首页 / 国际专利分类库 / 化学;冶金 / 组合化学 / 处理产物流体物流的方法

处理产物流体物流的方法

申请号 CN201280038507.5 申请日 2012-07-30 公开(公告)号 CN103781542B 公开(公告)日 2017-02-15
申请人 HTE高通量实验公司; 发明人 J·范德; A·哈斯; A·伯伦纳;
摘要 本 发明 涉及一种处理在实验室催化装置中液体进料的催化氢化产生的产物 流体 物流的方法。液体进料优选是含有含硫化合物和含氮化合物作为污染物的 烃 化合物。氢化是用于将所述污染物转化为 硫化氢 和 氨 ,其以这种形式容易从液体进料的其它组分中分离出来。产物流体物流与惰性气体物流 接触 ,其中惰性气体的流速比产物流体的流速大数倍。通过本发明的方法可以有效地防止在反应室出口侧的区域的管线中形成 沉积物 。
权利要求

1.一种处理在两个或更多个反应器中的排布中的产物流体物流的方法,其中,(a)将含有液体进料和氢气或者另一种反应气体或液体进料、氢气和载气的起始流体物流送到各个单独的反应空间,以及
(b)将从各个反应空间出来的产物流体物流各自转移到单独的分离器,以及将至少一种惰性气体在反应空间的出口侧加入各个区域,并且惰性气体的体积流量(VIG)与产物流体物流的体积流量(VPFS)之比VIG/VPFS是≥5,其中,液体进料包含选自油和/或常压残渣的材料,和
其中,液体进料含有含硫化合物和含氮化合物,其中所述含硫化合物具有0.5-7重量%的硫含量并且含氮化合物具有0.1-5重量%的氮含量,基于液体进料的总量计,其中,所述反应空间具有小于10ml的内体积,或者各个反应空间具有0.2-100ml的内体积。
2.如权利要求1所述的方法,其中反应器是具有两个或更多个平行排布的反应空间的实验室规模反应器。
3.如权利要求1或2所述的方法,其中将至少一种惰性气体在反应空间和分离器之间加入各个区域。
4.如权利要求1或2所述的方法,其中体积流量比VIG/VPFS是≥10。
5.如权利要求4所述的方法,其中体积流量比VIG/VPFS是≥20。
6.如权利要求1或2所述的方法,其中油是燃料油。
7.如权利要求6所述的方法,其中燃料油是选自重油、柴油、汽油真空瓦斯油
8.如权利要求1所述的方法,其中,惰性气体中的气态氮气的比例是等于或大于50%。
9.如权利要求8所述的方法,其中,惰性气体中的气态氮气的比例是等于或大于90%。
10.如权利要求8所述的方法,其中,惰性气体中的气态氮气的比例是大于或等于95%。
11.如权利要求1或2所述的方法,其中反应空间中的温度是100-700℃并且反应空间中的压是20-250巴。
12.如权利要求11所述的方法,其中反应空间中的温度是150-550℃,压力是50-200巴。
13.如权利要求1或2所述的方法,其中,加入的起始流体的液体小时空速是0.05-10h-1,并且主动地连接到所述反应器的各个反应空间具有0.2-100ml的内体积。
14.如权利要求13所述的方法,其中加入的起始流体的液体小时空速是0.5-3h-1,所述内体积是1-50ml。

