一种生长GZO(ZnO:Ga)晶体的方法

申请号 CN201410532380.3 申请日 2014-10-10 公开(公告)号 CN104313690B 公开(公告)日 2016-08-03
申请人 北京工业大学; 发明人 蒋毅坚; 马云峰; 王越; 梅晓平; 张春萍; 王强; 徐仰立;
摘要 一种生长GZO(ZnO:Ga)晶体的方法,属于晶体生长技术领域。首先要制备出致密、均匀、单相优质料棒,其次是优化出 助熔 剂成分及配比,再次是得出移动助熔剂光学浮区法生长该系列单晶的生长功率、生长速度、料棒和籽晶转速等最佳工艺参数。本 发明 得到的晶体结晶 质量 高,生长方向固定,电学性质优异。
权利要求

1.一种生长GZO晶体的方法,其特征在于,包括以下步骤:
(1)将粉料ZnO,Ga2O3按ZnO:x wt%Ga2O3化学计量比进行配料,其中x大于0小于等于1,球磨烘干、200目过筛;
(2)将(1)中制得的粉料装入长条橡胶气球中压实、封闭、抽真空,在等静压下制成粗细、致密均匀的素坯棒;
(3)将(2)中制得的素坯棒在提拉旋转烧结炉中1250~1300℃保温24h~48h烧结得到致密均匀多晶料棒;
(4)将粉料B2O3、MoO3、Nb2O5、ZnO按9.3:16.3:6.7:67.7摩尔百分比进行配料,球磨烘干,
200目过筛;
(5)将(4)中制得的200目过筛后的粉料装入长条橡胶气球中压实封闭,抽真空,在等静压下制成粗细、密度均匀的素坯棒;
(6)将(5)中制得的素坯棒在提拉旋转烧结炉中1100℃保温24h烧结得到致密均匀助熔剂多晶料棒;
(7)将(6)制得的助熔剂多晶料棒切割成厚度3~5mm的助熔剂横截面圆片;
(8)将(3)制得的多晶料棒切取一段代替籽晶绑于下旋转杆托槽处,称为下料棒,使切面平居中,将助熔剂横截面圆片放在上面,将切剩的多晶料棒悬挂在上旋转杆下作为上料棒,调节至居中,安装上石英管,调节上料棒和助熔剂横截面圆片靠近并处于卤素灯光聚焦区域,以60℃/min的速率升温至助熔剂横截面圆片表面轻度融化,浮区炉卤素灯的输出功率为1028W/h;将上料棒缓慢下降直至与助熔剂横截面圆片对接粘在一起,快速提升上料棒使之带着助熔剂横截面圆片与籽晶分离,以20℃/min的速率升温至上料棒与助熔剂横截面圆片充分熔融,浮区炉卤素灯的输出功率为1100W/h,保温0.5h;将上下料棒对接,待熔区稳定1h,设置它们反向旋转,上旋转速度为250~350rpm,下旋转速度为250~350rpm,设置晶体的生长速度为0.3~0.5mm/h开始生长,浮区炉卤素灯的输出功率为1100~1360W/h;
(9)设置降温时间为4.5~10h,将步骤(8)生长出的晶体冷却至室温。
2.按照权利要求1的方法,其特征在于,步骤(2)和步骤(5)所述的等静压为70MPa。
3.按照权利要求1的方法,其特征在于,横截面圆片的直径稍小于GZO多晶料棒的直径。

