具有表面开孔的可固化预浸材

申请号 CN201380060865.0 申请日 2013-12-20 公开(公告)号 CN104903390A 公开(公告)日 2015-09-09
申请人 塞特工业公司; 发明人 马克·罗曼; 斯蒂芬·J·哈瓦德; 杰克·D·波伊; 史考特·路卡斯;
摘要 本 发明 涉及一种可 固化 预浸材,其具有增强的在固结和固化之前和/或期间从预浸材中以及预浸材叠层中的预浸材层之间去除气体的能 力 。各可固化预浸材为已经受处理以在至少一个主表面中产生开孔阵列的 树脂 浸渍编织织物。所述开孔的 位置 特定于所述织物的织造图样。另外,当铺放这些预浸材并且使其经受 压实 工艺以形成复合部件时,与使用无相同表面开孔的预浸材相比,可以实现缩短的压实时间。
权利要求

1.一种可固化复合材料,其包含:
编织织物,其具有两个相对的面和如下织造图样:其中第一编织方向上的一或多根丝束浮在第二编织方向上的一或多根丝束上方,接着在第二编织方向上的一或多根丝束下方穿过;
其中当所述第一编织方向上的第一丝束在第二编织方向上的第二丝束上方穿过、接着在所述第二编织方向上的相邻第三丝束下方穿过时,或当所述第一丝束在所述第二编织方向上的第二丝束下方穿过、接着在所述第二编织方向上的相邻第三丝束上方穿过时,在所述织物表面中界定一个空穴,并且所述空穴位置由在相邻第二与第三丝束之间上升或下降的所述第一丝束的部分界定;
可固化热熔融树脂膜,其覆盖所述织物的一或两个面并部分地穿透所述织物的厚度,在所述厚度方向留下实质上不含所述树脂膜的所述织物的内区段;以及
在至少一层所述树脂膜中的开孔阵列,各开孔暴露所述织物表面中的至少一部分所述空穴并且经构造以产生从所述织物的所述内区段到所述复合材料的至少一个外表面、或从所述复合材料的至少一个外表面到所述内区段、或从所述复合材料的一个外表面到相对的外表面或其组合的流体流动路径。
2.一种可固化复合材料,其包含:
编织织物,其具有两个相对的面和如下织造图样:其中第一编织方向上的丝束在第二编织方向上的另一根丝束上方穿过,接着在所述第二编织方向上的相邻丝束下方穿过,并且在相邻丝束之间界定间隙;
可固化热熔融树脂膜,其覆盖所述织物的一或两个面并且部分地穿透所述织物的厚度,在所述厚度方向留下实质上不含所述树脂膜的所述织物的内区段;以及在至少一层所述树脂膜中的开孔阵列,各开孔暴露所述织物中的间隙并且经构造以产生从所述织物的所述内区段到所述复合材料的至少一个外表面、或从所述预浸材的至少一个外表面到所述内区段、或从所述复合材料的一个外表面到相对的外表面或其组合的流体流动路径。
3.根据权利要求1所述的可固化复合材料,其中所述编织织物的织造图样为缎纹编织或斜纹编织。
4.根据权利要求2所述的可固化复合材料,其中所述编织织物的织造图样为平纹编织。
5.根据权利要求4所述的可固化复合材料,其中所述开孔是穿透所述预浸材的相对外表面而形成的。
6.根据权利要求1所述的可固化复合材料,其中所述织造图样为缎纹编织,所述开孔是穿透所述预浸材的一或两个表面而形成的。
7.根据前述权利要求中任一权利要求所述的可固化复合材料,其中所述热熔融树脂膜在20℃到25℃范围内的温度下为实质上固态,并且在低于所述树脂膜的开始固化温度的升高温度下变为可流动的。
8.根据前述权利要求中任一权利要求所述的可固化复合材料,其中所述热熔融树脂膜包含一或多种热固性树脂作为主要组分,并且实质上不含任何有机溶剂
9.根据前述权利要求中任一权利要求所述的可固化复合材料,其中所述热熔融树脂膜包含一或多种环树脂、固化剂以及至少一种热塑性或弹性化合物。
10.根据前述权利要求中任一权利要求所述的可固化复合材料,其中各丝束包含多根纤维长丝,所述纤维长丝包含选自以下的材料:玻璃、、芳族聚酰胺、聚乙烯(PE)、石英玄武岩、陶瓷、聚酯、聚-对-亚苯基-苯并双恶唑(PBO)以及其组合物。
11.一种用于制造具有表面开孔阵列的可固化复合材料的方法,所述方法包含:
(a)利用可固化热熔融树脂部分地浸渍编织织物,使得连续树脂膜覆盖所述织物的各面并且部分地穿透所述织物的厚度,在所述厚度方向留下实质上不含所述树脂的所述织物的内区段,
其中所述编织织物具有两个相对的面和如下织造图样:其中第一编织方向上的一或多根丝束在第二编织方向上的一或多根丝束上方穿过,接着在第二编织方向上的一或多根丝束下方穿过,
其中当在所述第一编织方向上的第一丝束穿过所述第二编织方向上的第二丝束、接着在所述第二编织方向上的相邻第三丝束下方穿过时,或当所述第一丝束在所述第二编织方向上的第二丝束下方穿过、接着在相邻第三丝束上方穿过时,在所述织物的面上界定一个空穴,并且
其中所述经部分浸渍的织物包含多个封闭气穴,各气穴与所述织物表面中的空穴重合;以及
(b)加热所述经部分浸渍的织物,使得所述织物的至少一个面上的所述树脂膜变为可流动的,并且随后,所述气穴上方的所述树脂膜部分破开,借此在所述树脂膜中产生对应于膨胀气穴位置的开孔,
其中所述开孔经构造以提供从所述织物的所述内区段到所述复合材料的至少一个外表面、或从所述复合材料的至少一个外表面到所述内区段、或从所述复合材料的一个外表面到相对的表面或其组合的流体流动路径。
12.一种用于制造具有表面开孔阵列的可固化复合材料的方法,所述方法包含:
(a)利用可固化热熔融树脂部分地浸渍编织织物,使得连续树脂膜覆盖所述织物的各面并且部分地穿透所述织物的厚度,在所述厚度方向留下实质上不含所述树脂的所述织物的内区段,
其中所述编织织物具有两个相对的面和如下织造图样:其中第一编织方向上的丝束在第二编织方向上的另一根丝束上方穿过,接着在所述第二编织方向上的相邻丝束下方穿过,并且在相邻丝束之间界定间隙;以及