说明书全文

处理产物流体物流的方法

[0001] 描述
[0002] 本发明涉及一种处理在两个或更多个反应器的排布中的产物流体物流的方法,特别是在实验室规模的反应器中,其中产物流体物流优选是在液体进料在氢气存在下的催化脱硫或脱氮中形成的。本发明的方法优选用于高通量研究领域。优选的是实验室反应装置,其中排布了多个或大量平行排布的反应空间,并且其中本发明的方法用于固态催化剂的加速开发或用于工艺条件的加速优化。
[0003] 因为特别是原材料的日益短缺和不断增加的成本,所以被含硫和含氮化合物高度污染的油渣和液体进料的处理有着特别巨大的经济和技术利益。出于这个原因,以研发为基础,有必要提供使被高度污染的油渣和进料更加可利用的新方法和改进的催化剂。然而,特别是在实验室领域,用于处理被高度污染的油渣和进料的实验催化装置的使用大大受限,使得其常常不能进行长周期实验。
[0004] 根据现有技术通过实验室催化装置进行的催化实验长期操作所取得的实验测量数据,特别是在重质油渣反应的情况下,仅有低的预测能。出于这个原因,通常需要在较大的催化试验装置中进行全面的和昂贵的比较研究,例如中试工厂,因为其更容易再现与在炼油厂的大型工业设备中的条件非常接近的实验条件。
[0005] 本发明的目的之一是改善实验室催化装置运行的长周期稳定性,即“实验室规模”上的反应器。另一个目的是开发技术以处理在实验室催化装置中在加工被高度污染的液体进料中得到的产物流体物流。所述污染物特别是含硫和含氮的化合物。
[0006] 这里提到的目的以及这里没有提到的其它目的是通过根据权利要求1的方法实现,用于产物物流的连续处理。这是一种处理在两个或更多个反应器的排布中的产物流体物流的方法,特别是在具有平行排布的两个或更多个反应空间的实验室规模反应器(实验室催化装置)中,其中,
[0007] (a)将含有液体进料和氢气或者另一种反应气体或液体进料、氢气(或另一种反应气体)和载气的起始流体物流送到各个单独的反应空间,以及
[0008] (b)将从各个反应空间出来的产物气体物流各自转移到单独的分离器,[0009] 并且将惰性气体在反应空间的出口侧加入各个区域,优选在反应空间和分离器之间或在分离器和出口侧流量限制器之间,并且惰性气体的体积流量(VIG)与产物流体物流的体积流量(VPFS)之比VIG/VPFS是≥2或≥5。
[0010] 优选的体积流量比VIG/VPFS是≥10,并且体积流量比VIG/VPFS更优选是≥20。
[0011] 为了本发明的目的,“处理”优选是产物流体物流与至少一种气体或气体混合物接触
[0012] 此外,为了本发明的目的,优选的是反应空间具有小于500ml的内体积,优选小于250ml,更优选小于100ml,更优选小于50ml并且特别优选小于10ml。催化装置的各个反应空间更优选具有0.2-100ml的内体积,更优选的内体积是0.5-50ml。
[0013] 惰性气体中的气态氮气的比例优选是等于或大于50%,惰性气体中的气态氮气的比例优选是等于或大于90%,并且惰性气体中的气态氮气的比例更优选是大于或等于95%。
[0014] 在一个优选实施方案中,添加到起始流体中或者是起始流体组分的所述载气是氮气或包含氮气。载气和惰性气体都可以包含痕量气体,其作为内标用于校准流量和气体物流。作为痕量气体,例如可以使用氩气。
[0015] 为了本发明的目的,液体进料优选包含选自油、重油、燃料油、柴油、汽油、VGO(真空瓦斯油)和/或常压残渣(久沸残渣)的材料。
[0016] 本发明的方法优选涉及含有含硫化合物和含氮化合物的液体进料,其中,所述含硫化合物优选具有0.01-10重量%的硫含量,并且含氮化合物优选具有0.1-5重量%的氮含量;更优选0.5-7重量%的硫含量以及0.5-5重量%的氮含量,在每种情况下是基于进料的总重量计。
[0017] 输送到各个反应空间中的液体进料的量可以例如报告为LHSV(“液体小时空速”)。-1 -1
所述LHSV优选是0.05-10h ,更优选是0.5-3h 。
[0018] 关于实验的持续时间,本发明方法特别优选用于长期研究中,本发明方法在这方面是特别有利的。为了本发明的目的,长期研究表示优选连续的实验,其持续时间为一天或更长,实验的持续时间优选是10天或更长,更优选是20天或更长,甚至更优选是30天或更长。对于本发明的目的,长期研究也包括那些持续时间为100天或更长的研究。
[0019] 关于实验室催化装置的技术结构的基本组成部件,原则上是从现有技术已知的,该结构可用于本发明的方法,并且例如公开在专利申请WO2005/063372A2、WO2008/055585A1和WO2008/012073A1中。这种催化装置包括具有小尺寸的部件。这些部件尤其包括连接管线、流量限制器管线和闭合元件,这些部件直接与在该装置中进一步处理的流体接触。
[0020] 为了实施本发明的方法,特别优选的是在反应空间的出口和分离器之间具有用于惰性气体的进料管线的那些装置。在该优选实施方案中,在反应器入口处在气相中存在NH3和H2S的情况下,防止了在反应器出口直接形成NH4SX。
[0021] 至于这里提到的部件的尺寸,优选的是在用于本发明方法的装置中的连接管线具有1-10mm的内直径,优选具有1-5mm的内直径。所述流量限流器管线优选具有50-1000μm的内直径,内直径优选为75-500μm,更优选为100-250μm。
[0022] 作为液体进料,也可以特别使用油、汽油、柴油混合物、重石脑油、真空瓦斯油、原油。相应的实验条件也取决于液体进料的性能,对于加工和处理重油比加工汽油或轻燃料油需要更苛刻的实验条件。
