磁记录介质的制造方法

申请号 CN201580002518.1 申请日 2015-04-20 公开(公告)号 CN105723460A 公开(公告)日 2016-06-29
申请人 富士电机株式会社; 发明人 森谷友博; 岛津武仁;
摘要 本 发明 的目的在于提供包含具有更大的磁 各向异性 常数Ku的磁记录层的磁记录介质的制造方法。本发明的磁记录介质的制造方法包括:(a)准备 基板 的工序;(b)将基板加热至350℃以上,使以MgO为主成分的非 磁性 材料沉积,形成基底层的工序;以及(c)在基底层之上形成磁记录层的工序。
权利要求

1.磁记录介质的制造方法,其特征在于,包括:
(a)准备基板的工序;
(b)将所述基板加热至350℃以上,使以MgO为主成分的非磁性材料沉积,形成基底层的工序;以及
(c)在所述基底层之上形成磁记录层的工序。
2.根据权利要求1所述的磁记录介质的制造方法,其特征在于,在工序(b)之前,还包括:
(b’)使Cr金属、或具有bcc结构且以Cr为主成分的合金沉积,形成第二基底层的工序。
3.根据权利要求1所述的磁记录介质的制造方法,其特征在于,在工序(c)中,使形成有序合金的材料沉积。
4.根据权利要求1所述的磁记录介质的制造方法,其特征在于,在工序(c)中,使含有形成磁性晶粒的磁性材料、和形成包围所述磁性晶粒的非磁性晶界的非磁性材料的材料沉积。
5.根据权利要求4所述的磁记录介质的制造方法,其特征在于,所述磁性材料含有形成有序合金的材料。

说明书全文

磁记录介质的制造方法

技术领域

[0001] 本说明书中公开有几个构成例的发明涉及磁记录介质的制造方法。具体而言,涉及用于硬盘磁记录装置(HDD)的磁记录介质的制造方法。更具体而言,涉及适于热辅助磁记录方式的磁记录介质的制造方法。

背景技术

[0002] 作为实现磁记录的高密度化的技术,采用垂直磁记录方式。垂直磁记录介质至少包含非磁性基板、和由硬质磁性材料形成的磁记录层。垂直磁记录介质也可以任意选择性地还包含:由软磁性材料形成并发挥使磁头产生的磁通集中于磁记录层的作用的软磁衬里层;用于使磁记录层的硬磁性材料向目的的方向取向的基底层;保护磁记录层的表面的保护层等。
[0003] 以得到良好的磁特性作为目的,提案了使用颗粒磁性材料形成垂直磁记录介质的磁记录层。颗粒磁性材料含有磁性晶粒、以包围磁性晶粒的周围的方式偏析的非磁性体。颗粒磁性材料中的各个磁性晶粒通过非磁性体磁分离。
[0004] 近年来,垂直磁记录介质的记录密度的进一步提高作为目的,迫切需要缩小颗粒磁性材料中的磁性晶粒的粒径。另一方面,磁性晶粒的粒径的缩小会使被记录的磁化(信号)的热稳定性降低。因此,为了补偿磁性晶粒的粒径的缩小引起的热稳定性的降低,要求使用具有更高的磁晶各向异性的材料而形成颗粒磁性材料中的磁性晶粒。作为要求的具有高磁晶各向异性的材料,提案了L10系有序合金。代表的L10系有序合金包含FePt、CoPt、FePd、CoPd等。
[0005] 为使用L10系有序合金实现更高的磁晶各向异性,需要L10系有序合金的良好的结晶取向。作为用于形成在低的基板温度具有良好的结晶取向的L10系有序合金的薄膜的方法,特表2010-503139号公报公开下述磁记录介质的制造方法(参照专利文献1),其包含下述工序:在基板上沉积由具有(002)取向的Cr基合金构成的下层的工序、在下层上沉积具有(002)取向的缓冲层的工序、在低于400℃的基板温度于缓冲层上沉积FePt磁记录层的工序;缓冲层含有MgO或SrTiO3,缓冲层的膜厚为2~8nm,以及下层及磁记录层之间的晶格错合为3%~10%。在此,含有MgO的缓冲层在室温、或30~300℃的基板温度被沉积。然而,对于使缓冲层沉积时的基板温度、和形成于缓冲层上的磁记录层的结晶取向分散的关系没有任何记载。
