电子机械装置

申请号 CN200510069737.X 申请日 2005-02-16 公开(公告)号 CN1677597A 公开(公告)日 2005-10-05
申请人 施卢默格控股有限公司; 发明人 N·C·莱尔切; J·E·布洛克斯; A·F·范纳鲁索;
摘要 本 发明 涉及一种装置,其包括含有微 电子 机械元件的 开关 ,该微电子机械元件包括容纳 电介质 元件的密封腔和密封腔中的导体。设置该导体使得高于预定 电压 的电压施加到至少一个导体上,引起电介质元件的电离击穿而在导体间提供了导 电路 径。在另一 实施例 中,开关包括 纳米管 电子发射器或 放射性 同位素电子发射器。
权利要求

1.一种装置,包括:包含微电子机械元件的开关,该微电子机械元件包括:容纳电介质元件的密封腔;以及密封腔中的导体,其中设置该导体使得施加高于预定电压时引起电介质元件的电离击穿以在导体间提供导电路径。
2.如权利要求1所述的装置,其中密封腔容纳了氩、氖、氦、氙、氮、和空气中的至少一种。
3.如权利要求2所述的装置,其中密封腔容纳了氩、氖、氦、氙、氮、氧和空气中的至少任意两种的混合物。
4.如权利要求1所述的装置,还包括衬底和盖,其中导体设置在衬底上,其中盖、衬底和导体确定了该密封腔。
5.如权利要求4所述的装置,其中微电子机械装置还包括在盖表面和导体表面之间提供的密封元件以提供密封腔。
6.如权利要求4所述的装置,其中的电介质元件包括电介质气体和电介质液体中的至少一种。
7.如权利要求6所述的装置,其中的微电子机械元件还包括形成在密封腔中导体上的介质层,该介质层具有多个邻接相应导体的开口,以提供从导体穿过密封腔中容纳的电介质气体和电介质液体中至少一种的放电路径。
8.如权利要求1所述的装置,其中微电子机械元件还包括置于密封腔中导体上的纳米管电子发射器。
9.如权利要求8所述的装置,其中纳米管电子发射器包括纳米管电子发射器。
10.如权利要求8所述的装置,其中纳米管电子发射器包括纳米管电子发射器。
11.如权利要求1所述的装置,其中每个导体具有弯曲的侧面,该导体的弯曲侧面横越部分密封腔而彼此面对。
12.如权利要求1所述的装置,其中微电子机械元件还包括接收脉冲信号以引起密封腔中电介质元件击穿的触发电极
13.如权利要求12所述的装置,其中的触发电极在密封腔中。
14.如权利要求12所述的装置,其中触发电极在密封腔之外,但在邻近密封腔处。
15.如权利要求1所述的装置,还包括:与开关电连接的引发器。
16.如权利要求15所述的装置,还包括本地能量源以提供开关的预定电压。
17.如权利要求15所述的装置,其中的引发器包括爆炸箔引发器、爆炸桥引发器和半导体桥引发器中的至少一种。
18.如权利要求1所述的装置,还包括衬底,导体形成于衬底表面上,其中至少部分密封腔在导体的侧面之间。
19.如权利要求1所述的装置,其中电介质元件包括电介质气体和电介质液体中的至少一种。
20.如权利要求19所述的装置,还包括开关所在的外壳,该外壳为密封腔提供密封。
21.如权利要求1所述的装置,还包括邻近开关的放射性物质以提高电介质元件电离击穿的可预计性。
22.如权利要求21所述的装置,其中在密封腔中提供放射性物质。
23.如权利要求21所述的装置,其中的放射性物质包括铬、钍、、镍以及含有一定比例的铬、钍、钾、铀和镍的矿物中的至少一种。
24.如权利要求21所述的装置,其中的放射性物质包括钍、铀和岩盐中的至少一种。
25.一种开关,包括:电导体;和导体间的电介质材料,其中每个导体具有弯曲的侧面,该导体的弯曲侧面横越电介质材料而彼此面对。
26.如权利要求25所述的装置,其中的电导体和电介质材料是微电子机械元件。
27.如权利要求26所述的装置,还包括容纳电介质材料的密封腔,该电介质材料包括气体。
28.一种开关,包括:导体;导体间的电介质材料;以及电连接到至少一个导体的纳米管电子发射器,其中电介质材料适于响应于提供给至少一个导体所施加的电能而击穿,以提供导体间的导电路径。
29.如权利要求28所述的装置,其中的电介质材料包括气体。
30.如权利要求29所述的装置,还包括容纳气体的密封腔。
31.如权利要求30所述的装置,还包括配置在密封腔中导体上的介质层,该介质层具有暴露相应导体的开口。