(b)加热所述经部分浸渍的织物,使得所述织物的至少一个面上的所述树脂膜变为可流动的,并且随后,所述间隙上方的所述树脂膜部分破开,借此在所述树脂膜中产生对应于所述间隙的位置的开孔,
其中所述开孔经构造以提供从所述织物的所述内区段到所述复合材料的至少一个外表面、或从所述复合材料的至少一个外表面到所述内区段、或从所述复合材料的一个外表面到相对的表面或其组合的流体流动路径。
13.根据权利要求11或12所述的方法,其中所述树脂膜的所述外表面在加热期间被离型纸或聚酯膜覆盖。
14.一种由根据权利要求11到13中任一权利要求所述的方法制得的具有表面开孔阵列的可固化复合材料。
15.一种用于制造可固化复合部件的方法,所述方法包含:
铺放多个预浸材层以形成预浸材叠层,其中所述预浸材层中的至少一些是具有表面开孔的多孔预浸材层,并且各多孔预浸材层是由根据权利要求11到13中任一权利要求所述的方法制得的复合材料。
16.一种用于制造可固化复合部件的方法,所述方法包含:
依照根据权利要求11到13中任一权利要求所述的方法形成宽复合材料;
将所述宽复合材料切割成预定尺寸的预浸材层;
铺放所述预浸材层以形成预浸材叠层,
其中在切割所述材料之前进行加热步骤以在所述材料中形成开孔。
17.一种用于制造复合部件的方法,其中总固化时间因固化之前的压实时间降低而减少,所述方法包含:
铺放多层根据权利要求1到10和14中任一权利要求所述的可固化复合材料以形成复合叠层;
通过以下步骤压实所述复合叠层以从其去除空气和挥发物:(a)将真空袋密封在所述复合叠层上方;(b)从所述真空袋内部抽真空;(c)在所述真空袋外部施加压;以及(c)继续抽真空并且施用加压持续一段预定时间间隔;以及在压实之后固化所述复合叠层。

说明书全文

具有表面开孔的可固化预浸材

背景技术

[0001] 纤维强化聚合物复合材料是由树脂基质和增强纤维组成的高性能结构材料。这些纤维强化聚合物复合材料已用于制造要求高强度和/或低重量以及耐抗侵蚀性环境的结构部件。这类结构部件的实例包括飞机组件(例如,机尾、机翼、机身、螺旋桨)。所述纤维强化基质树脂承载由复合材料支撑的大部分负载,而所述基质树脂承载由复合材料支撑的小部分负载并且还可以将负载从破损纤维转移到完整纤维。以此方式,这些聚合物复合材料可以支撑比基质树脂或纤维中任一者单独可支撑的负载更大的负载。另外,通过定制呈特定几何结构或定向的增强纤维,复合材料可以经有效设计以使重量和体积减到最小。
[0002] 纤维强化聚合物复合材料传统上是由树脂浸渍纤维片材(也称为预浸材)制成。为了从预浸材形成复合部件,可以将多个预浸材层铺放在模具中,并且可以施加热量致使基质树脂流动,从而能够固结所述预浸材层。所施加的热量可以另外使基质组分固化或聚合。
[0003] 然而,以这种方式固结预浸材以形成复合材料存在问题。在叠层期间,气体(如空气和其它挥发物)可能会截留在个别预浸材内部和预浸材层之间。另外,挥发物还可能在加热和/或固化预浸材期间逸出。难以从叠层去除这些气体,这是因为基质实质上抑制气体流动并且可能会导致最终固化复合材料中的孔隙。孔隙是指固化复合材料中的空隙。所述孔隙可能会进一步不利地影响最终固化复合材料的机械特性。
[0004] 已开发可以增强复合材料制造期间截留气体的去除的技术,然而,问题仍存在。举例来说,可以采用边缘通气器来将真空施加到预浸材边缘以便能从预浸材层侧部抽出气体。然而,以此方式从预浸材去除截留气体较缓慢并且可能无法实质上去除所有截留气体。
[0005] 从这些预浸材制造复合部件需要压实和特定固化周期以制造部件并且形成任何结构中的最终用途所需的结构性质。潜在性地并且取决于制造方法,在固化之前的压实周期可能是耗时的,增加额外费用。将期望有一种可以在适用情况下有助于减少固化之前的压实时间量的方法。发明内容
[0006] 本文中公开了一种可固化预浸材,其具有增强的在固结和固化之前和/或期间从预浸材中以及预浸材叠层中的预浸材层之间去除气体的能。各可固化预浸材为已经处理以在至少一个主表面中产生开孔阵列的树脂浸渍编织织物。开孔的位置特定于织物的织造图样。另外,当铺放这些预浸材并且使其经受压实工艺以形成复合部件时,与使用无相同表面开孔的预浸材相比,可以实现缩短的压实时间。附图说明
[0007] 图1示意性地说明编织织物部分,其中一个编织方向上的纤维丝束在横向方向上的丝束上方并且接着在横向方向上的丝束下方穿过。
[0008] 图2示意性地显示根据本发明的一个实施例的经部分浸渍的织物。
[0009] 图3示意性地显示根据本发明的一个实施例在预浸材的一个表面中产生的开孔。
[0010] 图4示意性地显示根据本发明的一个实施例在预浸材的相对表面中产生的开孔。
[0011] 图5示意性地显示根据一个实施例的经部分浸渍的预浸材。
[0012] 图6显示热处理后图5的预浸材。
[0013] 图7示意性地显示缎纹编织织物的一部分。
[0014] 图8示意性地显示具有在图7缎纹编织织物上形成的表面开孔的树脂表面。
[0015] 图9示意性地显示根据另一个实施例已经受热处理以产生表面开孔的经部分浸渍的预浸材。
[0016] 图10示意性地显示平纹编织织物的一部分。
[0017] 图11示意性地显示具有在平纹编织织物上形成的表面开孔的树脂表面。
[0018] 图12说明能够制造预浸材织物的示例性预浸渍系统。
[0019] 图13示意性地显示根据一个实例的用于组装蜂窝核夹层结构的构造。
[0020] 图14示意性地显示从图13中所示的组合件制得的蜂窝核夹层结构。
[0021] 图15到17为显示经热处理的预浸材表面分别在1分钟、4分钟以及7.5分钟的俯视图的显微图,其中所述预浸材是根据一个实例使用缎纹编织织物制得的。