[0006] 另外,国际公开第2011/021652号公报提案了在基底层之上形成由L10系有序合金构成的磁记录层的方法,该基底层包含通过由非晶质合金构成的第1层、由具有体心立方(bcc)结构的Cr合金构成的第2层、由MgO构成的第3层(参照专利文献2)。该提案以使由Cr合金构成的第2层的晶粒径减少造成的由L10系有序合金构成的磁记录层的磁性晶粒的粒径的减少为目的。由MgO构成的第3层是在形成磁记录层时的基板温度比350℃高的情况下,用于防止构成第2层的Cr合金的元素扩散到由L10系有序合金构成的磁记录层的层。对于由MgO构成的第3层形成时的基板温度、和形成于其之上的磁记录层的结晶取向分散的关系没有任何记载。
[0007] 另一方面,因为磁记录层的膜厚基本上在介质面内方向均一,所以减小磁性晶粒的意思是减小具有恒定高度的磁性晶粒的截面积。其结果是,作用于磁性晶粒自身的反磁场变小,为使磁性晶粒的磁化反转需要的磁场(反转磁场)变大。这样,在以磁性晶粒的形状考虑的情况下,记录密度的提高的意思是在信号的记录时需要更大的磁场。
[0008] 作为记录需要的磁场强度的增加的课题解决的方法,提案了热辅助记录方式、微波辅助记录方式等能量辅助磁记录方式(参照非专利文献1)。热辅助记录方式是利用磁性材料中的磁各向异性常数(Ku)的温度依赖性,即所谓越高温,Ku越小的特性的方式。该方式中,使用具有磁记录层的加热功能的磁头。即,使磁记录层升温,暂时性地降低Ku,由此使反转磁场减少,在此期间进行写入。降温后Ku恢复初始的高的值,因而可以稳定地保持记录信号(磁化)。在适用热辅助记录方式的情况下,需要考虑现有的设计方针之外,还需要考虑温度特性来设计磁记录层。
[0009] 现有技术文献
[0010] 专利文献
[0011] 专利文献1:特表2010-503139号公报
[0012] 专利文献2:国际公开第2011/021652号公报
[0013] 非专利文献
[0014] 非专利文献1:稻叶等、“新高密度记录技术-能量辅助磁记录介质”、富士时报、富士电机控胺株式会社 技术开发本部、2010年7月10日、第83卷第4号、257-260[0015] 非专利文献2:R.F.Penoyer、“Automatic Torque Balance for Magnetic Anisotropy Measurements”、The Review of Scientific Instruments、1959年8月、第30卷第8号、711-714
[0016] 非专利文献3:近聪信、强磁性体的物理(下)裳华房、10-21

发明内容

[0017] 发明所要解决的课题
[0018] 本说明书中公开有几个构成例的发明要解决的课题是提供包含具有更大的磁各向异性常数Ku的磁记录层的磁记录介质的制造方法。
[0019] 用于解决课题的手段
[0020] 本发明的一个构成例的磁记录介质的制造方法,其特征在于,包括:(a)准备基板的工序;(b)将基板加热至350℃以上,使以MgO为主成分的非磁性材料沉积,形成基底层的工序;以及(c)在基底层之上形成磁记录层的工序。在此,工序(b)之前还可以包括(b’)使Cr金属、或具有bcc结构且以Cr为主成分的合金沉积,形成第二基底层的工序。另外,优选在工序(c)中使包含有序合金的材料沉积。另外,优选在工序(c),使含有形成磁性晶粒的磁性材料、和形成包围所述磁性晶粒的晶界的非磁性材料的材料沉积。
[0021] 发明效果
[0022] 通过采用上述构成,使其之上形成了磁记录层的基底层的结晶取向分散、算术平均粗糙度Ra、及最大高度Rz减少,因此,使减少磁记录层材料的结晶取向分散、增大磁各向异性常数Ku成为可能。通过上述的制造方法制造的磁记录介质适于在能量辅助记录方式的使用。附图说明
[0023] 图1是表示通过本发明的一个构成例的制造方法而获得的磁记录介质的一个构成例的剖视图;
[0024] 图2是表示通过本发明的另一构成例的制造方法而获得的磁记录介质的另一构成例的剖视图;
[0025] 图3是表示通过实验例A得到的基底层及第二基底层的结晶取向分散和基底层形成时的基板温度的关系的图;
[0026] 图4A是在实验例A中,在250℃的基板温度形成的基底层的表面的AFM(Atomic Force Microscope)像;