32.如权利要求31所述的装置,其中的纳米管电子发射器配置在介质层的至少一个开口中,并与至少一个导体电接触
33.一种激活元件的方法,包括:提供具有微电子机械元件的开关,该微电子机械元件包括容纳电介质气体和电介质液体中至少一种的密封腔,以及密封腔中的导体;给至少一个导体施加输入电压,引起该电介质气体和电介质液体中至少一种的击穿,以使得导电路径在导体间延伸;并且通过开关将输入电压电连接到元件。
34.如权利要求33所述的方法,其中将输入电压电连接到该元件包括将输入电压电连接到井装置。
35.如权利要求33所述的方法,其中将输入电压电连接到该元件包括将输入电压电连接到爆炸装置。
36.如权利要求33所述的方法,其中将输入电压电连接到该元件包括将输入电压电连接到爆炸箔引发器、爆炸桥引发器和半导体桥引发器中的至少一种。
37.一种开关,包括:至少两个导体;以及纳米管电子发射器,以形成至少两个导体间的至少部分的导电路径。
38.如权利要求37所述的开关,还包括适于电离的电介质元件,其响应于输入能量而电离,以提供导电路径的另一部分。
39.如权利要求38所述的开关,还包括至少另一个纳米管电子发射器。
40.一种方法,包括:激活一种具有导体以及纳米管电子发射器和放射性同位素电子发射器中至少一种的开关;通过导电路径而导通导体间的电流,其中包括纳米管电子发射器和放射性同位素电子发射器中的至少一种。
41.如权利要求40所述的方法,还包括将爆炸装置耦合到开关。
42.如权利要求40所述的方法,还包括运行一种工具,该工具包括进入井中的开关,其中激活开关包括当工具在井中时激活开关。

说明书全文

电子机械装置

技术领域

发明涉及微电子机械装置。

背景技术

在形成井的过程中,要进行许多不同类型的操作,包括钻井、测井、完井和生产的步骤。使用多种不同类型的装置来执行期望的操作。这些装置的例子包括射孔枪用来执行打孔操作,流控制装置用来控制液体流量(喷射或生产),封隔器用来隔离井的不同区域,以及其它的装置。
激活这些装置的激活机构包括机械、液压和电激活机构。为了电激活井下装置,将电源连接到井下装置上。在井下模的表面或者井下模块之中,这一般是使用开关来完成的。开关最初处于打开状态,用于将电源与井下装置隔离。当需要激活时,开关闭合用于为井下装置提供电源。
在井眼的应用中,一种由气体放电管制成的开关,也即通常所说的火花隙开关,这种开关是触发型或过压型开关。触发型开关使用外部激励来闭合或激活开关。当横跨开关的电压平超过阈值时过压型开关被激活。
有些开关使用在其每端具有电极的充气管。为了使开关传导电流,或者应用触发电压于第三电极,或者在过压状态下强制导通开关。由于典型的充气管放电开关以管状几何排列,因相对长的导电路径长度,它通常与相对高的电感相连。同样,充气管的管状不允许开关的总尺寸适宜地减小。此外,充气管开关很难组装并且很难与其它元件集成。
另一类开关包括爆炸冲击开关。该冲击开关使用具有顶部导体层、中心绝缘层和底部导体层的扁平柔性电缆构造而成。引爆该顶部层的少量爆炸物,导致绝缘层在两个导体层之间形成传导电离路径。这种开关的一种变形是“图钉”开关,其中使用锐利的金属钉刺透绝缘层,用以将顶部导体层和底部导体层电连接。图钉开关类似于爆炸开关却不可靠,因为当它穿透孔时,“图钉”可能仅仅将绝缘层沿着其弯曲,以至于该图钉不能在两个导体层之间进行连接。
开关也可用于其它应用和其它的领域,例如在军事、医药、制造、通信、计算机、消费电子产品、建筑、爆破、地震和采矿应用中保护电子元件,快速分流危险电压和对地电流冲击,以激活电气装置,或者初始化爆炸装置。许多这种开关具有如上所述的各种缺点。

发明内容

概括地说,根据一个实施例,本装置包括具有微电子机械元件的开关,该微电子机械元件包括容纳电介质元件的密封腔以及密封腔内的导体。设置该导体使得应用电压高于预定电压而引起电介质元件的击穿从而提供导体间的导电路径。
概括地说,根据另一实施例,开关包括至少2个导体和纳米管电子发射器以形成该至少2个导体间的至少部分的导电路径。
从下列说明、附图及技术方案中,其它的特征和实施例将显而易见。

附图说明

图1示出了用于井眼中的下井仪器串的实施例。
图2A是根据图1中实施例的下井仪器串中可用的爆炸箔引发器(EFI)触发电路的示意图。