[0022] 图18为显示经热处理的预浸材表面的俯视图的显微图,其中所述预浸材是根据另一个实例使用平纹编织织物制得的。
[0023] 图19为显示具有在表面之下形成的气泡的固化预浸材表面的俯视图显微图。
[0024] 图20显示由未经处理的预浸材料所组成的固化复合板截面视图。
[0025] 图21显示由经热处理的预浸材料所组成的固化复合板截面视图。
[0026] 图22显示标准压实工艺和所得孔隙对于从未经处理的5320-1/8HS预浸材料使用在固化之前在真空下保持16小时制成的复合材料的效应。
[0027] 图23显示增强的压实工艺和所得孔隙对于从经热处理的5320-1/8HS预浸材料使用在固化之前在真空下保持16小时制得的复合材料的效应。
[0028] 图24显示标准工艺和所得孔隙对于从未经处理的5320-1/8HS预浸材料使用在固化之前在真空下保持0.5小时制得的复合材料的效应。
[0029] 图25显示增强的工艺和所得孔隙对于从经热处理的5320-1/8HS预浸材料使用在固化之前在真空下保持0.5小时制得的复合材料的效应。
[0030] 图26显示标准工艺和所得孔隙对于从未经处理的5320-1/PW预浸材料使用在固化之前在真空下保持16小时制得的复合材料的效应。
[0031] 图27显示增强的工艺和所得孔隙对于从经热处理的5320-1/PW预浸材料使用在固化之前在真空下保持16小时制得的复合材料的效应。
[0032] 图28显示标准工艺和所得孔隙对于从未经处理的5320-1/PW预浸材料经受固化之前在真空下保持0.5小时制得的复合材料的效应。
[0033] 图29显示增强的工艺和所得孔隙对于从经热处理的5320-1/PW预浸材料经受使用在固化之前在真空下保持0.5小时的处理制得的复合材料的效应。

具体实施方式

[0034] 本文所公开的可固化预浸材由经树脂浸渍的编织织物组成。所述编织织物具有两个相对的面和如下织造图样:其中第一编织方向上的一或多根丝束浮在第二编织方向上的一或多根丝束上方,接着在第二编织方向上的一或多根丝束下方穿过,其中当在第一编织方向上的第一丝束在第二编织方向上的第二丝束上方跨过接着在第二编织方向上的相邻第三丝束下方穿过时,或当在第一丝束在第二编织方向上的第二丝束下方穿过接着在第二编织方向上的相邻第三丝束上方跨过时,在所述织物的一面上产生上方/下方跨过位置。在这种情形中所述上方/下方跨过位置是指第一丝束在相邻第二与第三丝束之间向上或向下的部分。
[0035] 用于制造预浸材的编织织物由纤维丝束制成。所述丝束以如下织造图样交织:其中第一编织方向上的一或多根丝束浮在第二编织方向上的一或多根丝束上方,接着在所述相同第二编织方向上的一或多个丝束下方穿过。归因于所述编织构造,织物的两个主面在其中含有空穴,因此,整个所述织物既不平滑也不平坦。
[0036] 图1示意性地说明,归因于编织织物的编织构造,在每当存有在另一个横向丝束上方跨过或在另一个横向丝束下方穿过(也就是说,上方/下方跨过位置)的丝束部分,存在产生于织物表面中的空穴P。再从左到右参照图1,当第一编织方向上的丝束11在第二/横向编织方向上的另一根丝束12上方跨过接着在相同第二/横向编织方向上的相邻丝束13下方穿过时,产生“向下”丝束部分T1,并且当丝束11在丝束13下方穿过接着在第二/横向编织方向上的相邻丝束14上方穿过时,产生“向上”丝束部分T2。这些“向上”和“向下”丝束部分形成空穴P。换句话说,如果织物躺在平平坦表面上,那么每当存在丝束相对于所述平坦表面的升高变化时,产生空穴P。应理解图1仅显示织物组织的一个实例,和本文中包含如三轴式编织(tri-axial weave)的更复杂的织物组织。
[0037] 可固化预浸材进一步具有可固化热熔融树脂膜,其覆盖织物的各面并且部分地穿透织物的厚度,在厚度方向留下实质上不含所述树脂膜的织物的中间区段。根据一个实施例,开孔阵列是在一或两层树脂膜中形成的,其中各开孔暴露在织物织造图样中的上方/下方跨过位置处形成的空穴(图1中的P)中。在一些实施例中,树脂膜在除了开孔所在处以外的任何位置处都是连续的。根据另一个实施例,树脂中的开孔阵列与织物组织中的间隙对准。这一实施例涉及如平纹编织织物的特定编织织物。
[0038] 所述开孔经构造以使得如空气的气体可以从织物的中间区段流到预浸材的至少一个外表面、或可以从预浸材的至少一个外表面流到中间区段、或可以从预浸材的一个外表面流到相对的表面或其组合。所述开孔还可以使得气体转移并且产生真空,其为树脂浸渍高真空区域提供驱动力。
[0039] 本文所公开的开孔特定于织物组织,不同于用于形成全孔图样或随机孔图样、具有通过常规机械技术形成的表面开孔的预浸材。
[0040] 出于本文的目的,术语“可固化”意味着非完全固化的,并且包括未固化的情况。
[0041] 各丝束为纤维长丝的集束。各集束中的长丝数量可以是1000的倍数,例如,1000到75,000。出于本文所公开的预期目的,涵盖每集束具有少于15,000根长丝的丝束。术语“长丝”是指具有较高长度与宽度比的相对柔性的连续结构。
[0042] 用于纤维丝束的纤维材料包括(但不限于)玻璃(包括电气或E级玻璃)、(包括石墨)、芳族聚酰胺(例如凯芙拉(Kevlar))、高模量聚乙烯(PE)、石英玄武岩、陶瓷、聚酯、聚-对-亚苯基-苯并双恶唑(PBO)以及其组合。对于制造高性能复合材料(例如,用于航天应用的材料)来说,拉伸强度大于3500MPa的纤维是合乎需要的。