[0027] 图4B是在实验例A中,300℃的基板温度形成的基底层的表面的AFM像;
[0028] 图4C是在实验例A中,在350℃的基板温度形成的基底层的表面的AFM像;
[0029] 图4D是在实验例A,在400℃的基板温度形成的基底层的表面的AFM像;
[0030] 图5是表示在实施例1及实施例2获得的磁记录层的结晶取向分散和基底层形成时的基板温度的关系的图;
[0031] 图6是表示通过实施例1及实施例2获得的磁记录层的磁各向异性常数和基底层形成时的基板温度的关系的图。

具体实施方式

[0032] 本发明的一个构成例的磁记录介质的制造方法包括:(a)准备基板的工序;(b)将基板加热至350℃以上,使以MgO为主成分的非磁性材料沉积,形成基底层的工序;以及(c)在基底层之上形成磁记录层的工序。图1是通过上述的方法而获得的、包含非磁性基板10、基底层40、及磁记录层50的磁记录介质的剖视图。
[0033] 在工序(a)准备的“基板”包含非磁性基板10。可以使用在非磁性基板10之上形成粘接层、软磁衬里层、散热层、籽晶层等该技术中已知的层的层叠体作为工序(a)的“基板”。图2是包含非磁性基板10、粘接层20、籽晶层30、第二基底层40b、基底层40、磁记录层50、及保护层60的磁记录介质的剖视图。在图2的结构中,非磁性基板10、粘接层20、及籽晶层30的部分结构看作是工序(a)的“基板”。对于第二基底层40b后述。
[0034] 非磁性基板10也可以是表面平滑的各种基板。例如,可以使用一般用于磁记录介质的材料,形成非磁性基板10。可以使用的材料含有实施NiP的Al合金、MgO单晶、MgAl2O4、SrTiO3、强化玻璃、晶化玻璃等。
[0035] 可以任意选择地设置的粘接层20为提高形成于粘接层20之上的层和形成于粘接层20之下的层的粘接性而使用。作为形成于粘接层20之下的层包含非磁性基板10。用于形成粘接层20的材料包含Ni、W、Ta、Cr、Ru等金属、含有上述的金属的合金。粘接层20即可以是单一的层,也可以具有多层的层叠结构。
[0036] 可以任意选择设置的软磁衬里层(未图示)控制来自磁头的磁通,提高磁记录介质的记录/再生特性。用于形成软磁衬里层的材料包含NiFe合金、(FeSiAl)合金、CoFe合金等晶质材料;FeTaC、CoFeNi、CoNiP等微晶质材料;CoZrNb、CoTaZr等含有Co合金的非晶质材料。软磁衬里层的膜厚的最佳值依赖于用于磁记录的磁头的结构及特性。通过和其它的层连续成膜形成软磁衬里层的情况下,考虑到兼顾生产性,优选软磁衬里层具有10nm~500nm的范围内(包含两端)的膜厚。
[0037] 制造热辅助磁记录用磁记录介质的情况下,也可以设置散热层(未图示)。散热层是用于有效地吸收热辅助磁记录时产生的磁记录层50的多余的热的层。散热层可以使用热导率及比热容量高的材料形成。那样的材料包含Cu单质、Ag单质、Au单质、或者以那些为主体的合金材料。在此,所谓“作为主体”即表示该材料的含量为50质量%以上。另外,从强度等的观点来考虑,使用Al-Si合金、Cu-B合金等,可以形成散热层。另外,使用铁硅铝(FeSiAl)合金、软磁CoFe合金等形成散热层,在散热层还可以赋予作为软磁衬里层的功能的使磁头产生的垂直方向磁场集中在磁记录层50的功能。散热层的膜厚的最佳值根据热辅助磁记录时的热量及热分布、以及磁记录介质的层构成及各构成层的厚度而变化。在和其它构成层连续成膜时形成的情况等,考虑到兼顾生产性,散热层的膜厚优选为10nm以上100nm以下。散热层可以使用溅射法真空蒸镀法等该技术中已知的任意的方法来形成。在本说明书中,所谓“溅射法”的记载包含DC磁控溅射法、RF磁控溅射法等该技术中已知的任意的技术。通常的情况下,散热层使用溅射法形成。散热层考虑磁记录介质要求的特性,可以设置于粘接层20的正下方、软磁衬里层的正下方、籽晶层30的正下方等。