说明书全文

一种生长GZO(ZnO:Ga)晶体的方法

技术领域

[0001] 本发明涉及一种生长GZO(ZnO:Ga)晶体的方法,具体涉及用移动熔剂浮区法生长不同掺Ga浓度的厘米级GZO晶体,属于晶体生长技术领域。

背景技术

[0002] GZO晶体是一种集透明导电、超快衰减闪烁、紫外激光发射等各项优异性能于一体的多功能、直接带隙、宽禁带半导体材料。
[0003] 目前化锌单晶的生长方法主要有热法、助熔剂法、气相法等。具体到GZO晶体材料,目前只有水热法生长报道,且局限有二:一,掺镓量太少,不大于0.1wt%;二,尺寸较小,最大尺寸至30.44mm×24.84mm×5.40mm。晶体生长受边界层溶剂扩散传质的限制而生长速度很慢,每天0.1mm,生长周期很长,实现ZnO为基的单晶商业化生产还有较大困难。
[0004] 然而,与GaN,GaAs等不同,高温下ZnO不与空气发生反应,可以在空气中生长,因此选择合适的助熔剂在空气中生长GZO单晶,是一条良好途径,具有很大发展潜。但就目前而言,虽然已经能利用多种合适的助熔剂来实现晶体生长,并且取得了一定进展。但是,还有以下几个问题必须解决。一,晶体的尺寸都较小,成分不均匀。二,生长过程中容易给晶体带入助熔剂杂质,产生应力。这对于必须控制好杂质含量和化学计量比以适应电子材料方面的应用来说,是很不利的。第三,ZnO易挥发,也是这种方法的一个挑战。总之,为了生长出大尺寸的ZnO单晶,根据相图来寻找更为合适的助熔剂以及改善单晶的生长工艺还有待于进行更深入的研究。
[0005] 目前生长纯氧化锌的助熔剂有PbF2,P2O5+V2O5,V2O5+B2O3,V2O5+MoO3,涉及到GZO晶体的助熔剂法生长未见报道。我们受到文章(Journal of Crystal Growth 237–239(2002)509–513)用移动熔剂光学浮区法和顶部籽晶法生长纯氧化锌的启发,改变原有助熔剂成分及配比,优化选择摩尔百分比9.3(B2O3)+16.3(MoO3)+6.7(Nb2O5), 用移动熔剂光学浮区法成功生长出不同组分的GZO晶体,该系列晶体有效掺镓浓度大,最高达1.0wt%,棕绿色透明,最大尺寸达Ф12mm×120mm,比文献报到的用该类方法生长的不掺杂氧化锌的尺寸10mm×5mm×2mm要大很多。说明选用的助熔剂体系克服了GZO在1300℃以上开始大量挥发,具有强烈的极性析晶特性的不利因素。加之光学浮区法的技术特点,比如边熔化边结晶且可实时监控,使得含有助熔剂的熔液组分稳定处于相图中的可析出纯GZO晶体区域;大的熔区温度梯度,显著加大了结晶驱动力,使得克服三价Ga在ZnO中的固溶度有一上限且不易掺入的技术难点有了热动力学基础条件。