[0043] 织物的编织构造不受限制并且可以包括平纹编织、缎纹编织、斜纹编织以及类似者。在一卷织物中,纵向丝束在经向上并且横向丝束在纬向上。在平纹编织中,所述经向和纬向丝束形成简单的十字形交叉图样。各纬向丝束以在一根经向丝束上方跨过接着在下一根经向丝束下方穿过并且依此类推的方式跨越经向丝束。缎纹编织的特征为两根或更多根纬向丝束在单根经向丝束上方穿过,或相反地,两根或更多根经向丝束浮在单根纬向丝束上方。斜纹编织的特征为纬向丝束在一或多根经向丝束上方穿过并且接着在一或多根经向丝束下方穿过并且依此类推,其中列之间偏移以产生特征性对线图样。
[0044] 图2示意性地说明根据本发明的一个实施例的经部分浸渍的织物(即,预浸材层或预浸材织物)。具有纤维丝束20的织物在具有上层树脂膜21和下层树脂膜22的两个主面上都被覆盖。各树脂膜部分地穿透所述织物的厚度(Tf),从而留下实质上不含所述树脂的所述织物的中间区段。在部分浸渍之后,如图2中所说明,在树脂膜与织物之间形成多个封闭气穴23。所述封闭气穴与在织物组织中的上方/下方跨过位置处形成的空穴重合。
[0045] 如应用所决定,可固化多孔预浸材中织物与基质树脂的重量比可以改变。在一个实施例中,织物的重量分率可以在以预浸材总重量计20重量%到80重量%范围内改变。在另一个实施例中,当在使用多孔预浸材作为复合衬底或预浸材叠层上的表面膜时,所述多孔预浸材中织物的重量分率小于20重量%。基质树脂占预浸材的分率还可以视需要改变。在某些实施例中,以预浸材总重量计,基质树脂可以占预浸材的约20重量%到80重量%之间。
[0046] 预浸渍方法
[0047] 根据一个实施例,制造上文所公开的可固化预浸材的方法包括利用可固化基质树脂部分地浸渍编织织物,接着进行热处理以产生表面开孔阵列。利用基质树脂部分地浸渍编织织物的方法不受限制,但“热熔融”预浸渍方法是优选的。一般来说,这种预浸渍方法的特征为利用呈熔融形式的热熔融树脂组合物浸渍织物层,以获得经部分浸渍的预浸材。可以通过将织物层夹在两层树脂膜之间并且通过热板、加热辊或通过其中在热金属带之间对层合物施压的方法对所得层合物施压来进行浸渍。或者,仅在一侧将织物层压到树脂膜上,使另一侧实质上不含树脂。
[0048] 举例来说,可以将可固化热熔融树脂组合物以薄树脂膜形式施加到离型纸上,并且使从其释放的所得树脂膜层压并形成于织物层上。施加热量以降低树脂膜的粘度,使得其呈熔融状态并且可以穿透织物达到所需程度,优选地,仅部分地穿透织物,以便能留下中心干燥部分。应理解浸渍期间施加的升高温度低于热熔融树脂的开始固化温度。在层压期间还施加足够的压力,以使树脂膜部分地穿透织物层的厚度,从而获得在厚度方向上经树脂组合物部分浸渍的织物层。基质树脂在刚浸渍后保持未固化。对于一些实施例,施加2
在织物各面上的树脂膜可以具有10到200gsm(g/cm)的膜重量,并且织物可以具有100到
600gsm的织物面积重量(FAW)。在部分浸渍之后,连续树脂膜覆盖织物的一或两个主面并且部分地穿透织物的厚度,留下实质上不含树脂的织物的中间区段。
[0049] 在热处理期间,使离型纸或背衬纸留在预浸材树脂膜的暴露表面上并且施加热量直到树脂膜变为可流动的。在某些实施例中,热处理期间的树脂粘度在90℃下小于500泊。进行加热直到气穴上方的树脂膜部分破开,在树脂膜中产生对应于气穴位置的开孔。树脂膜因随着树脂侧向移向邻近空穴的区域而从离型膜表面去湿而破裂。在一些情况中,树脂膜在气泡边缘处脱离并侧向向内移动,留下从预浸材剥离离型纸时移出的微小树脂滴。如图3中所说明,所述开孔可以在预浸材的一个表面中产生(开孔30),或如图4中所说明在预浸材两个相对表面中产生(开孔40)。作为热处理的结果,开孔产生用于将空气或其它气体从预浸材的外表面输送到织物的中间区段的流体通道。
[0050] 在通过标准预浸渍方法用树脂膜部分地浸渍织物后,可以进行用于产生预浸材中开孔的热处理作为后处理。或者,热处理可以在预浸渍处理期间在原位进行。应理解热处理期间施加的提高温度低于基质树脂的初始固化温度并且用于引发树脂流动以便能打开封闭气穴。此种树脂流动可能会导致较低的体积比。体积比被定义为未固化预浸材料的厚度与其完全固化时的厚度的比率。
[0051] 在一个实施例中,经树脂浸渍的缎纹编织织物会经受后处理以产生开孔阵列。参照图5,缎纹编织织物50夹在上层树脂膜51与下层树脂膜52之间。上层树脂膜51是形成在于离型纸53上和并且下方树脂模52是形成于在离型(或背衬)纸54上。所述离型纸可以涂覆有膜。使所得层合物在例如预浸渍机器中经受热压以形成经部分浸渍的预浸材。在树脂浸渍之后,气穴55在树脂膜之下产生气穴55。接着,参照图6,附着到下层树脂膜52的离型纸54改用聚酯膜56替代。在去除一层离型纸后将聚酯膜放置在一侧上以利于卷起最终预浸材。再参照图6,其上具有离型纸和聚酯膜的经部分浸渍的预浸材接着以加热循环方式加热,借此上层树脂膜52的位于气穴上方的树脂部分破开并且移动/流动离开气穴。结果,开孔57在树脂膜51中产生开孔57。热处理可以通过将预浸材暴露到设定为预定温度的热源达持续选定时间来进行。在热暴露期间,预浸材可以是固定的,或可以经由连续方法移动通过加热区段。或者,可以采用其它加热源,如热板、雷射、加热鼓、超声音波、热空气喷射等等。热处理的温度和时间可以根据实现流动的最小树脂粘度以及足以发生流动的时间而改变。较薄的树脂膜流动更为快速,因而较大重量的膜需要更长的时间。举例来说,可以对呈已经由标准连续预浸材制造方法形成的连续薄片形式的预浸材料卷施用后处理。在这类后处理中,连续预浸材处在张力下松开并且继续传送通过水平加热烘箱(在其中将预浸材暴露于热),并且接着在卷取辊上卷起。可以根据烘箱长度控制热暴露时间与传送速度以产生所需开孔。在一个实施例中,浸渍用树脂是室温(20℃到25℃)下为粘弹性固体并且在250℉到350℉(121℃到177℃)的温度范围内可固化的热熔融环基基质;可以在120℉到250℉(49℃到121℃)范围内进行加热循环持续0.25到20分钟。