[0038] 籽晶层30是形成于其之下的层的结晶结构为阻断影响磁记录层50的结晶取向性及磁性晶粒的尺寸等而设置的层。另外,设有软磁衬里层的情况下,为抑制对软磁衬里层的磁影响,要求籽晶层30是非磁性的。用于形成籽晶层30的材料包含MgO、SrTiO3等化物;或者TiN等氮化物;Cr及Ta等金属;NiW合金;及以CrTi、CrZr、CrTa、及CrW等的Cr为基的合金。籽晶层30可以使用溅射法等该技术中已知的任意的方法形成。
[0039] 接着,在工序(b),使以MgO为主成分的非磁性材料沉积,形成基底层40。基底层40是在确保籽晶层30和磁记录层50之间的粘接性的同时,用于控制和基底层40接触的磁记录层的结晶取向的层。本说明书中“以MgO为主成分的非磁性材料”是指含有50质量%以上的MgO的非磁性材料。非磁性材料的沉积可以使用溅射法等该技术中已知的任意的方法形成。
[0040] 在形成基底层40时,基板被加热至350℃以上。若考虑基板及已形成的层的热稳定性、已形成的层的材料的结晶结构变化及热扩散的抑制等要因,则优选将基板的加热温度设为350℃~450℃的范围内。通过在上述范围内的基板温度形成基底层40,可减少基底层40的结晶取向分散、以及基底层40的表面的算术平均粗糙度Ra及最大高度Rz。另外,在本说明书中算术平均粗糙度Ra及最大高度Rz根据1μm×1μm的测定区域的AFM的观察来测定。
[0041] 基底层40的结晶取向分散的减少是指被沉积的非磁性材料具有高的结晶取向性。基底层40的结晶取向分散的减少及基底层40的表面的算术平均粗糙度Ra的减少在提高形成于其之上的磁记录层50的结晶取向性方面有效。特别是磁记录层50包含有序合金的情况下,基底层40的结晶取向分散的减少及基底层40的表面的算术平均粗糙度Ra的减少有助于有序合金的有序度的提高。另外,基底层40的表面的最大高度Rz的减少在使用最终得到的磁记录介质时,使减少磁头的浮起高度、提高磁记录密度成为可能。
[0042] 接着,在工序(c),在基底层40之上形成磁记录层50。
[0043] 磁记录层50也可包含有序合金。有序合金也可是含有选自由Fe及Co的至少一种元素、和选自由Pt、Pd、Au及Ir构成的组的至少一种元素的合金。优选的有序合金是选自由FePt、CoPt、FePd、及CoPd构成的组的L10型有序合金。为了调整特性,有序合金还可含有选自由Ni、Mn、Cr、Cu、Ag、Au、及Cr构成的组的至少一种元素。优选的调整特性包含有序合金的有序化需要的温度的降低。
[0044] 再或者,磁记录层50也可具有由磁性晶粒、和包围磁性晶粒的非磁性晶粒界的粒状结构。磁性晶粒也可含有上述的有序合金。非磁性晶粒界也可含有SiO2、TiO2、ZnO等氧化物;SiN、TiN等氮化物;(C)、(B)等的材料。
[0045] 另外,磁记录层50也可包含多个磁性层。多个磁性层即可以分别是非粒状结构,也可以分别具有粒状结构。另外,也可以具有通过磁性层夹着Ru等结合层而层叠的ECC(Exchange-coupled Composite)结构。另外,作为不含粒状结构的连续层(CAP层),第2磁性层也可设置在具有粒状结构的磁性层的上部。
[0046] 磁记录层50可以通过溅射法使规定的材料沉积而形成。形成含有有序合金的磁记录层50的情况下,可以使用含有形成有序合金的材料的靶。更详细地说,可以使用以规定的比率含有构成上述的有序合金的元素的靶。再或者,使用含有单一的元素的多个靶,通过调整实施在各个靶的电而控制元素的比率,也可形成磁记录层50。形成具有粒状结构的磁记录层50的情况,可以使用以规定的比率含有形成磁性晶粒的材料和形成非磁性晶粒界的材料的靶。再或者,使用含有形成磁性晶粒的材料的靶和含有形成非磁性晶粒界的材料的靶,通过调整实施在各个靶的电力控制磁性晶粒及非磁性晶粒界的构成比率,也可形成磁记录层50。在此,通过有序合金形成磁性晶粒的情况下,也可使用分别含有构成有序合金的元素的多个靶。
