传热组合物

申请号 CN201180030475.X 申请日 2011-05-20 公开(公告)号 CN102947408B 公开(公告)日 2016-04-27
申请人 墨西哥化学阿玛科股份有限公司; 发明人 罗伯特·E·洛;
摘要 本 发明 提供了一种 传热 组合物,其包含:(i)第一组分,其选自反式-1,3,3,3-四氟丙烯(R-1234ze(E))、顺式-1,3,3,3-四氟丙烯(R-1234ze(Z))和它们的混合物;(ii)二 氧 化 碳 (R-744);和(iii)第三组分,其选自1,1-二氟乙烷(R-152a)、氟乙烷(R-161)和它们的混合物。
权利要求

1.一种传热组合物,包含:
(i)按重量计10%至95%的反式-1,3,3,3-四氟丙烯(R-1234ze(E));
(ii)按重量计2%至30%的二(R-744);以及
(iii)按重量计3%至60%的包含氟乙烷(R-161)的第三组分。
2.根据权利要求1的组合物,其包含按重量计4%至30%的R-744。
3.根据权利要求1的组合物,其包含按重量计4%至28%的R-744。
4.根据权利要求1的组合物,其包含按重量计8%至30%的R-744。
5.根据权利要求1的组合物,其包含按重量计10%至30%的R-744。
6.根据权利要求1的组合物,其包含按重量计至多50%的所述第三组分。
7.根据权利要求1至6中任一项的组合物,其临界温度高于65℃。
8.根据权利要求1至6中任一项的组合物,其临界温度高于70℃。
9.根据权利要求1至6中任一项的组合物,包含按重量计3%至30%的R-161。
10.根据权利要求9的组合物,其包含按重量计45%至94%的R-1234ze(E)、按重量计
4%至30%的R-744和按重量计3%至25%的R-161。
11.根据权利要求10的组合物,其包含按重量计52%至86%的R-1234ze(E)、按重量计10%至28%的R-744和按重量计4%至20%的R-161;或者包含按重量计62%至92%的R-1234ze(E)、按重量计10%至28%的R-744和按重量计3%至10%的R-161。
12.根据权利要求1至6中任一项的组合物,还包含五氟乙烷(R-125)。
13.根据权利要求1至6中任一项的组合物,其中所述组合物比单独的R-152a或单独的R-161不易燃。
14.根据权利要求13的组合物,其中与单独的R-152a或单独的R-161相比,所述组合物具有:
(a)较高的可燃极限;
(b)较高的点火能量;和/或
(c)较低的火焰速度。
15.根据权利要求1至6中任一项的组合物,其氟比率(F/(F+H))为0.42至0.7。
16.根据权利要求15的组合物,其氟比率(F/(F+H))为0.44至0.67。
17.根据权利要求1至6中任一项的组合物,其不可燃。
18.一种组合物,其包含润滑剂和根据前述权利要求中任一项的组合物。
19.根据权利要求18的组合物,其中所述润滑剂选自:矿物油、油、多烷基苯(PAB)、多元醇酯(POE)、聚亚烷基二醇(PAG)、聚亚烷基二醇酯(PAG酯)、聚乙烯醚(PVE)、聚(α-烯)及它们的组合。
20.根据权利要求18或19的组合物,其还包含稳定剂。
21.根据权利要求20的组合物,其中所述稳定剂选自:基于二烯的化合物、磷酸盐/酯、酚化合物和环氧化物以及它们的混合物。
22.一种组合物,其包含阻燃剂和根据前述权利要求中任一项的组合物。
23.根据权利要求22的组合物,其中所述阻燃剂选自:三-(2-氯乙基)-磷酸酯、(氯丙基)磷酸酯、三-(2,3-二溴丙基)-磷酸酯、磷酸氢二铵、各种卤代芳族化合物、氧化锑、三、聚氯乙烯、氟化碘代烃、氟化溴代烃、全氟烷基胺、溴-氟烷基胺以及它们的混合物。
24.根据权利要求23的组合物,其中所述氟化碘代烃为三氟碘甲烷。
25.根据权利要求23的组合物,其中所述(氯丙基)磷酸酯为三-(1,3-二氯丙基)-磷酸酯。
26.根据权利要求1至25中任一项的组合物在传热装置中的用途。
27.一种传热装置,其包含根据权利要求1至25中任一项的组合物。
28.根据权利要求27的传热装置,其为制冷装置。
29.根据权利要求28的传热装置,其选自:机动车空调系统、家用空调系统、商用空调系统、家用制冷器系统、家用冷冻器系统、商用制冷器系统、商用冷冻器系统、冷却器空调系统、冷却器制冷系统、以及商用或家用系统。
30.根据权利要求28的传热装置,其中所述传热装置是机动车空调系统。
31.根据权利要求28或29的传热装置,其包含压缩机
32.一种发泡剂,其包含根据权利要求1至25中任一项的组合物。
33.一种可发泡组合物,其包含一种或更多种能够形成泡沫的组分和根据权利要求1至25中任一项的组合物,其中所述一种或更多种能够形成泡沫的组分选自:热塑性聚合物树脂以及它们的混合物。
34.根据权利要求33的可发泡组合物,其中所述热塑性聚合物选自聚酯和聚苯乙烯及其混合物。
35.根据权利要求33的可发泡组合物,其中所述树脂为环氧树脂
36.一种泡沫,其包含根据权利要求1至25中任一项的组合物。
37.一种可喷射组合物,其包含待喷射的材料和包含根据权利要求1至25中任一项的组合物的推进剂。
38.一种用于冷却制品的方法,其包括使根据权利要求1至25中任一项的组合物冷凝,然后使所述组合物在待冷却的所述制品附近蒸发
39.一种用于加热制品的方法,其包括使根据权利要求1至25中任一项的组合物在待加热的所述制品附近冷凝,然后使所述组合物蒸发。
40.一种用于从生物质中提取物质的方法,其包括使所述生物质与包含根据权利要求
1至25中任一项的组合物的溶剂接触,以及将所述物质与所述溶剂分离。
41.一种清洁制品的方法,其包括使所述制品与包含根据权利要求1至25中任一项的组合物的溶剂接触。
42.一种从水溶液或颗粒固体基体中提取材料的方法,其包括使所述水溶液或基体与包含根据权利要求1至25中任一项的组合物的溶剂接触,以及将所述材料与所述溶剂分离。
43.一种机械发电装置,其包含根据权利要求1至25中任一项的组合物。