[0052] 图7显示示例性缎纹编织构造(更特定来说是8H(8-Harness)缎纹编织),并且可以在如上所述利用树脂膜部分浸渍缎纹编织织物时产生气穴所处的位置70。应了解,事实上,图7中所显示的交叉丝束实际上更为接近地靠在一起并且更为紧密地编织。图8示意性地显示在如上参照图5和6所述的树脂浸渍和热处理之后的经热处理的预浸材表面以及树脂膜中开孔相对织物组织中的上方/下方跨过位置的位置。
[0053] 图9示意性地显示已经受热处理产生开孔100的经部分浸渍的平纹编织织物95,所述开孔贯穿上方和下层树脂膜96、97形成。树脂膜96、97分别由离型纸/背衬纸98、99支撑。
[0054] 图10显示一示例性平纹编织织物和在其中形成的间隙101。应了解,事实上,图7中所显示的交叉丝束实际上更为接近地靠在一起并且更为紧密地编织。图11示意性地显示在如上参照图9所述的树脂浸渍和热处理之后的经热处理的预浸材表面以及树脂膜中开孔相对织物组织中的间隙101的位置。请注意所述开孔与间隙11对准。
[0055] 图12示意性地显示能够制造预浸材织物并且提供原位热处理的示例性预浸渍系统。参照图12,将连续织物网(fabric web)80传送到由一对加热压力辊81、82形成的第一压力辊隙。织物网80夹在由供应辊85、86松开的两层树脂膜83、84之间。树脂膜83、84各者是在连续离型纸上形成的。借助于压力辊81、82将树脂膜83、84分别压到织物网80的顶面和底面上。来自压力辊81、82的压力和热量使树脂膜83、84部分地浸渍织物网80,借此形成经部分浸渍的预浸材。所述经部分浸渍的预浸材接着在加热板87上方穿过。在此时,进行加热以在预浸材中产生开孔。在热处理之后,所得多孔预浸材传送穿过冷却板88上方,在所述处,多孔预浸材经冷却以固化树脂。经冷却的预浸材接着通过拉辊89、90传送并且由额外导引辊导到将其卷起的卷起辊91上。此类型方法尤其适用于在基于平纹编织织物(尤其低GSM织物)的用途的预浸材中产生开孔,其中归因于织物和浸渍膜的薄度,热处理是快速的。
[0056] 经热处理的预浸材中所形成的开孔形状不规则并且大小不均等。开孔的形状和大小取决于织造图样和热处理时间。开孔的大小随着树脂经时流动而增大。作为实例,开孔可以为直径在0.1到3mm范围内的实质上圆形截面或宽度和长度在0.1mm到3mm范围内的近似矩形截面。另外,在特定量的处理时间后,作为实例,1到8分钟的处理时间可能足以产生开孔。此外,在特定处理时间后,一些开孔可能变成彼此相连,取决于开孔彼此间的初始接近程度。在一些实例中,由于有缺陷的处理条件,例如,当在热处理期间离型纸未粘着到树脂膜时,一些截留气穴可能未敞开。
[0057] 基质树脂
[0058] 用于制造本文所述的可固化预浸材的基质树脂是基于可固化热熔融组合物,其特征在于可固化热熔融组合物最初在近似室温(20℃到25℃)下为固态或半固态,在材料施加的提高温度下变为熔融态,在冷却后固化,并且可通过固化而硬化。此外,基质树脂应具有足以允许形成气穴并且随后通过热处理在气穴上方形成开孔的粘度和润湿特性。在一个实施例中,热熔融树脂组合物是由一或多种作为主要组分的热固性树脂组成的可固化热固性树脂组合物,并且实质上不含如丙酮、甲基乙基酮(MEK)、二氧戊环、醇的任何有机溶剂。当用于制造最终固化产物时,通过使用催化剂或固化剂、加热或二者的组合来使这些热固性树脂固化。
[0059] 适合的热固性树脂可以包括(但不限于)环氧树脂、不饱和聚酯、双来酰亚胺以及其组合。这些热固性树脂可以通过使用热或固化剂或其组合完全固化。催化剂可以用于加速固化反应。当热固性树脂完全固化时,其变硬并且无法转化回其最初形式。
[0060] 在一个实施例中,基质树脂为包含一或多种多官能环氧树脂作为主要聚合组分的环氧基热固性组合物。适合的环氧树脂包括芳族二胺、芳族单伯胺、苯酚、多元酚、多元醇、多元羧酸的聚缩水甘油基衍生物。适合的环氧树脂的实例包括双酚的聚缩水甘油醚,所述双酚如双酚A、双酚F、双酚S以及双酚K;以及甲酚和苯酚基酚清漆的聚缩水甘油醚。
[0061] 适合的双马来酰亚胺树脂可以包括1,2-乙烷二胺、1,6-己烷二胺、三甲基-1,6-己烷二胺、1,4-苯二胺、4,4'-亚甲基双苯胺、2-甲基-l,4-苯二胺、3,3'-亚甲基双苯胺、3,3'-磺酰基双苯胺、4,4'-磺酰基双苯胺、3,3'-氧联双苯胺、4,4'-氧联双苯胺、4,4'-亚甲基双环己胺、1,3-苯二甲胺、1,4-苯二甲胺以及4,4'-环己烷双苯胺的N,N'-双马来酰亚胺以及其混合物。
[0062] 基质树脂可以进一步包含少量的热塑性材料,如聚砜、聚醚砜、聚醚酮(例如,聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酮酮(PEKK)以及类似物)、其组合以及其前驱物。将一或多种热塑性材料添加到基质树脂中以提高预浸材的韧性、粘着性以及悬垂性。
[0063] 如本文中所述的基质树脂可以进一步包含少量的添加剂,以影响基质的机械性质、流变性质、电性质、光学性质、化学性质和/或热性质中的一或多种。这类添加剂可以进一步包含与基质起化学反应、与基质相互作用、或与基质不起反应的材料。添加剂的实例可以包括(但不限于)增韧颗粒、阻燃剂、紫外光(UV)稳定剂、抗氧化剂着色剂以及填充剂(例如,烟雾状二氧化硅、氧化、碳酸、滑石)以增强损伤耐受性、韧性、耐磨性中的一或多者。