[0047] 磁记录层50含有有序合金的情况下,在形成磁记录层50时伴随基板的加热。此时的基板温度是300℃~450℃的范围内。通过采用该范围内的基板温度,可以提高磁记录层50中的有序合金的有序度。
[0048] 也可以任意选择地在磁记录层50之上可形成保护层60。保护层60可以使用在磁记录介质的领域中惯用的材料形成。具体而言,使用Pt、Ta等非磁性金属;类金刚石碳等碳系材料;或氮化硅等硅系材料;可以形成保护层60。另外,保护层60可以是单层,也可以具有层叠结构。层叠结构的保护层60也可以是例如特性不同的2种碳系材料的层叠结构、金属和碳系材料的层叠结构、特性不同的2种金属的层叠结构、或金属氧化物膜和碳系材料的层叠结构。保护层60可以使用溅射法、真空蒸镀法等该技术中已知的任意的方法形成。
[0049] 另外,也可任意选择地在保护层60之上形成液体润滑剂层(未图示)。液体润滑剂层可以使用在磁记录介质的领域惯用的材料(例如,全氟聚醚类润滑剂等)形成。液体润滑剂层可使用例浸涂法、旋涂法等涂布法来形成。
[0050] 本发明的另外的构成例的磁记录介质的制造方法在工序(b)前还可再包括(b’)使Cr金属、或具有bcc结构且以Cr为主成分的合金沉积,形成第二基底层40b的工序。具有bcc结构且以Cr为主成分的合金包含CrTi、CrZr、CrTa、CrW等。第二基底层40b可以使用溅射法、真空蒸镀法等该技术中已知的任意的方法来形成。第二基底层40b因减少基底层40的结晶取向分散,由此减少磁记录层50的结晶取向分散而有效。Cr金属或以Cr为主成分的合金的沉积可以使用溅射法等该技术中已知的任意的方法形成。
[0051] 在工序(b’)形成的第二基底层40b中,通过接着的工序(b)的基板的加热,看到其结晶取向分散减少。在此,工序(b)的基板的加热温度越高,第二基底层40b的结晶取向分散越少。第二基底层40b的结晶取向分散的减少有助于磁记录层50的结晶取向分散的减少及磁各向异性常数Ku的增大。
[0052] 实施例
[0053] (实验例A)
[0054] 清洗具有平滑的表面的化学强化玻璃基板(HOYA社制N-10玻璃基板),准备非磁性基板10。将清洗后的非磁性基板10导入内嵌式的溅射装置内。通过在压力0.20Pa的Ar气中使用了纯Ta靶的RF磁控溅射法,形成了膜厚5nm的Ta粘接层20。Ta粘接层20形成时的基板温度是室温(25℃)。Ta粘接层20形成时的溅射电力为200W。
[0055] 接着,通过在压力0.20Pa的Ar气中使用了MgO靶的RF磁控溅射法,形成膜厚1nm的MgO籽晶层30。MgO籽晶层30形成时的基板温度是室温(25℃)。MgO籽晶层30形成时的溅射电力是600W。
[0056] 接着,通过在压力0.20Pa的Ar气中使用了纯Cr靶的RF磁控溅射法,形成膜厚20nm的Cr第二基底层40b。Cr第二基底层40b形成时的基板温度是室温(25℃)。Cr第二基底层40b形成时的溅射电力是600W。
[0057] 接着,通过在压力0.18Pa的Ar气中使用了MgO靶的RF溅射法形成膜厚10nm的MgO基底层40。将MgO基底层40形成时的基板温度设定在25℃、250℃、300℃、350℃、及400℃。MgO基底层40形成时的溅射电力为500W。
[0058] 通过X射线衍射法分析所得的层叠体。其结果是观察有Cr第二基底层40b引起的(002)Cr峰、及MgO基底层40引起的(002)MgO峰。接着,对于(002)Cr峰及(002)MgO峰,进行通过摇摆曲线法的分析,求出Cr第二基底层40b及MgO基底层40的结晶取向分散Δθ50。摇摆曲线法是X射线衍射测定法之一,测定某特定的结晶面的分散角。测定通过固定检测角(2θ)使入射角θ变化而进行。将所得的峰的半宽度设为Δθ50。将测定结果示于图3及第1表中。
[0059] 通过AFM测定所得的层叠体的最上层的MgO基底层40的算术平均粗糙度Ra及最大高度Rz。测定时的测定区域为1μm×1μm。另外,在各试样中实施2部位的测定,将测定值的平均值作为各试样的算术平均粗糙度Ra及最大高度Rz。测定结果示于第1表。另外,在图4A~图4D中表示在250℃、300℃、350℃、及400℃的基板温度形成的MgO基底层40的表面的AFM像。