44.根据权利要求43的机械发电装置,其适于使用兰金循环或其变型来由热产生功。
45.一种改造传热装置的方法,其包括移出现有传热流体并引入根据权利要求1至25中任一项的组合物的步骤。
46.根据权利要求45的方法,其中所述传热装置是制冷装置或空调系统。
47.一种用于减少由于操作包含现有化合物或组合物的产品而引起的环境影响的方法,所述方法包括利用根据权利要求1至25中任一项的组合物来至少部分地替代所述现有化合物或组合物。
48.根据权利要求47的方法,其中所述产品选自:传热装置、发泡剂、可发泡组合物、可喷射组合物、溶剂或机械发电装置。
49.根据权利要求47的方法,其中所述现有化合物或组合物是传热组合物。
50.根据权利要求49的方法,其中所述传热组合物是选自R-134a、R-1234yf、R-152a、R-404A、R-410A、R-507、R-407A、R-407B、R-407D、R-407E和R-407F中的制冷剂。
51.一种用于制备根据权利要求1至25中任一项的组合物和域根据权利要求27至
31中任一项的传热装置的方法,所述组合物或所述传热装置包含R-134a,所述方法包括将R-1234ze(E)、R-744、所述第三组分,以及任选的R-125、润滑剂、稳定剂和/或阻燃剂引入包含现有传热流体R-134a的传热装置中。
52.根据权利要求51的方法,其包括在引入所述R-1234ze(E)、R-744、所述第三组分,以及任选的所述R-125、所述润滑剂、所述稳定剂和/或所述阻燃剂之前,从所述传热装置中移出至少部分所述现有R-134a的步骤。

说明书全文

传热组合物

[0001] 本发明涉及传热组合物,并尤其涉及可适于作为现有制冷剂如R-134a、R-152a、R-1234yf、R-22、R-410A、R-407A、R-407B、R-407C、R507和R-404a的替代品的传热组合物。
[0002] 在本说明书中,先前公开的文献或任何背景技术的列举或论述未必被视为承认该文献或背景技术是现有技术的一部分或是公知常识。
[0003] 机械制冷系统和相关的传热装置如空调系统广为人知。在这些系统中,制冷剂液体在低压下蒸发,从周围区域中带走热。随后将所得蒸气压缩并传至冷凝器中,蒸气在其中冷凝并将热释放至第二区域,冷凝液通过膨胀返回到蒸发器中,从而完成循环。用于压缩蒸气和泵送液体所需的机械能由例如电动机内燃机提供。
[0004] 除了具有合适的沸点和高的气化潜热外,制冷剂优选的性质包括低毒性、不可燃性、无腐蚀性、高稳定性和不具有难闻的气味。另一些期望的性质是在低于25巴的压下的易压缩性、压缩时的低排出温度、高制冷容量、高效率(高性能系数)和在期望的蒸发温度下超过1巴的蒸发器压力。
[0005] 二氯二氟甲烷(制冷剂R-12)具有合适的性质的组合,并且是多年来使用最广泛的制冷剂。由于国际上注意到完全和部分卤化的含氯氟正在破坏地球的保护性臭层,因此达成了应该严格限制它们的制造和使用并最终逐步完全淘汰的共识。20世纪90年代,逐步淘汰了二氯二氟甲烷的使用。
[0006] 由于氯二氟甲烷(R-22)较低的臭氧消耗潜势,所以其被作为R-12的替代品引入。后来注意到R-22是一种强效的温室气体,因此其使用也被逐步停止。
[0007] 虽然本发明涉及类型的传热装置是基本封闭的系统,但是由于在装置操作过程期间或在维护程序期间的泄漏,可发生制冷剂损失到大气中。因此,用具有零臭氧消耗潜势的材料替代完全和部分卤化的含氯氟烃制冷剂是非常重要的。
[0008] 除了臭氧消耗的可能性外,已提出大气中显著浓度的卤代烃制冷剂可促进全球变暖(所谓的温室效应)。因此,期望使用由于能够与另一些大气组分(如羟基自由基)反应或者因为它们容易通过光解过程所降解而具有相对短的大气寿命的制冷剂。
[0009] 已引入了R-410A和R-407制冷剂(包括R-407A、R-407B和R-407C)作为R-22的替代制冷剂。但是,R-22、R-410A和R-407制冷剂都具有高的全球暖化潜势(GWP,也称为温室暖化潜势)。
[0010] 引入了1,1,1,2-四氟乙烷(制冷剂R-134a)作为R-12的替代制冷剂。R-134a为能量高效的制冷剂,目前用于机动车空调。然而,其为温室气体,相对于CO2的GWP为1430(CO2的GWP定义为1)。使用该气体的机动车空调系统的总体环境影响(其可归因于制冷剂的直接排放)的比例通常在10-20%范围内。欧盟现已通过立法,对从2011年开始的新车型,排除GWP大于150的制冷剂的使用。汽车工业与全球技术平台息息相关,在任何情况下,温室气体的排放都具有全球影响,因此需要找到比HFC-134a具有降低的环境影响(例如降低的GWP)的流体
[0011] 已将R-152a(1,1-二氟乙烷)确定为R-134a的替代品。它比R-134a稍微更有效并且温室暖化潜势为120。但是,例如R-152a的可燃性被认为太高而无法在机动车空调系统中安全使用。尤其认为,其在空气中的可燃下限太低,其火焰速度太高以及其点火能量太低。
[0012] 因此,需要提供具有改善的性质(如低可燃性)的替代制冷剂。氟烃燃烧化学是复杂的和不可预测的。不可燃的氟烃与可燃的氟烃混合并不总是降低流体的可燃性或降低空气中可燃的组合物的范围。例如,本发明人已发现,如果将不可燃的R-134a与可燃的R-152a混合,则混合物的可燃下限以不可预测的方式改变。如果考虑三元或四元组合物,那么这种情况变得甚至更复杂和更不可预测。
[0013] 还需要提供替代制冷剂,其可用于具有少许改造或不改造的现有装置(如制冷装置)。
[0014] 已将R-1234yf(2,3,3,3-四氟丙烯)确定为候选的替代制冷剂,以在某些应用、尤其是在机动车空调或热泵应用中替代R-134a。其GWP约为4。R-1234yf是可燃的,但是其可燃性特征对于包括机动车空调或热泵的一些应用而言通常被认为是可以接受的。尤其,当与R-152a相比时,其可燃下限高于R-152a、其最小点火能量高于R-152a并且其在空气中的火焰速度显著低于R-152a。