图2B示出图2A中的EFI触发电路的侧视图。
图3示出包括微电子机械钉的微型开关的实施例。
图4A-4B示出具有被易碎元件限制的电极的微型开关的另一实施例。
图5还示出具有平行板和响应于施加的电流而可毁掉的介质层的微型开关的另一实施例。
图6示出包括双稳元件的微型开关的另一实施例。
图7A-7D还示出包括容纳介质气体的腔室的微型开关的另一实施例。
图8示出包括可动电极的微型开关的另一实施例。
图9是根据另一实施例的微型开关的横截面视图,其中包括火花隙以及确定部分火花隙的横赂隔开导体。
图10是图9中微型开关的顶部视图。
图11是微型开关的另一实施例,它类似于图9中的微型开关,除了将触发电极添加到图11中的微型开关中。
图12是根据另一实施例的微型开关的横截面视图,其中提供的介质层具有形成火花隙的有限开口。
图13是另一种微型开关的横截面视图,除了包括提供的触发电极,其类似于图12中的微型开关。
图14是图13中微型开关的顶部视图。
图15是根据另一不同实施例的微型开关的横截面视图,其中使用了纳米管电子发射器。
图16是根据另一实施例的微型开关的横截面视图。
图17示出形成在支撑结构上的纳米管电子发射器。

具体实施方式

在下列描述中,给出许多细节以提供对本发明的理解。然而,本领域的技术人员可以理解:没有这些细节也可以实现本发明从描述的实施例得到许多变形或修改也是可能的。例如,尽管提出了用于井眼的微型开关的参考,这种微型开关(或其它类型的微型电子机械开关装置)可用于其它的应用,例如地震、矿业、军事、医药、制造、通信、计算机、消费电子、建筑和爆破等等。
正如这里使用的,术语“上”和“下”;“上部”和“下部”;“向上”和“向下”;“上面”和“下面”以及其它类似的术语,表明了在该说明书中使用的给定点或给定元件之上或之下的相对位置,用以更清楚地描述本发明的一些实施例。然而,当应用的装置和方法使用于偏离或水平的井中,或者当这种装置位于偏离或水平的方向时,这些术语可指左到右、右到左或其它适当的关系。
参考图1,包括射孔枪15作为一实例的测井下井仪10向下穿过位于井眼8中的管道7,其中管道7沿着外壳9排列。封隔器6设置在管道7和外壳9之间,用来隔离管道外壳环面。测井下井仪10在载体12上运行,其中可以是丝绳、平直管线、管道或其它载体。某种类型的载体12(例如钢丝绳)可包括一个或更多的电导体13,通过电导体13可将电源和信号与测井下井仪10进行连通。如图1所示的射孔枪15包括多个聚能射孔弹20。在一个实施例中,这种聚能射孔弹20可以使用引发器(initiator)装置22来引爆,该引发器装置22可被从井表面发出的命令激活,该命令以电信号的形式发送到载体12中的一个或更多的电导体13。可选择地,该命令为压脉冲命令或液压命令。引发器装置22可被信号电激活,该信号通过一个或更多电线24传导。
测井下井仪10的其它工具包括封隔器、、塞、切割机或其它装置。因而,在这些其它工具中,发自井表面的命令可激活控制模块来调整封隔器,打开和关闭阀,或者开动或释放其它装置。为了激活测井下井仪10中的装置,提供开关将电信号或电源与装置相连。例如,为了将爆炸物启动,引发器装置22可包括开关和爆炸箔引发器(EFI)电路。
根据一些实施例,开关可包括基于微电子机械系统(MEMS)技术的微电子机械元件。MEMS元件包括由输入能量(电能或其它类型的能量)驱动而可移动的机械元件。MEMS元件是以微型制造技术形成的微观尺度的元件,其包括在半导体衬底(例如衬底)上的显微机械加工。在显微机械加工的工序中,各种不同的蚀刻和图案形成步骤可用于形成期望的微型机械零件。MEMS元件的一些优点在于:它们占用的空间小、所需的功率相对低、相对坚固并且相对便宜。
根据其它实施例的开关由微电子技术制成,其类似于那些用于制造集成电路装置的开关。正如这里使用的,以MEMS或其它微电子技术形成的开关一般称之为“微型开关”。这些微型开关中的元件称之为“微型元件”,一般为以MEMS或微电子技术形成的元件。一般而言以MEMS技术实现的开关或装置称之为“微电子机械开关”。