[0064] 如本文所公开,具有表面开孔的预浸材(即,多孔预浸材)经构造以实现开孔的尺寸稳定性。开孔一旦形成即可保持尺寸稳定持续选定时间。在某些实施例中,开孔可以在多孔预浸材贮存期间保持尺寸稳定。可以通过调整基质树脂的粘度来提供尺寸稳定性。在约室温下调配基质树脂以形成尺寸稳定的开孔,但所述树脂可以在固结或固化期间在提高的温度下流动以填充所述开孔。
[0065] 如本文中所述,“完全浸渍”是指基质树脂中包埋实质上所有织物纤维。如本文中所述,“部分浸渍”是指少于完全浸渍的浸渍,从而存在未包埋在基质树脂中的干纤维区域。在一个优选的实施例中,将基质树脂施用到织物层的两个表面,但树脂仅部分地穿透所述织物的厚度,以使在厚度方向上留下实质上不含树脂的所述织物的中间区段。
[0066] 如本文中所用,术语“尺寸稳定性”是指结构将尺寸维持在所选范围内持续选定时间的能力。在某些实施例中,所选范围可以通过结构执行所需功能(例如,使得气体在选定压力下以选定速率通过)的能力来确定。
[0067] 如本文中所用,术语“室温”是指在20℃到25℃范围内的温度。
[0068] 预浸材叠层和复合部件
[0069] 为了形成复合部件,可以铺放多层本文所公开的可固化预浸材形成预浸材叠层,并且接着使所述叠层固结和固化。固结和固化可以在一个阶段中进行或分开进行。
[0070] 已发现具有表面开孔的预浸材(即,多孔预浸材)有利于在固结之前和/或期间从个别预浸材和其中包含一或多层多孔预浸材的预浸材叠层中去除气体,并且因而使得由其形成的复合材料中的孔隙体积与未利用多孔预浸材所形成的复合材料相比较小。举例来说,开孔为气体提供从多孔预浸材中散逸的路径并且使得能够以与未经处理的预浸材相比更大的容易度和更大的体积从预浸材中去除气体。所述气体可以包括源自基质树脂或经部分浸渍的预浸材的无树脂区段中的气体、或源自预浸材层之间的层间区域的气体。特定来说,多孔预浸材可以实现去除可能会在固结期间从树脂组合物中逸出的气体。
[0071] 如本文中所用,术语“预浸材叠层”是指以堆叠配置方式彼此相邻放置的多层预浸材。在某些实施例中,堆叠中的预浸材可以所选的定向彼此相对安置。在另一个实施例中,预浸材可以任选地通过缝线材料缝接在一起以便抑制其从所选定向相对移动。在额外的实施例中,“叠层”可以包含经完全浸渍的预浸材、经部分浸渍的预浸材以及如本文中所述的多孔预浸材的任何组合。叠层可以通过可以包括(但不限于)手工叠层(hand layup)、自动化铺带叠层(automated tape layup)(ATL)、自动化纤维铺放(automated fiber placement)(AFP)以及长丝缠绕(filament winding)的技术制得。
[0072] 固结或压实是指在加热、抽真空以及加压中的一或多者的作用下发生的工艺,借此基质树脂流动,以置换空隙空间。举例来说,固结可能会导致(但不限于)树脂流入预浸材中纤维之间的空隙空间、预浸材之间的空隙空间以及类似空间。
[0073] 如本文中所用,术语“固化(cure/curing)”可以包括聚合和/或交联工艺。可以通过包括(但不限于)加热、暴露到紫外光中以及暴露到辐射中的方法来进行固化。在其它实施例中,多孔预浸材中的基质树脂可以经调配或经部分固化以便能展现所选粘着力(stickiness)或粘性(tack)。
[0074] 在将多层具有表面开孔的可固化预浸材用于预浸材叠层中时,叠层具有增强的去除截留在预浸材中和预浸材层之间的气体(例如空气)的能力。在预浸材叠层的固结/压实期间,预浸材中的开孔和不含树脂区域为截留在预浸材中和预浸材之间的气体提供散逸的各种路径,从而减少所得固结复合材料中的孔隙。因此,在固化后,已固化复合材料展现改良的机械特性。举例来说,可以此方式获得具有以复合材料总体积计小于1体积%的残留孔隙的已固化复合材料。
[0075] 当开孔在可固化预浸材的两个主表面中形成时,气体可以通过进入一个表面并且经由相对表面离开来穿通预浸材。开孔还允许真空完全穿透预浸材的层压堆叠。此外,开孔利用相邻上方/下方跨过位置产生通道以产生沿着两个相邻预浸材层的界面的空气通道。各种流动路径可以由预浸材的表面开孔、层间区域以及非浸渍(无树脂)部分的任何组合产生。举例来说,来自相邻预浸材之间的层间区域的气体可以经由预浸材一侧上的开孔进入,并且接着经由同一预浸材的无树脂中间区段而散逸到外部。或者,气体可以从一个层间区域经由各预浸材相对侧中的开孔而流动到下一个层间区域,并且最终从预浸材叠层中流出。这是相比于无热处理的标准产物的改进之处,因为其中树脂膜保持完整的标准产物中,空气更难以从层之间转移并且进入层核(ply core)中,而对于经热处理的材料来说,归因于一定数目的开孔,空气转移增强。所述各种流动路径大大地增强了截留气体从预浸材叠层散逸的能力,并且还与相邻上/下区域一起形成通道,以产生沿着两相邻层界面的通气。
[0076] 基质树脂的粘度可以经控制以在固结期间流动并填充预浸材中以及之间的空隙空间。举例来说,在一个实施例中,可以通过树脂调配物来控制基质树脂的粘度以在无外加压力的情况下在施加热量后流动并填充空隙空间。在另一个实施例中,可以通过树脂调配物来控制基质树脂的粘度以在施加热量和外加压力后并且任选地在真空下流动并填充空隙空间。有益地,通过允许在固结期间填充开孔和其它空隙空间,所得复合材料的孔隙实质上减少或消除。