[0015] 在温室气体排放方面,认为运行空调或制冷系统的环境影响不仅应参照制冷剂的所谓的“直接”GWP,还应参照所谓的“间接”排放,即由使系统运行的电能燃料消耗而造成的那些二氧化的排放。已经开发了这种总GWP影响的几种度量,包括被称为总等价暖化效应(Total EquivalentWarming Impact,TEWI)分析或生命周期碳生产(Life-Cycle CarbonProduction,LCCP)分析的那些度量。这两种测量均包括评价制冷剂GWP和能量效率对总体变暖影响的影响。还应考虑与制冷剂和系统装置的制造相关的二氧化碳排放。
[0016] 已发现R-1234yf的能量效率和制冷容量显著低于R-134a,此外,已发现流体在系统管道和热交换器中表现出增加的压降。其结果是,要使用R-1234yf并且获得与R-134a相当的能量效率和冷却性能,需要增加装置的复杂性并增加管道的尺寸,从而引起与装置相关的间接排放增加。另外,认为R-1234yf的生产在其原料使用方面(氟化和氯化)比R-134a更复杂并且效率更低。对R-1234yf的长期定价的当前预测为R-134a的10-20倍。此价格差异和在硬件上的额外支出的需要将限制更换制冷剂的速度并因此限制制冷或空调的总体环境影响可被降低的速度。总起来说,采用R-1234yf替代R-134a将比R-134a消耗更多的原料并且导致更多的温室气体的间接排放。
[0017] 一些设计用于R-134a的现有技术甚至不能接受一些传热组合物降低的可燃性(GWP小于150的任何组合物被认为是在某种程度上可燃)。
[0018] 因此,本发明的一个主要目的是提供一种传热组合物,其自身可恰当地或合适地用作现有制冷用途的替代品,所述传热组合物应具有降低的GWP,还应具有与例如使用现有制冷剂(例如R-134a、R-152a、R-1234yf、R-22、R-410A、R-407A、R-407B、R-407C、R507和R-404a)所得到的容量和能量效率(其可适宜地表示为“性能系数”)的值的偏差理想地在10%以内,优选地与这些值的偏差在少于10%(例如,约5%)以内。本领域已知流体之间这种量级的差异通常通过重新设计装置和系统操作的特点来解决。该组合物理想地还应具有降低的毒性和可接受的可燃性。
[0019] 本发明通过提供一种传热组合物解决了上述不足,所述传热组合物包含:(i)第一组分,其选自反式-1,3,3,3-四氟丙烯(R-1234ze(E))、顺式-1,3,3,3-四氟丙烯(R-1234ze(Z))、和它们的混合物;(ii)二氧化碳(CO2或R-744);以及(iii)第三组分,其选自1,1-二氟乙烷(R-152a)、氟乙烷(R-161)、和它们的混合物。
[0020] 本文所描述的所有化学药品都是市售的。例如,含氟化合物可从Apollo Scientific(英国)获得。
[0021] 通常,本发明的组合物包含反式-1,3,3,3-四氟丙烯(R-1234ze(E))。大多数本文中所述的具体组合物都包含R-1234ze(E)。当然,应理解,此类组合物中的一些或全部R-1234ze(E)可用R-1234ze(Z)替代。但反式异构体是目前优选的。
[0022] 通常,本发明的组合物包含按重量计至少约5%,优选地按重量计至少约15%的R-1234ze(E)。在一个实施方案中,本发明的组合物包含按重量计至少约45%,例如按重量计约50%至约98%的R-1234ze(E)。
[0023] 对于本发明,组分的优选的量和选择由以下性质的组合决定:
[0024] (a)可燃性:优选不可燃或弱可燃的组合物。
[0025] (b)制冷剂在空调系统蒸发器中的有效工作温度
[0026] (c)混合物的温度“滑移”及其对换热器性能的影响。
[0027] (d)组合物的临界温度。其应高于最大预期冷凝器温度。
[0028] 在空调循环(尤其是机动车空调)中的有效工作温度由避免制冷剂蒸发器的空气侧表面上结的需要进行限制。通常,空调系统必须冷却湿空气并对湿空气去湿;因而将在空气侧表面上形成液体。大多数蒸发器(机动车应用也不例外)具有散热片间距狭窄的散热片表面。如果蒸发器太冷,则可能在散热片之间结冰,从而限制表面上空气的流量并因减小换热器的工作面积而降低总体性能。
[0029] 对 于 机 动 车 空 调 应 用 (AD Althouse 等,Modern Refrigeration and AirConditioning,1988版,第27章,其通过引用并入本文)而言已知的是,为确保由此避免结冰的问题,优选-2℃或更高的制冷剂蒸发温度。
[0030] 还已知非共沸制冷剂混合物在蒸发或冷凝中表现出温度“滑移”。换句话说,随着制冷剂在恒定的压力下逐渐蒸发或冷凝,温度将升高(在蒸发中)或下降(在冷凝中),总温差(入口到出口)被称为温度滑移。滑移对蒸发和冷凝温度的影响也必须考虑。
[0031] 传热组合物的临界温度应高于最大预期冷凝器温度。这是因为,随着临界温度的接近,循环效率将下降。当这发生时,制冷剂的潜热降低,因此冷凝器中因冷却气态制冷剂而发生更多的排热;这对于每单位传热来说需要更大的面积。
[0032] R-410A常用于建筑和家用热泵系统中,举例来说,其约71℃的临界温度高于递送约50℃下的可用温热空气所需的最高标准冷凝温度。机动车负载工作状态需要约50℃的空气,因而如果要利用常规的蒸气压缩循环,则本发明的流体的临界温度应高于此温度。临界温度优选比最大空气温度高至少15K。
[0033] 在一个方面中,本发明的组合物的临界温度高于约65℃,优选高于约70℃。
[0034] 本发明的组合物的二氧化碳含量主要受到上面的考虑因素(b)和/或(c)和/或(d)限制。适宜地,本发明的组合物通常包含按重量计至多约35%,优选地按重量计至多约30%的R-744。
[0035] 在一个优选的方面,本发明的组合物包含按重量计约4%至约30%,优选地按重量计约4%至约28%,或按重量计约8%至约30%,或按重量计约10%至约30%的R-744。