[0060] [表1]
[0061] 第1表:实验例A的层叠体的特性
[0062]
[0063] 由第1表及图3的结果可知,MgO基底层40形成时的基板温度越上升,MgO基底层40及Cr第二基底层40b的结晶取向分散Δθ50越减少。如此情况是指MgO基底层40及Cr第二基底层40b的结晶取向性提高。另外,从第1表的结果可知,MgO基底层40形成时的基板温度为300℃以上的情况下,MgO基底层40的表面的算术平均粗糙度Ra变小。另外,从图4A~图4D的结果可知,在MgO基底层40形成时的基板温度为350℃以上的情况下,能够抑制MgO基底层40的表面的异常突起。在图4A~图4D中,看见白色的部分是与其它部分相比具有显著的高度的突起部分。在图4A所示的250℃的基板温度形成的MgO基底层40的表面确认多数的异常突起。在图4B所示的300℃的基板温度形成的MgO基底层40的表面虽然密度减少,但确认有几个异常突起。与此相反,在图4C及图4D所示的350℃及450℃的基板温度形成的MgO基底层40的表面未确认有异常突起。如此结果从第1表所示的最大高度Rz的测定结果中也证实。
[0064] (实验例B)
[0065] 清洗具有平滑的表面的化学强化玻璃基板(HOYA社制造N-10玻璃基板),准备非磁性基板10。将清洗后的非磁性基板10导入内嵌式的溅射装置内。通过在压力0.20Pa的Ar气中使用了纯Ta靶的RF磁控溅射法,形成膜厚5nm的Ta粘接层20。Ta粘接层20形成时的基板温度是室温(25℃)。Ta粘接层20形成时的溅射电力是200W。
[0066] 接着,通过在压力0.20Pa的Ar气中使用了MgO靶的RF磁控溅射法,形成膜厚1nm的MgO籽晶层30。MgO籽晶层30形成时的基板温度是室温(25℃)。MgO籽晶层30形成时的溅射电力是600W。
[0067] 接着,通过在压力0.20Pa的Ar气中使用了纯Cr靶的RF磁控溅射法,形成膜厚20nm的Cr第二基底层40b。Cr第二基底层40b形成时的基板温度是室温(25℃)。Cr第二基底层40b形成时的溅射电力是600W。
[0068] 最后,将所得的层叠体经过50分钟进行后加热至300℃或450℃。对于未加热的层叠体(B1)、在300℃进行后加热的层叠体(B2)、及在450℃进行后加热的层叠体(B3),使用与实验例A同样的方法测定Cr第二基底层40b的结晶取向分散Δθ50及Cr第二基底层40b的表面的平均表面粗糙度Ra。测定结果示于第2表。
[0069] [表2]
[0070] 第2表:实验例B的层叠体的特性
[0071]
[0072] 从试样B1~B3的比较可知,通过进行后加热在室温形成的Cr第二基底层40b,能够减少Cr第二基底层40b的结晶取向分散Δθ50。从试样C1~C3的结果可知,后加热的效果还通过在Cr第二基底层40b之上形成MgO基底层40时的基板的加热而得到。从这些结果可知,形成MgO基底层40时的基板的加热不仅在MgO基底层40的结晶取向分散Δθ50减少有效,而且在已形成的Cr第二基底层40b的结晶取向分散Δθ50的减少方面也有效。
[0073] (实施例1)
[0074] 除了将MgO基底层40形成时的基板温度设定在25℃、300℃、350℃、400℃、及450℃以外,反复实验例A的次序,形成包含非磁性基板10、Ta粘接层20、MgO籽晶层30、Cr第二基底层40b、及MgO基底层40的层叠体。
[0075] 接着,通过在压力1.00Pa的Ar气中使用了FePt靶的RF溅射法,在MgO基底层40之上形成膜厚10nm的FePt磁记录层50。将FePt磁记录层50形成时的基板温度设定在350℃。FePt磁记录层50形成时的溅射电力为300W。
[0076] 最后,通过在压力0.18Pa的Ar气中使用了Pt靶及Ta靶的RF溅射法,形成膜厚5nm的Pt膜及膜厚5nm的Ta膜的层叠体的保护层60,得到磁记录介质。保护层60形成时的基板温度是室温(25℃)。Pt膜及Ta膜的形成时的溅射电力是300W。
