合机构。具有底部32b 的圆筒状第2支承构件32固定在壳体11上。在该支承构件32上可转动地插 入具有底部31b的圆筒状第1支承构件31。在第1支承构件31上可转动地插 有第1轴构件12的端部。在第1支承构件31的周面形成所述凸起部12c。在 该凸起部12c的两侧面分别安装有具有弹性构件功能的橡胶构件51。橡胶构 件51与凹部36的内侧面36a、36b对置。又,扭转弹簧18设在第1轴构件12 和第1支承构件31的外周侧。扭转弹簧18的一端部18a固定在第1轴构件 31上。扭转弹簧18的另一端部18b固定在壳体11上。该第11实施形态的拉 紧器10与第10实施形态一样,设有施加初始扭矩用的具有切缝31c的凸起 部31d和孔32d等。 一旦在该第11实施形态的拉紧器10上输入推压第2轴构件13方向的负 荷,该负荷即通过螺纹部16、17传至第1轴构件12,从而使第1轴构件12 转动。在轴构件12的回转角较小时,因凸起部12c在凹部36内移动,故第1 支承构件31不转动。在此场合,由于轴构件12以接触直径D1转动,因此回 转扭矩较小。 一旦增大所述支承负荷、使轴构件12的回转角增大,则橡胶构件51与 凹部36的内侧面36a或36b抵接。该抵接可在压缩橡胶构件的同时使支承构 件31与轴构件12相互结合。由此,支承构件31和轴构件12一体转动。即, 第1支承构件31相对第2支承构件32以接触直径D2转动。从而使回转扭矩 增大。 在减少增大了的支承负荷时,因弹簧18的反弹力使第1支承构件31沿 第2方向转动,同时使第1轴构件12也向第2方向转动。因此,第2轴构件 13向从壳体11凸出的方向移动。在此场合,也可根椐轴构件12不同的回转 角,切换为接触直径D1时的较小回转扭矩T1或接触直径D2时的较大回转扭 矩T2。 图17表示第11实施形态的拉紧器10的回转扭矩变化。从图17中可以 看出,第1档次的回转扭矩T1与第2档次的回转扭矩T2以P3为界相互连续, 并且,第1档次的扭矩T1形成下面凸出的曲线。这种扭矩T1的特性可以通 过将橡胶构件51压缩在凸起部12c与内侧面36a或36b之间来获得。 图18表示本发明的第12实施形态的拉紧器10。本实施形态的拉紧器10 是在上述的第10实施形态(图14)的基础上,再设有凸起部12d和可嵌入该 凸起部12d的凹部36。当第1第1轴构件12的回转角较小时,凸起部12d可 在凹部36的内侧面36a、36b之间移动。凸起部12d和凹部36的内侧面36a、 36b构成离合机构。该离合机构对轴构件12和支承构件31相互可转动的角度 范围进行限制。 扭转弹簧18的一端部18a固定在第1支承构件31上。另一端部18b固 定在拉紧器11上。连接弹簧50的一端50a固定在第1支承构件31上,另一 端50b固定在第1轴构件12上。 在第1轴构件12的周面上形成凸起部12d。在第1支承构件31端部沿圆 周方向形成有一定长度的凹部36。凸起部12d位于该凹部36内。因此,与凹 部36圆周方向的长度相对应,轴构件12和支承构件31被限制在可相对转动 的角度内。 在第12实施形态的拉紧器10(图18)中,一旦从外部输入推压第2轴 构件方向的负荷,该负荷就可通过螺纹部16、17传至第1轴构件12而使第1 轴构件12转动。当上述支承负荷较小时、即轴构件12的回转角较小时,凸 起部12d在凹部36内移动。因此,第1支承构件31不转动,只有轴构件12 转动。在此场合,由于轴构件12的端面12f相对第1支承构件31的底部31b 并以接触直径D1转动,从而产生较小的磨擦扭矩。 