[0036] 包含可燃制冷剂R-152a或R-161中之一或这二者的第三组分的含量选择为使得,即使在组合物不存在二氧化碳要素的情况下,剩余的氟烃混合物在空气中于周围温度(例如23℃)下的可燃下限(如在ASHRAE-3412升烧瓶试验装置中测得)也高于5%v/v、优选高于6%v/v、最优选使得混合物不可燃。可燃性问题将在本说明书后面进一步讨论。
[0037] 通常,本发明的组合物包含按重量计至多约60%的第三组分。优选地,本发明的组合物包含按重量计至多约50%的第三组分。适宜地,本发明的组合物包含按重量计至多约45%的第三组分。在一个方面,本发明的组合物包含按重量计约1%至约40%的第三组分。
[0038] 在一个实施方案中,本发明的组合物包含按重量计约10%至约95%的R-1234ze(E),按重量计约2%至约30%的R-744,和按重量计约3%至约60%的第三组分。
[0039] 本文(包括权利要求书)的组合物中,除非另有说明,否则本文所使用的所提到的所有%量均是基于该组合物的总重量按重量计的。
[0040] 为避免疑义,应理解,在本文描述的本发明的组合物中,提及的组分的量的范围的上限值和下限值可以以任何方式互换,前提是所得范围落在本发明的最宽范围内。
[0041] 在一个实施方案中,本发明的组合物基本上由第一组分(例如R-1234ze(E))、R-744和第三组分组成(或由第一组分(例如R-1234ze(E))、R-744和第三组分组成)。
[0042] 术语“基本上由......组成”意指本发明的组合物基本不包含其它组分,尤其不包含已知用于传热组合物的另一些(氢化)(氟代)化合物(例如(氢化)(氟代)烷或(氢化)(氟代)烯)。我们将术语“由...组成”包含在“基本上由...组成”的含义之内。
[0043] 为避免疑义,本文所描述的任何本发明的组合物(包括化合物具体确定且化合物或组分的量具体确定的那些),可基本上由在那些组合物中所确定的化合物或组分组成(或由在那些组合物中所确定的化合物或组分组成)。
[0044] 第三组分选自R-152a、R161以及它们的混合物。
[0045] 在一个方面中,第三组分仅包含所列组分中的一种。例如,第三组分可仅包含1,1-二氟乙烷(R-152)或氟乙烷(R-161)中的一种。因此,本发明的组合物可为R-152a或R-161中之一、R-1234ze(E)和R-744的三元共混物。然而,R-152a和R-161的混合物可被用作第三组分。
[0046] 本发明涵盖其中第三组分中包括另外的化合物的组合物。这样的化合物的实例包括二氟甲烷(R-32)、1,1,1,2-四氟乙烷(R-134a)、2,3,3,3-四氟丙烯(R-1234yf)、3,3,3-三氟丙烯(R-1243zf)、1,1,1-三氟丙烷(R-263fb)、1,1,1,2,3-五氟丙烷(R-245eb)、丙烯(R-1270)、丙烷(R-290)、正丁烷(R-600)、异丁烷(R-600a)、(R-717)以及它们的混合物。
[0047] 例如,本发明的组合物可包含R-134a。如果有的话,R-134a通常以按重量计约2%至约50%,例如按重量计约5%至约40%(例如按重量计约5%至约20%)的量存在。
[0048] 优选地,包含R-134a的本发明的组合物用ASHRAE-34方法在60℃的试验温度下是不可燃的。有利地,在约-20℃和60℃之间的任何温度下与本发明的组合物平衡地存在的蒸气混合物是不可燃的。
[0049] 在一个实施方案中,第三组分包含R-152a。第三组分可基本上由R-152a组成,或由R-152a组成。
[0050] 包含R-152a的本发明的组合物通常以按重量计约2%至约50%的量,适宜地按重量计约3%至约45%的量,优选地按重量计约4%至约30%的量包含R-152a。
[0051] 本发明优选的组合物包含约30%至约94%的R-1234ze(E)、按重量计约4%至约30%的R-744和按重量计约2%至约40%的R-152a。
[0052] 另一些优选的组合物包含按重量计约42%至约85%的R-1234ze(E)、按重量计约10%至约28%的R-744和按重量计约5%至约30%的R-152a。
[0053] 在另一个实施方案中,第三组分包含R-161。第三组分可基本上由R-161组成(或由R-161组成)。
[0054] 包含R-161的本发明的组合物通常以按重量计约2%至约30%的量,适宜地按重量计约3%至约20%的量,例如按重量计约4%至约15%的量包含R-161。
[0055] 本发明优选的组合物包含按重量计约45%至约94%的R-1234ze(E)、按重量计约4%至约30%的R-744和按重量计约2%至约25%的R-161。例如,该组合物可包含按重量计约52%至约86%的R-1234ze(E)、按重量计约10%至约28%的R-744和按重量计约4%至约20%的R-161。
[0056] 本发明的另一些有利的组合物包含按重量计约62%至约92%的R-1234ze(E)、按重量计约10%至约28%的R-744和按重量计约2%至约10%的R-161。
[0057] 本发明的组合物可还包含五氟乙烷(R-125)。如果有的话,R-125通常以按重量计至多约40%、优选地按重量计约2%至约20%的量存在。
[0058] 根据本发明的组合物适宜地基本上不包含R-1225(五氟丙烯)、适宜地基本上不包含R-1225ye(1,2,3,3,3-五氟丙烯)或R-1225zc(1,1,3,3,3-五氟丙烯),这些化合物可能具有相关毒性问题。
[0059] “基本上不”意指本发明的组合物包含基于该组合物总重量,按重量计0.5%或更少、优选0.1%或更少的所述组分。
[0060] 本发明的某些组合物可以基本上不包含:
[0061] (i)2,3,3,3-四氟丙烯(R-1234yf),
[0062] (ii)顺式-1,3,3,3-四氟丙烯(R-1234ze(Z)),和/或