[0077] 通过X射线衍射法分析所得的磁记录介质。其结果观察到FePt磁记录层50引起的(001)FePt峰、及(002)FePt峰。接着,对(002)FePt峰进行通过摇摆曲线法的分析,求出FePt磁记录层50的结晶取向分散Δθ50。测定结果示于图5及第3表。
[0078] 另外,使用PPMS装置(Quantum Design社制,Physical Property Measurement System)评价自发磁化的磁场施加角度依赖性,确定所得的磁记录介质的磁各向异性常数Ku。磁各向异性常数Ku的确定时使用了R.F.Penoyer、“Automatic Torque Balance for Magnetic Anisotropy Measurements”、The Review of Scientific Instruments、1959年8月、第30卷第8号、711-714、以及近角聪信、强磁性体的物理(下)裳华房、10-21记载的方法(参照非专利文献2及3)。测定结果示于图6及第3表。
[0079] [表3]
[0080] 第3表:实施例1的磁记录介质的特性
[0081]
[0082] 从试样1~5的比较可知,通过使MgO基底层40形成时的基板温度上升至300℃以上,形成于其之上的FePt磁记录层50的结晶取向分散Δθ50减少。这认为是通过MgO基底层40形成时的加热,Cr第二基底层40b及MgO基底层40的结晶取向分散Δθ50减少,以及MgO基底层40的表面的算术平均粗糙度Ra及最大高度Rz减少引起。
[0083] 特别明确,通过使MgO基底层40形成时的基板温度上升至350℃以上,FePt磁记录层50的磁各向异性常数Ku比2.5×107erg/cc(2.5J/cm3)变大。该现象与在图4C及图4D所示的MgO基底层40的表面不存在异常突起对应。这使FePt磁记录层50中的磁性晶粒的粒径的减小成为可能,有助于所得的磁记录介质的记录密度的提高。另外,在MgO基底层40的表面不存在异常突起更有助于所得的磁记录介质具有所谓优异的磁头的浮起特性的效果。
[0084] (实施例2)
[0085] 反复实验例A的次序,形成包含非磁性基板10、Ta粘接层20、MgO籽晶层30、Cr第二基底层40b、及MgO基底层40的层叠体。将MgO基底层40形成时的基板温度设定在25℃、300℃、350℃、及400℃。
[0086] 接着,在压力1.00Pa的Ar气中通过FePt靶和C靶的共溅射,在MgO基底层40之上形成膜厚4nm的FePt-C磁记录层50。C的体积率为30vol.%。将FePt-C磁记录层50形成时的基板温度设定在450℃。FePt-C磁记录层50形成时的FePt的溅射电力为150W,C的溅射电力为200W。
[0087] 最后,通过在压力0.18Pa的Ar气中使用了Pt靶及Ta靶的RF溅射法形成膜厚5nm的Pt膜及膜厚5nm的Ta膜的层叠体的保护层60,得到磁记录介质。保护层60形成时的基板温度是室温(25℃)。Pt膜及Ta膜形成时的溅射电力为300W。
[0088] 使用与实施例1同样的方法,评价FePt磁记录层50的结晶取向分散Δθ50及磁记录介质的磁各向异性常数Ku。测定结果示于图5、图6及第4表。
[0089] [表4]
[0090] 第4表:实施例2的磁记录介质的特性
[0091]
[0092] 从试样6~9的比较可知,在磁记录层为粒状结构的情况下同样使MgO基底层40形成时的基板温度上升至350℃以上,形成于其之上的FePt-C磁记录层50的结晶取向分散Δθ50减少,Ku变大。
[0093] 符号说明
[0094] 10  非磁性基板
[0095] 20  粘接层
[0096] 30  籽晶层
[0097] 40  基底层
[0098] 40b 第二基底层
[0099] 50  磁记录层
[0100] 60  保护层
QQ群二维码
意见反馈