一旦上述支承负荷增大、轴构件12的回转角增加,则随着连接弹簧50 的扭转数增加,凸起部12d与凹部36的内侧面36a抵接,因此,支承构件31 与轴构件12一体转动。在此场合,由于支承构件31相对第2支承构件32并 以接触直径D2转动,从而产生较大的磨擦扭矩。 图19表示第12实施形态的拉紧器10的回转扭矩的变化。以图19中的P4 点为界,接触直径从D1变化为D2。利用连接弹簧50可减小T1与T2之间的 台阶部Q。 图20表示本发明第13实施形态的拉紧器。该拉紧器是在上述第10实施 形态(图14)的基础上,再设有第3支承构件60和第2连接弹簧61。第1 和第2支承构件31、32、扭转弹簧18和第1连接弹簧50的结构及其作用分 别与第10实施形态相同。 在该第13实施形态中,第1轴构件12可转动地被插入在第3支承件60 中。并且,第3支承构件60可转动地被插入在第1支承构件31中。第2连 接弹簧61设置在第1连接弹簧50的内周面与轴构件12的外周面之间。第2 连接弹簧61的一端61a固定在第3支承构件60上。第2连接弹簧61的另一 端61b固定在第1轴构件12上。由扭转弹簧18扭转产生的反弹力方向与由 连接弹簧50、61扭转产生的反弹力方向相同。 在该第13实施形态(图20)的拉紧器0上,将螺丝刀等操作件从孔15 中插入,使其前端与切缝31c嵌合。并通过操作件转动,使扭转弹簧18和连 接弹簧50、61分别沿第1方向转动预定数。一旦第1支承构件31沿第1方 向转动,随着连接弹簧50、61的扭转数增加,第1轴构件12就会向第1方 向转动。该转动可使第2轴构件13向拉入壳体11的方向移动。在该转动的 同时,扭转弹簧18向积聚反弹力的方向扭转并产生初始扭矩。 在该拉紧器10上,一旦从外部输入推压第2轴构件13方向的负荷,则 该负荷通过螺纹部16、17传至第1轴构件12并使第1轴构件12转动。当上 述支承负荷较小、轴构件12的回转角较小时,因连接弹簧61的扭转数少, 故第3支承构件60不转动。在此场合,由于轴构件12的端面12f相对第3 支承构件60的60b以接触直径D1转动,因此,产生较小的磨擦扭矩。 一旦所述支承负荷增大、轴构件12的回转角增加,则随着第2连接弹簧 61的扭转数增加,轴构件12通过连接弹簧61与第3支承构件60一体转动。 在此场合,由于第3支承构件60相对第1支承构件31以接触直径D2转动, 从而产生中档次的磨擦扭矩。 一旦所述支承负荷进一步增大、轴构件12继续转动,则随着第1连接弹 簧50的扭转数增加,第1轴构件31通过连接连接50也转动。在此场合,由 于第1支承构件31相对第2支承构件32以接触直径D3转动,从而产生最大 磨擦扭矩。 通过减少增大了的支承负荷,在拉紧器10反向动作时,利用扭转弹簧18 的反弹力,使第1轴构件12沿第2方向转动。这样,在减少支承负荷时,也 与增大支承负荷时一样,接触直径根椐轴构件12不同的回转角在三个档次之 间变化,由此可使回转扭矩依次变化。 该第13实施形态的拉紧器可使轴构件12的回转扭矩更加精确地在三个 档次中变化。在本实施形态中,由于所述3个部位的接触面的磨擦扭矩也相 互不同,因此,也可使各构件上实施的电镀种类、表面硬度或材质等互不相 同。所述第9实施形态和第13实施形态都是回转扭矩三个档次变化的结构, 但也可采用四个档次以上变化的结构。 产业上应用的可能性 从以上说明中可以看出,本发明的拉紧器适用于包括例如汽车发动机在 内的使用环形皮带和环链等的动力传递机构。 |