[0063] (iii)3,3,3-三氟丙烯(R-1243zf)。
[0064] 本发明的组合物具有零臭氧消耗潜势。
[0065] 通常,本发明的组合物的GWP小于1300,优选小于1000,更优选小于800、500、400、300或200,尤其小于150或100,在一些情况下甚至小于50。除非另有说明,否则在本文中使用IPCC(IntergovernmentalPanel on Climate Change,联合国政府间气候变化专委员会)TAR(第三次评估报告,Third Assessment Report)的GWP值。
[0066] 有利地,当与单独的第三组分(例如R-161或R-152a)相比时,所述组合物的可燃性危险降低。优选地,当与R-1234yf相比时,所述组合物的可燃性危险降低。
[0067] 在一个方面中,与第三组分如R-152a或R-161相比或者与R-1234yf相比,组合物具有:(a)较高的可燃下限、(b)较高的点火能量或(c)较低的火焰速度中的一个或更多个。在一个优选的实施方案中,本发明的组合物是不可燃的。有利地,在约-20℃和60℃之间的任何温度下与本发明的组合物平衡地存在的蒸气混合物也是不可燃的。
[0068] 可燃性可根据ASHRAE Standard 34结合ASTM Standard E-681,采用根据2004年的附录第34页的试验方法来确定,其全部内容通过引用并入本文。
[0069] 在一些应用中,可不必根据ASHRAE 34方法而将制剂分类为不可燃;可以开发在空气中的可燃极限充分降低的流体以使得它们安全用于应用中,例如,如果使制冷装置料泄露到周围环境中实际上也不可能产生可燃的混合物。
[0070] R-1234ze(E)在空气中于23℃下是不可燃的,但其在较高的温度下在湿空气中具有可燃性。我们已通过实验确定,如果R-1234ze(E)与可燃氟烃如R-32、R-152a或R-161的混合物的“氟比率”Rf大于约0.57,则该混合物将在空气中于23℃下保持不可燃,其中Rf按总的制冷剂混合物的克分子数定义为:
[0071] Rf=(氟的克分子数)/(氟的克分子数+氢的克分子数)
[0072] 因此,对于R-161,Rf=1/(1+5)=1/6(0.167)且其可燃,相比之下,R-1234ze(E)的Rf=4/6(0.667)且其不可燃。通过实验,我们发现,20%v/v的R-161/R-1234ze(E)混合物类似地不可燃。该不可燃混合物的氟比率为0.2*(1/6)+0.8*(4/6)=0.567。
[0073] 可燃性和0.57或更高的氟比率之间的这一关系的有效性迄今已对HFC-32、HFC-152a和HFC-32与HFC-152a的混合物予以实验证实。
[0074] Takizawa等人,Reaction Stoich iometry for Combustion ofFluoroethane Blends,ASHRAE Transactions 112(2)2006(其通过引用并入本文)表明,包含R-152a的混合物的该比率与火焰速度之间存在近似线性关系,氟比率增加使火焰速度降低。该引文中的数据教导的是,氟比率需要大于约0.65以使得火焰速度降为零,换言之,使得该混合物不可燃。
[0075] 类似地,Minor等人(Du Pont专利申请WO2007/053697)提供了对许多氢氟烯烃的可燃性的教导,显示如果氟比率大于约0.7,可期望这样的化合物成为不可燃的。
[0076] 鉴于该现有技术教导,出乎意料的是,如果R-1234ze(E)与可燃氟烃如R-152a或R-161的混合物的氟比率Rf大于约0.57,则该混合物将在空气中于23℃下保持不可燃。
[0077] 此外,我们确定,如果氟比率大于约0.46,则可期望组合物在空气中于室温下具有高于6%v/v的可燃下限。
[0078] 通过制备包含出乎意料地低的量的R-1234ze(E)的低可燃或不可燃的R-744/第三组分/R-1234ze(E)共混物,这样的组合物中特别是第三组分的量增加。与包含较高量(例如几乎100%)的R-1234ze(E)的对应组合物相比,认为这使得传热组合物表现出增加的冷却容量和/或减少的压降。
[0079] 因此,本发明的组合物表现出低可燃性/不可燃性、低GWP和改善的制冷性能特性的完全出乎意料的组合。下面对这些制冷性能特性中的一些进行更详细地解释。
[0080] 温度滑移是制冷剂的一个特征,其可认为是恒压下非共沸混合物的泡点温度与露点温度之间的差值;如果需要用混合物替代流体,那么常常优选滑移类似或降低的替代流体。在一个实施方案中,本发明的组合物是非共沸的。
[0081] 有利地,本发明的组合物的容积制冷量为其所替代的现有制冷剂流体的至少85%,优选至少90%或甚至至少95%。
[0082] 本发明的组合物的容积制冷量通常为R-1234yf的至少90%。优选地,本发明的组合物的容积制冷量为R-1234yf的至少95%,例如R-1234yf的约95%至约120%。
[0083] 在一个实施方案中,本发明的组合物的循环效率(性能系数,COP)与其所替代的现有制冷剂流体的偏差在约5%以内,或者甚至比其更好。
[0084] 适宜地,本发明的组合物的压缩机排出温度与其所替代的现有制冷剂流体的偏差在约15K以内,优选在约10K以内或甚至在约5K以内。
[0085] 优选地,本发明的组合物在相当的条件下的能量效率为R-134a的至少95%(优选地至少98%),同时压降特征降低或相当以及冷却容量为R-134a值的95%或更高。有利地,该组合物在相当的条件下具有比R-134a更高的能量效率和更低的压降特征。有利地,该组合物还具有比单独的R-1234yf更好的能量效率和压降特征。
[0086] 本发明的传热组合物适用于现有的装置设计,并且与目前和已确立的HFC制冷剂一起使用的所有种类的润滑剂相容。通过使用适当的添加剂,它们可以任选地用矿物油稳定化或与其相容。
[0087] 优选地,当用于传热装置时,本发明的组合物与润滑剂组合。