发明内容

[0006] 本发明的目的是针对ZnO:x wt%Ga2O3(指的是Ga2O3占ZnO的质量百分含量为x wt%)系列晶体生长中存在的问题及材料本身的特点,提供了一种制备出高质量厘米级ZnO:x wt%Ga2O3系列晶体的新生长方法。首先要制备出致密、均匀、单相优质料棒,其次是优化出助溶剂成分及配比,再次是摸索出移动助熔剂光学浮区法生长该系列单晶的生长功率、生长速度、料棒和籽晶转速等最佳工艺参数。
[0007] 为了解决上述技术问题,本发明是通过以下方案实现的:
[0008] (1)将粉料ZnO,Ga2O3按ZnO:x wt%Ga2O3化学计量比进行配料,其中x=0‐1.0(优选不为0),球磨烘干、200目过筛;
[0009] (2)将(1)中制得的粉料装入长条橡胶气球中压实、封闭、抽真空,在等静压(如70MPa)下制成粗细、致密均匀的素坯棒;
[0010] (3)将(2)中制得的素坯棒在提拉旋转烧结炉中1250~1300℃保温24h~48h烧结得到致密均匀多晶料棒;
[0011] (4)将粉料B2O3、MoO3、Nb2O5、ZnO按9.3(B2O3):16.3(MoO3):6.7(Nb2O5):67.7(ZnO)摩尔百分比进行配料,球磨烘干,200目过筛;
[0012] (5)将(4)中制得的200目过筛后的粉料装入长条橡胶气球中压实封闭,抽真空,在等静压(如70MPa)下制成粗细、密度均匀的 素坯棒;
[0013] (6)将(5)中制得的素坯棒在提拉旋转烧结炉中1100℃保温24h烧结得到致密均匀助熔剂多晶料棒;
[0014] (7)将(6)制得的助熔剂多晶料棒切割成厚度3~5mm的助熔剂横截面圆片;优选根据GZO多晶料棒的直径大小选取不同厚度的助熔剂圆片,直径大选择的较厚,横截面圆片的直径稍小于GZO多晶料棒的直径;
[0015] (8)将(3)制得的多晶料棒切取一段代替籽晶绑于下旋转杆托槽处,称为下料棒,使切面水平居中,将助熔剂横截面圆片放在上面,将切剩的多晶料棒悬挂在上旋转杆下作为上料棒,调节至居中,安装上石英管,调节上料棒和助熔剂横截面圆片靠近并处于卤素灯光聚焦区域,以60℃/min的速率升温至助熔剂横截面圆片表面轻度融化,浮区炉卤素灯的输出功率为1028W/h;如图1所示,将上料棒缓慢下降直至与助熔剂横截面圆片对接粘在一起,快速提升上料棒使之带着助熔剂横截面圆片与籽晶分离,以20℃/min的速率升温至上料棒与助熔剂横截面圆片充分熔融,浮区炉卤素灯的输出功率为1100W/h,保温0.5h;将上下料棒对接,待熔区稳定1h,设置它们反向旋转,上旋转速度为250~350rpm,下旋转速度为250~350rpm,设置晶体的生长速度为0.3~0.5mm/h开始生长,浮区炉卤素灯的输出功率为
1100~1360W/h;
[0016] (9)设置降温时间为4.5~10h,将步骤(8)生长出的晶体冷却至室温。
[0017] 与现有工艺相比本发明工艺的明显优点是:
[0018] (1)提供了一种生长GZO系列晶体的新方法,即移动助熔剂光学浮区法;
[0019] (2)该系列晶体具有有效掺镓量大,这是由于大温度梯度导致大的结晶驱动力,有利于提高掺镓量,其最大为1.0wt%;组分覆盖区域大,为0~1.0wt%;
[0020] (3)晶体尺寸较大,晶体直径10~14mm(如,料棒的直径到 10‐12mm)、长度46~120mm;最大为Ф12mm×120mm,这是由于采用熔化与结晶同步进行的结晶方式,助熔剂所在的熔区组分不变,随着聚焦点稳步推进,理论上可生长不限长的结晶棒。
[0021] (4)本工艺生长速度快(0.3~0.5mm/h),相对于水热法制备纯氧化锌的速度制备周期(每天0.1mm)较短,效率高。
[0022] (5)首次用高温助熔剂法,将光学浮区法和助熔剂溶液法相结合,成功生长出不同掺Ga浓度的GZO晶体,便于系统研究掺镓氧化锌晶体的电学和光学等性质,并找出基于各类性质的最优组分。
[0023] (6)晶体粉末X射线衍射图(峰尖锐,相纯),如图2、3所示,GZO晶体棒横截面圆片的面XRD图谱表明,所生长的GZO晶体的生长方向为c轴,如图4、5所示,GZO‐0.05wt%,GZO‐0.1wt%晶体(002)反射面的双晶摇摆曲线峰形对称,且半高宽分别为327.6、504arcsec,如图6、7所示,表明GZO晶体成晶质量高。霍尔效应测量表明:GZO‐0.5wt%晶体具有最低的电阻率1.08×10‐3Ω·cm,最高的载流子浓度‐1.78×1020cm‐3,如图8所示。综上所述,晶体结构和性能表征该方法生长的GZO晶体结晶质量高,生长方向固定,电学性质优异。
附图说明
[0024] 图1是移动熔剂光学浮区法的熔区形成流程图(顺序从左到右);
[0025] 图2是实施例1、2、3、4、6、7生长的GZO晶体的粉末XRD图谱(x=0,0.05,0.1,0.2,0.4,0.5);
[0026] 图3是实施例8、9、10、11、12生长的GZO晶体的粉末XRD图谱(x=0.6,0.7,0.8,0.9,1.0);
[0027] 图4是实施例1、2、4、6、7生长的GZO晶体棒横截面圆片的面XRD图谱(x=0,0.05,0.1,0.2,0.4,0.5);
[0028] 图5是实施例8、9、10、11、12生长的GZO晶体棒横截面圆片的面XRD图谱(x=0.6,0.7,0.8,0.9,1.0);
[0029] 图6是实施例2生长的GZO‐0.05wt%晶体(002)反射面的双晶摇摆曲线;
[0030] 图7是实施例3生长的GZO‐0.1wt%晶体(002)反射面的双晶摇摆曲线;
[0031] 图8是GZO晶体电学性质随组分的变化图。