[0077] 可以通过使用真空袋设置来进行预浸材叠层的压实。在这一设置中,可放置可固化预浸材叠层与工具接触并且接着用不渗透膜密封。所述工具可以具有相对平坦的表面、弯曲表面或其它三维构造。在一个实施例中,如未经浸渍的玻璃纤维薄片的通气层可以邻近叠层的至少一个水平表面安置以实现表面通气。必要时,可以进一步使用密封胶带,以在工具与膜之间产生近似真空紧密密封。为了抑制树脂在叠层外部流动或为了改善气体流动,还可以邻近叠层的边缘放置一或多个屏障。可以将穿孔离型膜(例如穿孔聚酯膜)插于通气层与预浸材叠层之间并且可以将固态离型膜(例如聚酯膜)插于预浸材叠层与工具之间以便于从所述设置中去除固结的复合材料。抽空封闭体积并且缓慢加热叠层以引起固结。可通过将真空袋设置放置在烘箱或高压釜中来加热。此外,可以在存在压力(例如,在高压釜中)或不存在压力(例如,在烘箱中)下进行加热,以降低基质的粘度并引起允许基质树脂流动的压力差。在基质的粘度足够低以促进压实时,所述树脂流可以填充预浸材叠层中的空隙空间并置换所述叠层中的气体。因此,在相同高压釜或烘箱中在更高的温度下固化所述叠层,以制得最终复合部件。
[0078] 已发现当在上述真空袋设置中处理经热处理的预浸材时,可以实质上减少固化之前在真空下的时间量(另称为压实周期)。这是预浸材如前文所论述去除空气和气体的能力增强的结果。
[0079] 可以使用本文所公开的多孔预浸材制造复合夹层结构。在一个实施例中,如图13中所显示,由木材、发泡体、蜂窝状物或其它结构材料组成的中心核130夹在两个预浸材叠层131、132之间,其中叠层中的一些或全部预浸材层含有表面开孔。图14说明了所得复合夹层结构。任选地,可以在多孔预浸材层之间放置倍加层以产生细长增强区域。另外,未经浸渍或经部分浸渍的轻质稀松布(scrim),如玻璃纤维、碳、热塑性或其它编织或非编织材料,可以在所选位置并入叠层中以便于去除气体或提高如损伤耐受性的机械特性。
[0080] 当预浸材叠层并有核结构时,还可以在预浸材叠层固化之前采用粘着材料以将所述核与预浸材料结合。因为如蜂窝结构的中心开口核结构可能含有显著量的气体,所以粘着层还可以经穿孔以便于去除气体。
[0081] 本文所公开的热处理可以在叠层之前或期间在部件建置器(builder)上并入复合部件制造工艺。任何预浸材层的热处理都可以在预浸材叠层工艺期间通过在预浸材料或层铺放之前、正进行铺放时或在已铺放一个预浸材层之后但在铺放随后的下一层之前向预浸材料或层施加热量而在原位进行。举例来说,所述工艺可以包括:铺放一个表面上覆盖有离型纸或聚酯膜的预浸材层;使用加热辊、热空气棍(hot air wand)、热等等进行热处理,以形成表面开孔;去除所述离型纸/聚酯膜;铺放下一层预浸材层;并且必要时重复直到形成所需厚度的预浸材叠层。
[0082] 实例
[0083] 提供以下实例来证实所公开的可固化预浸材的实施例的益处。出于说明的目的论述这些实例并且不应解释为限制所公开的实施例的范围。
[0084] 实例1
[0085] 通过热熔融工艺使用预浸渍机器制备预浸材织物,其中使两层由韧化环氧基树脂赛克(Cycom)5320(购自氰特工业公司(Cytec Industries Inc.))形成的树脂膜压靠在8-H缎纹编织碳纤维织物的顶表面和底表面上,借此所述织物夹在两层树脂膜之间。各树脂膜形成于经硅酮涂覆的离型纸上并且每层膜具有106gsm的面积单位重量。碳纤维织物具有(370)gsm的FAW和0.0146in的厚度。对层合物施加热量和压力以使树脂膜熔融并部分地穿透所述织物的厚度。在预浸渍之后用平滑聚酯膜更换离型纸中的一者以便于缠绕到辊上。在200℉(93℃)下在烘箱中加热顶部具有离型纸并且底部具有聚酯膜的经预浸渍的预浸材2到5分钟。已发现热循环时间足以打开封闭气穴而不会影响预浸材的机械或物理特性。图15到17显示了去除离型纸的预浸材表面分别在1分钟、4分钟和7.5分钟的加热时间的俯视图。开孔与缎纹编织织物中的上方/下方跨过位置(即,向上/向下丝束部分)重合。由图15到17可见,开孔的尺寸随着时间变大。7.5分钟后,在同一丝束中对准并且邻近相邻丝束的上方/下方跨过位置的一些开孔触及彼此,如图13的图像可见。这些开孔对应于缎纹编织织物中的向上/向下丝束部分(如图7中的参考数字70所指示)。
应注意所述开孔仅在经热处理的预浸材的离型纸侧形成。
[0086] 实例2
[0087] 通过使用图12中所描绘的预浸渍系统制备预浸材织物。所使用的织物为平纹编织碳纤维织物,并且施加到织物的相对侧的树脂膜由赛克5320环氧基树脂形成。各树脂膜形成于硅酮涂覆的离型纸上并且具有55gsm的面积单位重量。所述碳纤维织物具有190gsm的FAW和0.0083”的厚度。对于部分浸渍来说,在第一辊隙处施加20psi;220℉(104℃)是加热板处的温度;并且在第二辊隙处提供小于0.5in(12.7mm)的间隙以限制压紧力。图18显示了去除离型纸的经热处理的预浸材表面的俯视图。预浸材表面中的开孔与平纹编织织物中的间隙重合。另外,应注意所述开孔在经热处理的预浸材的两个主表面中形成。
[0088] 实例3
[0089] 为了进行比较,如实例1中所述,在无产生表面开孔的热后处理的情况下制备对照预浸材。图19显示具有形成于连续树脂膜下方的封闭气泡的所得预浸材表面。这些气泡对应于缎纹编织织物中的向上/向下丝束部分。因此,可以看出,在固化之前不进行热处理的情况下,来自气穴的截留空气以及层之间无法散逸的空气残留在所得固化预浸材中,此归因于连续树脂膜限制从预浸材去除空气的事实。
[0090] 实例4
[0091] 建构由15层如实例1中所述的5320/8HS预浸材料组成的12”×12”单片式板并固化。为了进行比较,使用未经处理的5320/8HS预浸材料建构相同板并在相同条件下固化。所得孔隙度从未经处理的1.31%降低到经热处理的0.04%。图20显示了由未经处理的材料组成的板的截面,并且图21显示了由经热处理的材料组成的板的截面。
[0092] 实例5