[0088] 适宜地,所述润滑剂选自:矿物油、油、多烷基苯(PAB)、多元醇酯(POE)、聚亚烷基二醇(PAG)、聚亚烷基二醇酯(PAG酯)、聚乙烯醚(PVE)、聚(α-烯烃)及它们的组合。
[0089] 有利地,所述润滑剂还包含稳定剂。
[0090] 优选地,所述稳定剂选自基于二烯的化合物、磷酸盐/酯、酚化合物和环氧化物以及它们的混合物。
[0091] 适宜地,本发明的组合物可与阻燃剂组合。
[0092] 有利地,所述阻燃剂选自三-(2-氯乙基)-磷酸酯、(氯丙基)磷酸酯、三-(2,3-二溴丙基)-磷酸酯、三-(1,3-二氯丙基)-磷酸酯、磷酸氢二铵、各种卤代芳族化合物、氧化锑、三水合、聚氯乙烯、氟化碘代烃、氟化溴代烃、三氟碘甲烷、全氟烷基胺、溴-氟烷基胺以及它们的混合物。
[0093] 优选地,所述传热组合物是制冷剂组合物。
[0094] 在一个实施方案中,本发明提供一种包含本发明的组合物的传热装置。
[0095] 优选地,所述传热装置是制冷装置。
[0096] 适宜地,所述传热装置选自:机动车空调系统、家用空调系统、商用空调系统、家用制冷器系统、家用冷冻器系统、商用制冷器系统、商用冷冻器系统、冷却器空调系统、冷却器制冷系统、以及商用或家用热泵系统。优选地,所述传热装置是制冷装置或空调系统。
[0097] 本发明的组合物特别适用于移动式空调应用,例如机动车空调系统(例如用于机动车空调的热泵循环)。
[0098] 有利地,所述传热装置包含离心型压缩机。
[0099] 本发明还提供本发明的组合物在本文所述传热装置中的用途。
[0100] 根据本发明的又一个方面,提供了一种包含本发明的组合物的发泡剂。
[0101] 根据本发明的另一个方面,提供了一种可发泡组合物,其包含一种或更多种能够形成泡沫的组分和本发明的组合物。
[0102] 优选地,所述一种或更多种能够形成泡沫的组分选自:聚氨酯、热塑性聚合物树脂如聚苯乙烯及环氧树脂
[0103] 根据本发明的又一个方面,提供了一种可得自本发明的可发泡组合物的泡沫。
[0104] 优选地,所述泡沫包含本发明的组合物。
[0105] 根据本发明的另一个方面,提供了一种可喷射组合物,其包含待喷射材料和包含本发明的组合物的推进剂。
[0106] 根据本发明的又一个方面,提供了一种用于冷却制品的方法,其包括使本发明的组合物冷凝,然后使所述组合物在待冷却制品附近蒸发。
[0107] 根据本发明的另一个方面,提供了一种用于加热制品的方法,其包括在待加热制品附近冷凝本发明的组合物,然后蒸发所述组合物。
[0108] 根据本发明的又一个方面,提供了一种用于从生物质中提取物质的方法,其包括使生物质与包含本发明的组合物的溶剂接触,以及将所述物质与所述溶剂分离。
[0109] 根据本发明的另一个方面,提供了一种清洁制品的方法,其包括使制品与包含本发明的组合物的溶剂接触。
[0110] 根据本发明的又一个方面,提供了一种用于从水溶液中提取材料的方法,其包括使水溶液与包含本发明的组合物的溶剂接触,以及将所述材料与所述溶剂分离。
[0111] 根据本发明的另一个方面,提供了一种用于从颗粒固体基体中提取材料的方法,其包括使颗粒固体基体与包含本发明的组合物的溶剂接触,以及将所述材料与所述溶剂分离。
[0112] 根据本发明的又一个方面,提供了一种含有本发明的组合物的机械发电装置。
[0113] 优选地,所述机械发电装置适于使用兰金循环或其变型以由热产生功。
[0114] 根据本发明的另一个方面,提供了一种改造传热装置的方法,其包括移出现有传热流体并引入本发明的组合物的步骤。优选地,所述传热装置是制冷装置或(静态)空调系统。有利地,所述方法还包括获得配给温室气体(例如二氧化碳)排放配额的步骤。
[0115] 根据上述的改造方法,在引入本发明的组合物之前,可将现有传热流体从传热装置中完全移出。也可将现有传热流体从传热装置中部分移出,随后引入本发明的组合物。
[0116] 在另一个实施方案中,其中现有传热流体是R-134a并且本发明的组合物包含R134a、R-1234ze(E)、R-744、第三组分和任何存在的R-125(以及任选的组分如润滑剂、稳定剂或附加的阻燃剂),可将R-1234ze(E)和R-744等添加至传热装置中的R-134a,从而原位形成本发明的组合物和本发明的传热装置。在添加R-1234ze(E)、R-744等之前,可将一些现有R-134a从传热装置中移出,从而有助于按所需比例提供本发明的组合物的组分。
[0117] 因此,本发明提供一种用于制备本发明的组合物和/或传热装置的方法,其包括将R-1234ze(E)、R-744、第三组分、任何所需的R-125以及任选的组分(如润滑剂、稳定剂或附加的阻燃剂)引入含有现有传热流体(其为R-134a)的传热装置。任选地,在引入R-1234ze(E)、R-744等之前,将至少部分R-134a从传热装置中移出。
[0118] 当然,本发明的组合物也可通过以所需比例混合R-1234ze(E)、R-744、第三组分、任何所需的R-125(以及任选的组分如润滑剂、稳定剂或附加的阻燃剂)来简单地制备。之后可以将所述组合物添加至传热装置(或者以本文中所定义的任何其它方式使用),所述传热装置不含R-134a或任何其它的现有传热流体,如已移出R-134a或任何其它的现有传热流体的装置。
[0119] 在本发明的又一个方面中,提供了一种用于减少由于操作产品(包含现有化合物或组合物)而引起的环境影响的方法,所述方法包括利用本发明的组合物至少部分地替代现有的化合物或组合物。优选地,这个方法包括获得配给温室气体排放配额的步骤。
[0120] 所述环境影响包括通过操作产品而产生和排放温室变暖气体。
[0121] 如上所述,可认为这种环境影响不仅包括来自泄漏或其它损失的具有显著环境影响的化合物或组合物的那些排放,还包括由装置在其工作寿命中消耗的能量引起的二氧化碳排放。这种环境影响可以通过称为总等价暖化效应(TEWI)的度量来量化。该度量已经用于量化某种固定制冷和空调装置(包括例如超市制冷系统)的环境影响(参见例如http://en.wikipedia.org/wiki/Total equivalent warming impact)。