具体实施方式

[0032] 以下实施例用于说明本发明,但不用来限制本发明的范围。
[0033] 本发明所使用的为光学浮区法单晶生长炉,生长的为各种组分比例的GZO晶体,包括未掺镓的纯氧化锌晶体。
[0034] 生长的助溶剂为固定配比的B2O3、MoO3、Nb2O5、ZnO按9.3(B2O3):16.3(MoO3):6.7(Nb2O5):67.7(ZnO)摩尔百分比进行配料,球磨烘干,200目过筛。将过筛后的粉料装入长条橡胶气球中压实封闭,抽真空,在70MPa等静压下制成粗细、密度均匀的素坯棒;将其在提拉旋转烧结炉中1100℃保温24h烧结得到致密均匀多晶料棒;将其切割成3~5mm不等的横截面圆片,根据GZO多晶料棒的直径大小选取不同厚度的助熔剂圆片。
[0035] 实施例1:
[0036] (1)将ZnO(99.99%)粉末置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的ZnO粉料。
[0037] (2)将步骤(1)制得的粉料装入长条橡胶气球中压实封闭,抽真空,在70MPa等静压下制成粗细密度均匀的素坯棒。
[0038] (3)将步骤(2)制得的料棒放在垂直提拉旋转炉中1250℃烧结24h得到致密均匀多晶料棒。
[0039] (4)将(3)制得的多晶料棒切取一段代替籽晶绑于下旋转杆托槽处,使切面水平居中,将含有助熔剂的圆片放在上面,将切剩的多晶料棒悬挂在上旋转杆下,调节至居中,安装上石英管,调节料棒和助熔剂靠近并处于卤素灯光聚焦区域,以60℃/min的速率升温至横截面圆片表面轻度融化,浮区炉卤素灯的输出功率为1028W/h,将上料棒缓慢下降直至与圆片对接粘在一起,快速提升上料棒使之与籽晶分离,以20℃/min的速率升温至上料棒与助熔剂充分熔融,浮区 炉卤素灯的输出功率为1100W/h,保温0.5h,将上下料棒对接,待熔区稳定1h。
[0040] (5)设置它们反向旋转,上旋转速度为250~350rpm,下旋转速度为250~350rpm,晶体的生长速度为0.5mm/h开始生长,浮区炉卤素灯的输出功率为1100~1224W/h。生长的晶体尺寸为Φ12mm×98mm,生长时间为198h。
[0041] (6)设置降温时间为4.5h,将生长出的晶体冷却至室温。
[0042] 实施例2:
[0043] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.05wt%Ga2O3(简称GZO‐0.05wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.05wt%粉料。
[0044] (2)中间实验流程细节与实施例1同。
[0045] (3)设置它们反向旋转,上旋转速度为250rpm,下旋转速度为250rpm,晶体的生长速度为0.3mm/h开始生长,浮区炉卤素灯的输出功率为1100~1134W/h。生长的晶体尺寸为Φ12mm×92mm,生长时间为309h。
[0046] (4)设置降温时间为6h,将生长出的晶体冷却至室温。
[0047] 实施例3:
[0048] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.1wt%Ga2O3(简称GZO‐0.1wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.1wt%粉料。
[0049] (2)中间实验流程细节与实施例1同。
[0050] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为350rpm,晶体的生长速度为0.4mm/h开始生长,浮区炉卤素灯的输出功率为1100~1140W/h。生长的晶体尺寸为Φ12.5mm×93mm,生长时间为235h。
[0051] (4)设置降温时间为5h,将生长出的晶体冷却至室温。
[0052] 实施例4:
[0053] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.2wt%Ga2O3(简称GZO‐0.2wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.2wt%粉料。
[0054] (2)中间实验流程细节与实施例1同。
[0055] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为350rpm,晶体的生长速度为0.4mm/h开始生长,浮区炉卤素灯的输出功率为1100~1200W/h。生长的晶体尺寸为Φ14mm×46mm,生长时间为117h。
[0056] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
[0057] 实施例5:
[0058] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.3wt%Ga2O3(简称GZO‐0.3wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.3wt%粉料。
[0059] (2)中间实验流程细节与实施例1同。
[0060] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为250rpm,晶体的生长速度为0.3mm/h开始生长,浮区炉卤素灯的输出功率为1140W/h。生长的晶体尺寸为Φ10mm×109mm,生长时间为365h。
[0061] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
[0062] 实施例6:
[0063] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.4wt%Ga2O3(简称GZO‐0.4wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.4wt%粉料。