[0093] 基于图13所显示的构造组装蜂窝核夹层结构,其中将10层多孔预浸材层(201)放置在蜂窝核(202)上方并且将14层多孔预浸材层(203)放置在蜂窝核下方。如实例1中所述,通过利用赛克5320树脂部分地浸渍缎纹编织碳纤维织物,接着进行热处理以产生表面开孔来制得所述多孔预浸材层。经组装的夹层结构经真空袋装,在室温下固结并且在烘箱(不是高压釜)中固化。
[0094] 为了进行比较,除了预浸材层不经热处理以产生表面开孔以外,以相同方式组装、固结并且固化标准蜂窝核夹层结构。
[0095] 在固化产物的不同部分(包括凸缘、倾斜部分、中心核)处测量孔隙度并且计算平均孔隙度。孔隙度通过抛光板截面的目视显微镜法来测量。
[0096] 发现与固化标准产物的2.0%孔隙度相比,使用多孔预浸材获得的固化产物含有平均约0.05%的孔隙度。
[0097] 实例6
[0098] 使用多孔预浸材层组装蜂窝核夹层结构并且它是基于图13的结构。用于这一结构的多孔预浸材层由平纹编织碳纤维织物和赛克5320树脂组成,并且如实例2中所述,预浸材层中的开孔通过预浸渍工艺期间在原位加热来制得。随后,经组装的夹层结构经真空袋装,在室温下固结并且在烘箱(不是高压釜)中固化。为了进行比较,除了预浸材层不经热处理以产生表面开孔以外,以相同方式组装、固结并且固化标准蜂窝核夹层结构。
[0099] 发现与固化标准产物的1.74%孔隙度相比,使用多孔预浸材获得的固化产物含有平均约0.18%的孔隙度。
[0100] 实例7
[0101] 由5320-1/8HS预浸材制造复合板以判定固化之前在真空下的时间量(另称为压实周期)是否可能减少,因而缩短总固化时间。使用经热处理的预浸材和未经处理的预浸材(作为对照组),固化之前在真空下的时间在0.5小时到16小时范围内改变。
[0102] 建构由15层如实例1中所述的经热处理的5320-1/8HS预浸材料组成的12”×12”单片式板并且使用两种不同的固化周期进行固化。为了进行比较,使用未经处理的5320/8HS预浸材料建构相同板并且在两种相同的固化周期下固化。第一固化周期由在固化之前在真空下保持16小时组成。第二固化周期由在固化之前在真空下保持0.5小时组成。
[0103] 使用C-扫描来判定固化板是否无孔隙。C-扫描为针对复合材料的非破坏性检测技术,其中声波能量的短脉冲入射于样本上。透射脉冲的测量值指示样本的入射脉冲的衰减。脉冲的衰减受空隙、层离、树脂固化状态、纤维体积分率、纤维/基质界面的条件以及存在的任何外来包括物(foreign inclusion)影响。因此,c-扫描确定板或最终部件中所存在的孔隙的数量的能力是为工业所接受的质量控制方式。c-扫描的灵敏度可以检测低至如小于2%空隙的极低百分比的孔隙度。将这些板与已知孔隙度的参照板进行比较,以测定所检测的样本中所存在孔隙的数量。所述板证实了显示如通过c-扫描测得准确度在0.00%到2.00%范围内的差别性的能力。为了与使用截面抛光表面的c-扫描作比较,还对所述板进行破坏性测试和剖视以测定孔隙度%。图22到25中显示了所测试复合板的截面图。
[0104] 在真空下保持16小时所得的孔隙度使得孔隙度从未经处理的1.46%降低到经热处理的0.02%。图22显示了由未经热处理的预浸材料组成的板的截面,并且图23显示了由经热处理的材料组成的板的截面。在真空下保持0.5小时所得的孔隙度使得孔隙度从未经处理的2.53%降低到经热处理的1.06%。图24显示了由未经处理的材料组成的板的截面,并且图25显示了由经热处理的材料组成的板的截面。
[0105] 结果显示可以通过使用经热处理的预浸材实质上减少固化之前在真空下的时间量。这是经热处理的预浸材去除如前文所论述的空气和气体的能力的结果。
[0106] 实例8
[0107] 由5320-1/PW预浸材制造复合板以判定固化之前在真空下的压实时间量是否可能减少,因而缩短总固化时间。使用经热处理的预浸材和未经处理的预浸材(作为对照组)二者,固化之前在真空下的时间在0.5小时到16小时范围内改变。
[0108] 建构由15层如实例1中所述的经热处理的5320-1/PW预浸材料组成的12”×12”单片式板并且使用两种不同的固化周期进行固化。为了进行比较,使用未经处理的5320-1/PW预浸材料建构相同板并且在两种相同的固化周期下固化。第一固化周期由在固化之前在真空下保持16小时组成。第二固化周期由在固化之前在真空下保持0.5小时组成。如实例7中所述对所制得复合板进行测试,并且在图26到29中显示了所测试的复合板的截面图。
[0109] 在真空下保持16小时所得的孔隙度使得孔隙度从未经处理的0.83%降低到经热处理的0.23%。图26显示了由未经热处理的预浸材料组成的板的截面,并且图27显示了由经热处理的材料组成的板的截面。未显示在真空下保持0.5小时所得的孔隙度使孔隙度降低,这指示在固化之前的0.5小时真空停留对于所测试的PW基材料去除空气来说时间不够充足。图28显示了由未经处理的预浸材料组成的板的截面,并且图29显示了由经热处理的材料组成的板的截面。
[0110] 虽然前述说明已显示、描述并且指出本发明教示的主要新颖特征,但应了解所属领域的技术人员可以在不脱离本发明教示的范围的情况下作出呈所说明设备以及其用途的细节形式的各种省略、取代以及改变。因此,本发明教示的范围不应限于前述说明,而应由随附权利要求书界定。
[0111] 如本文中所使用,术语“近似”、“约”以及“实质上”表示仍能执行所需功能或实现所需结果的接近所陈述量的量。举例来说,术语“近似”、“约”以及“实质上”可以指在小于所陈述量的10%、小于所陈述量的5%、小于所陈述量的1%、小于所陈述量的0.1%以及小于所陈述量的0.01%中的量。
QQ群二维码
意见反馈