在一实施例中,微型开关可与其它元件集成,例如启动爆炸物的EFI电路。集成元件容纳在更小的封装中,在井眼中能够达到更有效的空间利用。正如这里所使用的,如果元件形成在相对小尺寸的封装中放置的公用支撑结构上,或彼此接近地安装,这些元件称之为“集成的”。因此,例如,微型开关可在与EFI电路相同的支撑结构上制造,用于提供因低效串联电阻(ESR)和低效串联电感(ESL)而更有效的开关。微型开关也可形成在具有其它元件的共用衬底上以达到更有效的封装。
参考图2A,根据一实施例,电容放电单元(CDU)包括储能电容器202,其可充电以触发电压电平。电容器202提供本地能量源以供激活能量。电容器202连接到微型开关204,其可被触发电压Vtrigger或触发电流Itrigger激活到闭合或导通状态。当开关204闭合时,激活能量耦合到EFI电路206来激活EFI206。
EFI电路一般包括连接到电流源的金属箔,例如储能电容器202。具有极小宽度的缩小的颈部形成于箔中,绝缘层置于包括颈部的箔的一部分上。当施加合适的大电流通过箔的颈部时,该颈部会爆炸或蒸发。这导致小部分材料,称之为锭壳(flyer),从绝缘层剪切除掉。接着该锭壳穿过套筒撞击爆炸物以引爆。
图2A描述的电路的侧视图显示于图2B中。电容器202安装在衬底216的第一表面210上,而微型开关204和EFI206安装在衬底216的相反面212上。可选择地,电容器202可安装在与微型开关204或EFI206的同一表面上。电容器202、微型开关204和EFI206通过导电路径或轨迹而电连接在一起,其布线在衬底216上。
在其它实施例中,可使用其它类型的电激活引发器来代替EFI206,例如爆炸桥(EBW)引发器,半导体桥(SCB)引发器等等。同样,可选择地,可使用其它类型的本地能量源来代替电容器202。在此讨论的微型开关也可用于其它的井下应用,例如控制装置、传感器装置、模拟和数字电路以及数据网络。可选择地,微型开关可用于地震、采矿或其它应用。
下面描述了微型开关的各种实施例。这些微型开关在图2A的CDU中是可用的,或可选择地,它们可用于将电源和其它类型的元件相连,无论用于井下环境或另外的应用(例如,地震或采矿)。
参考图3,根据实施例,MEMS开关300被MEMS钉302所激活。在这个实施例中,MEMS钉302取代了在一些传统的图钉开关中使用的图钉致动器。开关300包括顶部和底部导体层304和308,将绝缘层306夹在中间。每个导体304和308可以由金属或一些其它合适的导体材料形成。绝缘层306可包括聚合物材料,例如聚酰亚胺薄膜。MEMS钉302可置于顶部导体层304上。当被激活时,例如通过施加具有预定振幅的触发电压Vtrigger,致动器303释放MEMS钉302以穿过层304和306而与底部导体层308接触。这样电耦合顶部和底部导体304和308以激活开关300。因此,电导体层304可由驱动电压Vdrive驱动,而电导体层308连接到被激活的元件(例如,图2中的EFI电路206)。
在一实施例中,预成型孔307已经存在于MEMS钉302可穿过的层304和306中。在另一实施例中,MEMS钉302具有尖锐端以刺穿层304和306而到达层308。
在一种结构中,致动器303包括可动的支撑元件315,其以扩大的凸缘部分312支撑钉302。支撑元件315允许钉302在从钉的凸缘部分312撤出时进入孔307。支撑元件315可在MEMS齿轮机构303的驱动下作径向运动。当接通电源时,MEMS齿轮机构303从钉302径向缩回支撑元件315,以使其落入孔307中而电连接导体304和308。在可选择的结构中,可使用MEMS齿轮机构303来驱动钉302进入孔307,而不用缩回对钉302的支撑。
构成微型开关300的层结构可形成在衬底310上,其可以是半导体、绝缘体或其它衬底。在一例中,衬底310可以是硅衬底。半导体层308首先沉积在衬底310上,接着是绝缘层306和下一导体层304。孔307可通过各向异性蚀刻而穿过层304和306成型。包括钉302和致动器303的MEMS结构可形成在孔307之上的导体层304的顶部上。
参考图4A-4B,根据另一实施例,微型开关500包括第一衬底502和第二衬底504。第一衬底502和形成于其上的层实际上颠倒显示于图4A-4B。在形成微型开关500中,两个衬底502和504独立成型,一个衬底颠倒翻转面对另一个衬底。