[0023] 现在惊奇地发现,特别是当根据本发明的方法实施时,产物流体物流的处理可以特别有利地进行。这里,也可以在很大程度上抑制或甚至完全防止在部件的表面上形成沉积物
[0024] 可以强调的是,本发明的方法使得尤其是具有含硫和含氮化合物的高度污染的相对非挥发性组分进行可靠和稳健的实验室检查工艺。该工艺使在大型工业设备中实施的反应条件能在实验室规模上真实地并且在长期内再现。
[0025] 杂质的去除优选涉及含硫和含氮化合物的催化氢化,这些化合物通过催化反应优选被完全转化成硫化氢。然而,由于化学和物理工艺条件,完全转化通常是不可能的。此外,形成的组分会分解或进一步反应,特别是也能形成含硫化铵的化合物NH4SX。对于沉积物的形成起主要作用的是,在反应区中主导的温度高于在反应器出口侧区域中的温度。这种沉积物的形成是基于复杂的反应,这些沉积物的组成取决于相应的反应体系。可以假定至少在上述反应中形成不同的多硫化物或铵的硫化物。
[0026] 在现有技术中,试图通过加热导管以抑制所述导管中沉积物的形成。但是,所述管线的加热也受到限制,这与在升高的温度下会发生不希望的后续反应有关,并且在将产物流体物流引入分离器时冷却是必要的,以便能够最有效地分离挥发性和低挥发性成分。
[0027] 此外,本发明的方法,在具有平行分布的反应器的实验室催化装置的情况下,是优选与主物流的压力调节和与次级物流的压力调节相结合使用。主物流压力调节的一个说明性实例在WO2006/107187A1中公开。次级物流压力调节的说明性介绍公开在PCT申请WO2005/063372A2、WO2008/055585A1和WO2008/012073A1中,并且在这方面全部引入本发明以供参考。
[0028] 在主物流压力调节的情况下,主动调节元件优选直接位于产物流体物流中。在这种情况下,后调节优选地与在阀内的阀针的移动结合使用。如果形成沉积物,则干扰可以在一定程度上通过后调节机制得到补偿。此外,阀针的移动也可导致沉积物的形成减少或沉积物再次剥落。
[0029] 本发明的方法优选与次级物流压力调节结合使用。在次级物流压力调节的情况下,负责调节的部件不会直接暴露于产物流体物流。在这里,所述管线和部件的横截面以及它们的温度对含硫和含氮沉积物的形成施加实质性影响。一般情况下,具有非常小的导管横截面的管线和部件也特别容易发生沉积,因为即使少量的沉积物就会导致管线的堵塞。具有次级物流调节的实验室催化装置的导管横截面是0.1-10mm,但也包括具有5-500μm的横截面的管线元件。
[0030] 通过本发明的方法可以在很大程度上防止形成麻烦的沉积物。一个优点是,实验室装置的运行时间可以甚至在关于压力和温度的苛刻实验条件下进一步延长,且数据的质量不会受限。主导压力是5-300巴,优选是10-200巴。例如,迄今仅能够进行10小时至30天的实验现在可以毫无问题地进行超过数周和长达六个月或甚至最多十二个月的时间。测试数据具有较低的离散性和良好的再现性,其优于从现有技术中已知的方法。
[0031] 本发明的优选应用领域是实验室催化装置。然而,也有在具有平行布置的反应器的微反应器中使用的领域,因为部件的尺寸小,在这些微反应器中易于形成沉积物。迄今,在微型装置中检查相对不挥发的渣油是非常困难或几乎不可能的。在微型装置中,反应器的尺寸小于或等于1ml,并且要检查的催化剂样品的量通常是10-500mg。微型装置的导管横截面通常是10-500μm。
[0032] 在本发明方法中所用的液体进料的催化反应是优选在50-700℃的温度和10-250巴的压力下进行。进一步优选的是,催化反应的温度是100-500℃,压力是20-200巴。
[0033] 由于本发明的方法是与产物流体物流的稀释相关,这是因为将相对大量的惰性气体引入产物液流,所以优选的是分析表征方法与这种稀释的互相匹配。测量仪器的灵敏度足以表征在大幅度稀释的产物流体物流中的低浓度的化合物。
[0034] 在本发明方法的一个优选实施方案中,用分析测量仪器测量几乎全部组分或只含的组分。在本发明方法的另一个优选实施方案中,除了含烃化合物外还分析氨和/或硫化氢的量。本发明并不限于使用特定的分析系统,而是使用特别适合于所述反应体系的分析系统。实施例
[0035] 在实施例中,利用WO2005/063372A2公开的催化装置进行重质渣油的催化氢化反应(来自美国Texas-Blend品牌的“久沸残渣”)。在催化装置中,平行排布16个反应空间。渣油的硫含量为3.8重量%,氮含量为1重量%,并且硫和氮是以作为烃类化合物的结合形式存在。
[0036] 渣油的催化反应是在420℃的反应温度和125巴的反应压力下进行。反应空间出口侧的区域中的温度、特别是在连接管线和在分离器中的温度为120℃。使用本发明的方法进行氢化反应,其中将氮气通过压力调节气体管线引入产物流体物流,并且引入的氮气的体积流量高达产物流体体积流量的10倍,这是与现有技术方法之间的区别。令人惊讶地发现,连续进行60天的操作时,在管线中没有检测到沉积物。与现有技术中的工艺条件相比,在实验的总持续时间期间,含硫和含氮化合物的比例平均减少了90%。在本研究中,与其它固态催化剂相比,能够从许多被检测的催化剂中确认在硫化氢的形成方面具有较高转化率的两种固态催化剂。
[0037] 作为对比例,反应是使用显著更低的压力调节气体的引入速率进行的,即没有根据本发明的惰性气体过量。仅几天后就在反应空间的出口侧区域中的管线中检测到沉积物,并且大大损害了研究结果。
QQ群二维码
意见反馈