[0064] (2)中间实验流程细节与实施例1同。
[0065] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为 250rpm,晶体的生长速度为0.5mm/h开始生长,浮区炉卤素灯的输出功率为1140W/h。生长的晶体尺寸为Φ12mm×48mm,生长时间为98h。
[0066] (4)设置降温时间为8h,将生长出的晶体冷却至室温。
[0067] 实施例7:
[0068] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.5wt%Ga2O3(简称GZO‐0.5wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.5wt%粉料。
[0069] (2)中间实验流程细节与实施例1同。
[0070] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为250rpm,晶体的生长速度为0.4mm/h开始生长,浮区炉卤素灯的输出功率为1200~1360W/h。生长的晶体尺寸为Φ12mm×120mm,生长时间为302h。
[0071] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
[0072] 实施例8:
[0073] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.6wt%Ga2O3(简称GZO‐0.6wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.6wt%粉料。
[0074] (2)中间实验流程细节与实施例1同。
[0075] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为350rpm,晶体的生长速度为0.4mm/h开始生长,浮区炉卤素灯的输出功率为1100~1144W/h。生长的晶体尺寸为Φ12mm×76mm,生长时间为192h。
[0076] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
[0077] 实施例9:
[0078] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.7wt%Ga2O3(简称GZO‐0.7wt%)化学计量比进行称量,置于装有ZrO2磨介 的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.7wt%粉料。
[0079] (2)中间实验流程细节与实施例1同。
[0080] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为350rpm,晶体的生长速度为0.3mm/h开始生长,浮区炉卤素灯的输出功率为1100~1144W/h。生长的晶体尺寸为Φ12mm×88mm,生长时间为295h。
[0081] (4)设置降温时间为6h,将生长出的晶体冷却至室温。
[0082] 实施例10:
[0083] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.8wt%Ga2O3(简称GZO‐0.8wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.8wt%粉料。
[0084] (2)中间实验流程细节与实施例1同。
[0085] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为250rpm,晶体的生长速度为0.3mm/h开始生长,浮区炉卤素灯的输出功率为1100~1144W/h。生长的晶体尺寸为Φ14mm×62mm,生长时间为209h。
[0086] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
[0087] 实施例11:
[0088] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:0.9wt%Ga2O3(简称GZO‐0.9wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐0.9wt%粉料。
[0089] (2)中间实验流程细节与实施例1同。
[0090] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为250rpm,晶体的生长速度为0.3mm/h开始生长,浮区炉卤素灯的输出功率为1100~1272W/h。生长的晶体尺寸为Φ14mm×56mm,生长时间为189h。
[0091] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
[0092] 实施例12:
[0093] (1)将粉料ZnO(99.99%)、Ga2O3(99.99%)按ZnO:1.0wt%Ga2O3(简称GZO‐1.0wt%)化学计量比进行称量,置于装有ZrO2磨介的尼龙罐中,以无水乙醇为弥散剂球磨、烘干,200目过筛后得到粒径均匀的GZO‐1.0wt%粉料。
[0094] (2)中间实验流程细节与实施例1同。
[0095] (3)设置它们反向旋转,上旋转速度为350rpm,下旋转速度为250rpm,晶体的生长速度为0.3mm/h开始生长,浮区炉卤素灯的输出功率为1100~1200W/h。生长的晶体尺寸为Φ13.5mm×84mm,生长时间为282h。
[0096] (4)设置降温时间为10h,将生长出的晶体冷却至室温。
QQ群二维码
意见反馈