绝缘层506(例如,亚硝酸盐或SxNy层)形成在衬底502的表面上。导体线510(例如,使用金属,如、镍、金、、钨或制造的金属层)形成在绝缘层506上。多个系链516,每个由半导体材料如选定电阻率的掺杂硅制成,接着可形成在支撑导体盘514的衬底502上,其中导体盘514可由金属如铝、镍、金、铜、钨或钛制成。在系链516和盘514之间的触点处,系链516连接到导体盘514。当承受相对大的电流时,系链516会解体或破裂以允许导体盘514穿过间隙515落下并与形成在衬底504上的导体层512相接触。因此,更有效的是,系链516为易碎元件,其响应于施加的电压或电流而分裂。
如图4B所示,系链盘514具有弯曲的部分517以允许它电连接于形成于衬底502上的粘接垫519。粘接垫519可与导引针接触,例如,其给系链导体盘514提供驱动电压Vdrive。系链516与导体线510接触,其可依次连接到承受触发电流Itrigger的另一粘接垫521。
操作时,导体盘514被驱动电压Vdrive所驱动。当微型开关500闭合(或启动)时,通过导体线510施加触发电流Itrigger,其至少破碎或解体系链516的一部分。这允许导体盘514(其处于驱动电压Vdrive)落下并与导体层512接触,由此驱动电压V0达到驱动电压Vdrive。导体层512(和电压V0)可与一个待激活的装置相连,例如图2中的EFI电路206。
参考图5,还有另一个微型开关600的实施例,其包括两个平行盘602和604,在两个平行盘之间具有介质层610。介质层是电绝缘层。介质层610的介电特性可通过电能以触发电压或电流的形式来调节,从而在两个导电盘602和604之间提供导电路径。导体线606可形成在导体盘604之上,其中在线606和导体盘604之间具有绝缘层607。分离导体盘602和604的介质层610可以是介电固体、液体或固体。当被供以触发电流时,线606引起介质层610击穿并在导体盘602和604之间提供了导电路径。
操作时,驱动电压Vdrive施加于导体盘602,且导体盘604与一装置耦合而使其被激活。当触发电流Itrigger施加于线606,介质层610击穿并且电压Vdrive导通了从导体盘602到另一导体盘604的导电路径,其将电压V0升高到驱动电压Vdrive。
参考图6,根据另一实施例的微型开关700包括双稳微电子机械开关700。该开关700包括接触盘706,当施加驱动电压Vdrive时,其保持在中性位置(即静态位置)。接触盘706基本位于盘702和704之间的中间平面上。将每一个盘702和704驱动到Vdrive以保持接触盘706在它的中性位置。当希望启动微型开关700时,将触发电压Vtrigger加到盘702或704之一,以将电压增加到Vdrive+Vtrigger。这产生静电力而引起开关中的不平衡,其移动盘706以与盘704接触。接触盘706在其基底端附着到支撑柱710。在一实施例中,接触盘706和支撑柱整体以金属形成以提供悬臂。该悬臂适于受静电力的作用而弯曲。当悬臂盘706与盘704接触时,电压Vdrive+Vtrigger传到悬臂盘706。
参考图7A-7D,图解示出微型开关800的另一实施例。图7A是微型开关800的分解侧面视图,其包括上衬底802和下衬底804。结构可形成于每个衬底802和804上。图7B示出下衬底804的顶部视图,并且图7C示出上衬底802的底部视图。导体盘806和上介质层810沉积在上衬底802上。下导体盘808形成在下衬底804上,并且下介质层812形成在下导体盘808上。此外,触发电极814形成在介质层812上。
如图7C所示,切掉介质层810一部分以形成一个窗口,将上导体盘806暴露在外。类似地,如图7B所示,切掉介质层812一部分以形成一个窗口,将下导体盘808暴露在外。
如图7A所示,上衬底802翻转到一个颠倒位置。当上衬底802和下衬底804以及附着结构彼此电接触时,获得图7D的结构。该结构的制造可在充满惰性气体(例如氩)的腔室中完成,使得形成间隙816从而使两个衬底802和804一起也充满惰性气体。间隙816也可充满另外的气体,如氮、氦、氖、氙、、空气或其它气体。间隙816也可以充满不同气体的混合物。可选择地,间隙816可充满另一介电元件,例如液体或固体电介质。该介电材料选择用以在应用预定的电压或电流触发信号下会击穿。