[0122] 还可认为环境影响包括由于合成和制造化合物或组合物而引起的温室气体排放。在这种情况下,制造的排放被计入能量消耗和直接损耗效应以得到称为生命周期碳生产(LCCP,参见例如http://www.sae.org/events/aars/presentations/2007papasavva.pdf)的度量。LCCP常用于评价机动车空调系统的环境影响。
[0123] 排放配额由降低促进全球变暖的污染物排放而获得并且可以例如储存、交易或销售。它们常规上以二氧化碳当量表示。因此,如果避免1kgR-134a的排放,则可获得1×1300=1300kg CO2当量的排放配额。
[0124] 在本发明的另一个实施方案中,提供了一种用于生成温室气体排放配额的方法,其包括(i)利用本发明的组合物替代现有化合物或组合物,其中本发明的组合物的GWP比现有化合物或组合物更低;和(ii)因所述替代步骤获得温室气体排放配额。
[0125] 在一个优选的实施方案中,与使用现有化合物或组合物得到的装置相比,使用本发明的组合物使得装置的总等价暖化效应更低和/或生命周期碳生产更低。
[0126] 可以对任何合适的产品实施这些方法,例如在空调、制冷(例如低温和中温制冷)、传热、发泡剂、气溶胶或可喷射推进剂、气态电介质、冷冻技术、兽医程序、牙科程序、灭火、火焰抑制、溶剂(例如调味品和香料的载体)、清洁剂、气喇叭、丸粒枪、局部麻醉剂和膨胀应用的领域中。优选地,所述领域是空调或制冷。
[0127] 合适的产品的实例包括传热装置、发泡剂、可发泡组合物、可喷射组合物、溶剂和机械发电装置。在一个优选的实施方案中,所述产品是传热装置,如制冷装置或空调机组。
[0128] 如通过GWP和/或TEWI和/或LCCP所测量的,现有化合物或组合物的环境影响高于替代它的本发明的组合物。所述现有化合物或组合物可包含氟烃化合物,如全氟-、氢氟-、氯氟-或氢氯氟-烃化合物或其可包含氟化烯烃。
[0129] 优选地,所述现有化合物或组合物是传热化合物或组合物,如制冷剂。可以被替代的制冷剂的实例包括R-134a、R-152a、R-1234yf、R-410A、R-407A、R-407B、R-407C、R507、R-22和R-404A。本发明的组合物尤其适合作为R-134a、R-152a或R-1234yf、特别是R-134a或R-1234yf的替代品。
[0130] 可以替代任意量的现有化合物或组合物以减少环境影响。这可取决于被替代的现有化合物或组合物的环境影响和本发明的替代组合物的环境影响。优选地,产品中的现有化合物或组合物完全被本发明的组合物替代。
[0131] 通过下列非限制性实施例对本发明进行说明。实施例
[0132] 模型化性能数据
[0133] 精确物理性质模型的生成
[0134] 制冷循环性能建模所需的R-1234yf和R-1234ze(E)的物理性质,即临界点、蒸气压、液体和蒸气、液体和蒸气密度及蒸气和液体的热容,通过实验方法在0-200巴的压力范围和-40至200℃的温度范围上精确地测定,所得数据用来在NIST REFPROP 8.0版软件中为流体生成Span-Wagner型状态模型的亥姆霍兹(Helmholtz)自由能方程,这在用户指南www.nist.gov/srd/PDFfiles/REFPROP8.PDF中有更充分的描述并通过引用并入本文。两种流体的理想气体焓随温度的变化用分子建模软件Hyperchem v7.5(其通过引用并入本文)估算并将所得理想气体焓函数用在这些流体的状态方程的回归中。将该模型对R-1234yf和R-1234ze(E)的推算值与通过使用REFPROP 9.0版(通过引用并入本文)中包括的针对R-1234yf和R-1234ze(E)的标准文件所产生的推算值加以比较。发现对每种流体的性质获得很好的吻合。
[0135] 在一系列与二氧化碳、R-32、R-125、R-134a、R-152a、R-161、丙烷和丙烯的二元对中于-40至+60℃的温度范围上研究R-1234ze(E)的气-液平衡行为,所述温度范围涵盖大多数制冷和空调系统的实际工作范围。在实验程序中对每种二元对在整个组成空间上改变组成,将每种二元对的混合物参数回归到实验方法获得的数据并还将所述参数结合到REFPROP软件模型中。接下来查找学术文献中关于二氧化碳与氢氟烃R-32、R-125、R-152a、R-161和R-152a的气-液平衡行为的数据。然后使用自R.Akasaka的论文Applications of the simple multi-fluid model tocorrelations of the vapour-liquid equilibrium of refrigerant mixturescontaining carbon dioxide,Journal of Thermal Science and Technology,159-168,4,1,2009(其通过引用并入本文)中引用的出处得到的VLE数据来生成相关的二元混合物的混合参数,然后将这些也结合到REFPROP模型中。还将二氧化碳与丙烷和丙烯的标准REFPROP混合参数结合到该模型中。
[0136] 使用所得软件模型来比较选定的本发明流体与R-134a在热泵循环应用中的性能。
[0137] 热泵循环比较
[0138] 在第一个比较中,针对简单的蒸气压缩循环使用机动车热泵负载工作状态典型的条件在低的冬季周围温度下评价流体的行为。在此比较中,通过对参比流体(R-134a)指定代表性的预期压降、然后估算本发明的混合制冷剂在相同的装置中于相同的热容量下的等同压降来在模型中包括进压降影响。在相等的换热面积的基础上对参比流体(R-134a)和本发明的混合流体进行比较。推导此模型所用的方法是用制冷剂冷凝、制冷剂蒸发、制冷剂液体过冷和制冷剂蒸气过热过程的同等有效总传热系数的假定来为此过程推导所谓的UA模型。用于热泵循环中的非共沸制冷剂混合物的此类模型的推导在参考文献R Radermacher & Y Hwang,VaporCompression Heat Pumps with refrigerant mixtures(pub Taylor & Francis2005)第三章(其通过引用并入本文)中有更充分的解释。