操作时,施加触发电压到触发导体盘814,以击穿间隙816中的绝缘体而提供上导体盘806和下导体盘808之间的导电路径,由此闭合微型开关800。
参考图8,根据另一实施例,MEMS开关400可包括被间隙420和422隔离的电触头404、406、408和410。触头404和406与线416和418分别电耦合,与电极412和414分别端接。电极412和414可与相应的元件电接触,例如能量源以及被能量源激活的装置。当触头408和410被驱动部件402向下移动时,触头404和406分别倾斜邻接触头408和410。例如,驱动部件402可通过施加触发电压而被移动。当触头404、406、408和410彼此接触时,在电极412和414之间建立了导电路径。驱动部件402的运动可使用MEMS齿轮(未示出)而完成。
触头404、406、408和410可由金属或一些其它导电材料形成。开关400可形成在半导体衬底上,例如硅。
图9示出根据另一实施例的微型开关900。该微型开关900与图7A-7D中描述的微型开关类似,包括含有电绝缘或电介质材料(即气体、液体或固体)的间隙902(称之为火花隙)。更有效地,根据一实施例,微型开关中的间隙902包括密封腔。在另一实施例中,间隙902没有密封,而是暴露于微型开关900所在的工具或封装的其它部分。
如果火花隙902充满气体,该气体可包括氮、氩、氦、氙、氧、氖、空气或一些气体的混合物。不像图7A-7D(其中导电盘806和808垂直设置,如图7D所示,与火花隙816的任一侧相对)中描述的结构,图9中的微型开关900使用侧面排列的导体904和906。每个导体904和906是形成在电绝缘支撑结构(衬底910)上的导电盘。在每个导体904和906的侧面907和908之间提供了火花隙902的部分。衬底910可由电绝缘或电介质材料,如陶瓷、硅、玻璃等制成,其中导体904和906形成在该衬底910上。
盖912设置在导体904和906的至少部分及衬底910上。密封元件914和916设置在盖912的下表面和导体904和906的上表面。实施例中提供的密封元件914和916使用火花隙902中的气体或液体。在实施例中也可省去密封元件914和916而使用火花隙902中的固体电介质。
除了导体904和906的侧面907和908之间的区域之外,火花隙902还包括密封元件914和916之间、以及盖912的下面与导体904和906的上表面之间的区域。
导体904连接到一个输入电压源,而导体906连接到一个当微型开关900闭合而被激活的部件。在图2A例子的上下文中,微型开关900的输入电压源由电容器202提供,而微型开关900的输出(导体206)连接到EFI206。一般而言,微型开关900将输入电能源连接到被输入电能激活的部件,其中微型开关900响应于输入电能超过预定阈值(例如大于预定电压)而构成闭合(导通火花隙902)。
为了激活微型开关900,将充分高的输入电压施加给导体904。施加电压大于预定电压阈值电平使得火花隙902中气体电离(击穿),这引起电能通过微型开关从一导体904转移到另一导体906。在某些实施例中,击穿发生处的预定电压电平大约是700伏特。因此,应用大于或等于700伏特的输入电压以引起气体击穿。相对高的击穿电压适用于井的应用,也适用于地震和采矿的应用。击穿电压是所使用气体的类型和压力、跨越火花隙的导体间的距离和以下列出的其它要素的函数。
火花隙902中电介质气体击穿根据随机过程发生。随机过程会根据(1)充电建立处的导体904和906的表面粗糙度或表面缺陷、(2)非局部的充电累积和(3)微型开关使用前检测的表面变化或剥蚀损伤而变化。这些不确定性引起了电离放电的端点的确切位置的可变性,其影响通过火花隙902的电弧路径长度。这相应会引起放电电压的精确值的不确定性。同时,导体和其它材料表面或之内的污染物例如水汽、化学杂质或污染物,也会导致可变的放电电压。此外,电介质气体中存在由气体自身内的杂质或污染物以及气体分子的随机运动和温度引起的可变性。
电介质气体的可变性可由许多方法来使之稳定,例如将放射性物质包括在火花隙902之内或周围。放射性物质的存在以一种更确定和可预知的运动(即,β(beta)粒子发射的电离辐射或激发)激发分子。作为一例,少量放射性气体,例如氚,可混入火花隙902中的气体。可选择地,固体放射性物质可定点在火花隙902之内或之外。例如,放射性物质包括铬、钍、、镍的同位素或包含丰富比例的这些物质的矿物质;例如,钍矿(Th(SiO4)),母铀矿或某些岩盐(KCl)。适当少量的钍或钾(或自然产生的矿物或包含丰富比例的这些物质的岩盐)具有在可接受的范围内的有限放射能的额外效果,所述范围能够足以免除环境条例中特殊的运输和处理需求。
图10是微型开关900的顶部视图。在该视图中,假设盖912是透明的,以至于可以看见盖912下面的结构。每个导体904和906分别具有弯曲侧面930和932。导体904和906弯曲的几何形状(侧面930和932)定位在导体904和906的放电点,以提高横越火花隙902的电弧路径的可预计性。正如图10中所描述的,导体904和906的弯曲侧面930和932横越火花隙902的部分而互相面对。可代替的或除使用放射性物质之外,导体904和906的弯曲侧面930和932可以用于减少导体904和906放电点的可变性。
图11示出微型开关920的另一实施例,其实质在配置上类似于图9中描述的微型开关900(微型开关920的元件与微型开关900相同的元件,具有相同的附图标记)。微型开关920的区别在于提供有触发电极,示于可选的位置922A、922B或922C。为了有效地操作可提供触发电极922A、922B和922C中的仅仅一个。可选择地,提供触发电极922A、922B和922C中的多于一个。触发电极922B位于火花隙902中,并形成在各个导体904和906的侧面907和908之间的衬底910的表面。触发电极922A置于盖912的上表面(火花隙902外面)。触发电极922C置于衬底910的下表面,也在火花隙902外面。
操作时,给导体904施加电压。施加给导体904的电压低于击穿电压,这将引起火花隙902中气体的电离。为激活微型开关920,施加一电压脉冲给触发电极922(922A、922B和922C中一个或更多电极)。该电压脉冲引起火花隙902中容纳气体的击穿,由此允许电流在导体904和906之间流过。在可选择的实施例中,可以使用电介质液体或固体来代替火花隙902中的气体。
减少横越火花隙导体的放电点位置的可变性的另一种稳定性技术是提供有限的开口,例如图12中描述的微型开关940的有限开口942和944。微型开关940包括导体946和948,其为形成在衬底950上的导电盘。此外,固体介质层952(在介质层952上形成有开口942和944)设置在导体946和948上。介质层952的中间部分向下延伸以充满导体946和948各自的侧面954和956之间的区域。盖958设置在介质层952和导体946和948的结构上方。密封元件958和959设置在盖957和介质层952之间,以为火花隙941中的电介质气体或电介质液体提供密封,火花隙941由盖957、密封元件958和959以及导体946和948形成。
微型开关940中的火花隙941被部分地充满固体介质层952。设置在介质层952中的开口942和944提高了导体946和948上放电点的可预计性。
操作时,如果给导体946施加足够大的电压,气体发生电离导致放电路径从导体946穿过开口942延伸。放电路径穿过在介质层952之上但在盖957之下的火花隙941的空间,并穿过另一个开口944到达另一导体948。
图13示出另一微型开关960,除了在部分介质层952确定的空间中设置了触发电极962以外,其余与图12中的微型开关940相同。为了操作微型开关960,在导体948上施加电压,该电压维持在低于火花隙941中的电介质气体或液体的击穿电压的电平。电压脉冲施加在触发电极962上而引起火花隙941中的电介质气体或液体的击穿。
图14示出图13中描述的微型开关960的顶部视图。如图14所述,为了描述起见,假设盖957和介质层952是透明的,使得这些层下的结构可以看见。该顶部视图示出开口942和944的位置,以及在导体946和948之间延伸的触发电极962的位置。导体946和948具有横越火花隙941的部分而彼此面对的弯曲侧面947和949。