[0139] 简言之,该模型从制冷剂混合物的冷凝和蒸发压力的初始估算值开始并估算在冷凝器中的冷凝过程以及蒸发器中的蒸发过程开始和结束时的相应温度。然后将这些温度与冷凝器和蒸发器上空气温度的指定变化结合使用来估算冷凝器和蒸发器中的每一个所需的总换热面积。此估算为迭代计算:调节冷凝和蒸发压力以确保对参比流体和对所述混合制冷剂的总换热面积相同。
[0140] 对于该比较,机动车应用中热泵的最坏情况假定为具有如下对空气温度和对R-134a循环条件的假定。
[0141] 循环条件
[0142]
[0143] 该模型假定每个换热器在其每个换热过程的有效温差的计算中为逆流流动。
[0144] 调节组合物的冷凝和蒸发温度以给出与参比流体相当的换热面积使用。使用以下输入参数。
[0145]
[0146] 使用上述模型,参比R-134a的性能数据在下面示出。
[0147]
[0148] 针对选定的本发明组合物生成的性能数据列于下面的表中。这些表示出了热泵循环的关键参数,包括工作压力、容积热容量、能量效率(以加热性能系数COP表示)、压缩机排出温度和管道系统中的压降。制冷剂的容积热容量为对于在固定的速度下运行的给定大小的压缩机可获得的加热量的度量。性能系数(COP)为热泵循环的冷凝器中递送的热能的量与压缩机消耗的功的量的比率。
[0149] 取R-134a的性能作为比较热容量、能量效率和压降的参比点。使用该流体作为参比以比较本发明的流体用于机动车复合的空调和热泵系统的热泵模式中的能力。
[0150] 应顺便指出,本发明的流体的实用性不限于机动车系统。实际上,这些流体可用在所谓的固定(家用或商用)装置中。目前,此类固定装置中使用的主要流体为R-410A(GWP为2100)或R22(GWP为1800、臭氧消耗潜势为0.05)。本发明的流体在此类固定装置中的使用提供了实现类似的实用性但使用的流体不具有臭氧消耗潜势且GWP比R410A显著减小的能力。
[0151] 很明显,本发明的流体可提供比R-134a或R-410A改善的能量效率。出乎意料地发现,向本发明的制冷剂中添加二氧化碳可将所得循环的COP提高到R-134a的之上,甚至在其中其它混合物组分的混合将导致流体的能量效率比R-134a差的情况下亦如此。
[0152] 还发现,对于所有本发明的流体,可使用含至多约30%w/w CO2的组合物,其产生临界温度为约70℃或更高的制冷剂流体。对于其中目前使用R-410A的固定热泵应用而言,这尤其重要。蒸气压缩过程的基本热力学效率受临界温度与冷凝温度的接近度的影响。R-410A已获得接受并可视为此应用可接受的流体;其临界温度为71℃。已出乎意料地发现,可在本发明的流体中引入显著量的CO2(临界温度31℃)来产生与R-410A具有相似或更高临界温度的混合物。本发明的优选组合物因此具有约70℃或更高的临界温度。
[0153] 本发明的优选流体的热容量通常超过R134a的热容量。据认为,单独的R-134a在机动车空调和热泵系统中运行不能提供热泵模式中的全部潜在通过空气加热需求。因此,比R-134a高的热容量对于在机动车空调和热泵应用中的潜在使用是优选的。本发明的流体提供了针对空调模式和冷却模式二者优化流体容量和能量效率从而为两种负载工作状态提供改善的总能量效率的能力。
[0154] 作为参考,在相同的循环条件下,R-410A的热容量估计为R-134a值的约290%,相应的能量效率发现为R-134a参比值的约106%。
[0155] 通过观察这些表,很明显,已发现本发明的流体具有与R-410A可比的热容量和能量效率,从而允许将现有的R-410A技术改变为使用本发明的流体,如果需要这样的话。
[0156] 本发明的流体的一些其他有益效果在下面更详细地进行描述。
[0157] 在相当的冷却容量下,本发明的组合物提供比R-134a减少的压降。此减少的压降特征据信将带来实际系统中能量效率的进一步改善(通过压力损失的减少)。对于机动车空调和热泵应用来说,压降影响特别重要,因此这些流体为该应用提供特别的益处。
[0158] 比较本发明的流体与CO2/R1234ze(E)二元混合物的性能。对于所有本发明的三元组合物,所述三元混合物的能量效率相对于具有相当的CO2含量的二元混合物均有提高。这些混合物因此代表比CO2/R1234ze(E)二元制冷剂混合物(至少对于CO2含量低于30%w/w)改进的解决方案。
[0159]
[0160]
[0161]
[0162]
[0163]
[0164]
[0165]
[0166]
[0167]
[0168]
[0169]
[0170]
[0171]
[0172]
[0173]
[0174]
[0175]
[0176]
[0177]
[0178]
[0179]
[0180]
[0181]
[0182]
[0183]
[0184]
[0185] 润滑剂混溶性数据
[0186] 测试本发明的组合物与聚亚烷基二醇(PAG)润滑剂YN12的混溶性。该润滑剂以4%w/w的浓度存在。该浓度代表空调系统中存在的典型油浓度。将这些实验的结果与纯R-1234yf和同一润滑剂的混溶性相比较。结果如下所示。
[0187]
[0188] 相对于纯流体R-1234yf,本发明的组合物与润滑剂具有改善的相容性。
[0189] 总起来说,本发明提供了新组合物,其与现有制冷剂如R-134a和被提议的制冷剂R-1234yf相比,表现出有利性质(包括良好的制冷性能、低可燃性、低GWP和/或与润滑剂的混溶性)的出乎意料的组合。
[0190] 本发明由以下权利要求限定。
QQ群二维码
意见反馈