根据另一实施例,如图15中所描述的,微型开关970使用纳米管电子发射器972和974。可选择地,可以使用放射性的同位素电子发射器代替纳米管电子发射器。除了在微型开关970中增加了纳米管电子发射器972和974,微型开关970在结构上类似于图12中的微型开关940。纳米管电子发射器972和974形成在各导体946和948表面上的各个开口942和944中。纳米管电子发射器972和974有助于稳定位置并提高穿过火花隙941的放电路径的可预计性。实际上,纳米管电子发射器作为微型发光杆起作用。纳米管的端部集中并加强了局部电场梯度,由此激发附近的气体分子的电离。从纳米管电子发射器的端部非常容易发射电子。纳米管电子发射器972和974也是导电性的,并形成在导体946和948上,使得纳米管电子发射器972和974分别与导体946和948电接触。
纳米管(CNT)是石墨片的无缝管。纳米管基本上是非常小的管,其具有原子标度的壁厚。例如,CNT是一个其壁由碳分子形成的管,其中壁厚可以是一个分子厚度。CNT首次被发现是作为多层同轴管(即,多壁碳纳米管,MWCNT)。随后,在存在过渡金属催化剂情况下制各单壁碳纳米管(SWCNT)。本发明的实施例可使用SWCNT、MWCNT或二者的混合物。在应用中CNT已经表现出了具有希望的电势,例如,这些应用包括,毫微级电子装置、高强度材料、电子场发射、扫描探测显微镜方法和气体存储。
合成CNT的主要方法包括:碳的激光消融、石墨杆的放电电弧和碳氢化合物的化学汽相淀积(CVD)。在这些方法中,已发现与光刻法结合的CVD是制备各种CNT装置中最通用的。在CVD方法中,过渡金属催化剂沉积在期望图型的硅片上,其使用光刻法接着采用蚀刻来成型。具有催化剂沉积的硅片接着被放置在炉子中,炉中存在汽相混合物,例如二甲苯和二茂。在催化剂沉积时,碳纳米管典型地沿垂直于衬底表面的方向增长。现在可以通过商业渠道购买到各种碳纳米管材料和装置,包括分子毫微系统(Palo Alto,CA)和Bucky,美国(Houston,TX)。
其它的CVD方法包括在二氧化硅(SiO2)和硅表面上制备碳纳米管而不使用过渡金属催化剂。根据这些方法,通过光刻法和蚀刻将二氧化硅(SiO2)区域成型在硅片上。接着在CVD或等离子体增强的CVD(PECVD)工序中碳纳米管在二氧化硅(SiO2)区域上生长。这些方法允许生产不同形状的碳纳米管束。可根据该方法制备适合本发明实施例的碳纳米管。
如上所述,碳纳米管具有独特的物理和电特性。作为电子场发射器,碳纳米管具有低加工功能、持久性和热稳定性的特性。因此,基于CNT的电子场发射器可在相对低的电压下被驱动。此外,在操作装置期间产生的该装置与气体反应的耐化学性得到改进,由此增加了发射器的寿命。
具有纳米管电子发射器972和974,通过利用纳米管电子发射器的有效而稳定的电子发射特性提供了火花隙941的可靠点火。在一实施例中,纳米管电子发射器是碳纳米管电子发射器。可选择地,可使用纳米管电子发射器。从纳米管电子发射器的端部很容易发射电子。
图16还示出另一微型开关,除了设置了介质层980(在导电盘806的表面)和介质层982(在导电盘808的表面)以外,其它与图7D中的微型开关相同。每个介质层980和982包括开口,其中分别设置了纳米管电子发射器984和986。纳米管电子发射器984和986提供了更可预计的横越火花隙816的电弧路径。
图17示出在每个导体946和948(图15)上设置的多个纳米管电子发射器的结构。纳米管电子发射器可以均匀并精确定位在每个导体946和948上。当与出现在金属或其它电导性电极上的微米级的表面缺陷相比时,在毫微米级的高度均匀导致了纳米管电子发射器的电子电势设计或击穿阈值电压非常精密的公差。
纳米管电子发射器定向成使得它们最长的尺寸与电场排列成行,这提供了优越的性能。纳米管电子发射器还可用于分别在附图9、11和13中描述的微型开关900、920和960。
所公开的各种微型开关的好处包括下列各项。一般而言,微型开关能够以相对小的部件实施,由于减小的电阻和电感而提高了开关的效率。而且,一些微型开关可与其它元件集成,例如储能电容器,以及其它装置,例如EFI电路,以形成减小尺寸的全面封装。由于避免了一些传统开关中使用的爆炸或机械驱动,提高了开关的可靠性和安全性。
根据有限个实施例已公开了本发明,本领域的技术人员将从中作出许多修改和变形。附加的权利要求旨在概括所有这些修改和变形,使其落入本发明真实的精神和范围内。例如,可以使用其它的运用微型元件的开关结构。
QQ群二维码
意见反馈