利用粘细菌生产omega-3脂肪酸 |
|||||||
申请号 | CN200980155819.2 | 申请日 | 2009-12-01 | 公开(公告)号 | CN102325892A | 公开(公告)日 | 2012-01-18 |
申请人 | 赢泰医药科技发展有限公司; | 发明人 | 马克.斯塔德勒; 厄恩斯特.罗默; 罗尔夫.马勒; 罗纳德.O.加西亚; 多米尼克.皮斯托里厄斯; 亚历山大.布拉克曼; | ||||
摘要 | 本 发明 涉及通过培养特定的粘细菌菌株来生产omega-3多不饱和 脂肪酸 的方法以及适用于该方法的粘细菌菌株。 | ||||||
权利要求 | 1.生产omega-3多不饱和脂肪酸的方法,该方法包括:培养能够生产一种或多种omega-3多不饱和脂肪酸的粘细菌菌株。 |
||||||
说明书全文 | 利用粘细菌生产omega-3脂肪酸[0001] 本发明提供用于生产omega-3多不饱和脂肪酸(PUFA)的方法,该方法通过培养适合于该方法的特定的粘细菌菌株来生产omega-3多不饱和脂肪酸。另外,本发明提供用于鉴定这种生产omega-3的粘细菌的方法,该方法通过结合使用基于16S rDNA序列数据的系统发生分析和基于气相色谱与质谱连用的物理化学数据以发现omega-3多不饱和脂肪酸其它的生产菌。 [0002] 发明背景 [0003] 长 链 不 饱 和 脂 肪 酸 (PUFA),包 括 那 些 omega-3家 族[ 也 被 称 为ω-3(″omega-3″)脂肪酸]的脂肪酸是在性质上令人关注的脂肪酸。它们是在降低膜的刚性中发挥作用的磷脂的重要组分。二十碳五烯酸(EPA)是人脑磷脂的主要组分并且是前列腺素和脂质调节剂(resolvins)的前体。另一个重要的omega-3家族的PUFA是二十二碳六烯酸(DHA)。婴儿发育过程中的认知改善和行动功能可能与高水平的该化合物有关。就omega-3PUFA(尤其是DHA和EPA)而言,其对于健康有益的效果有:例如癌症、类风湿性关节炎、心血管疾病的预防、免疫功能的改善、眼部和大脑的健康[近期的研究总结可参考Teale MC(ed.)(2006)OMEGA-3fatty acid research.Nova Science Publishers.New York,以及其中的参考文献]。由于这些有益性质,omega-3PUFA被广泛地用作健康添加剂和饮食添加剂中的营养脂质,以及用作多种食品中的功能成分。近年来,Omega-3PUFA占据食品和饮料工业领域中的最大和增长最强劲的市场部门,并且在过去的数年中对其的需求充分增加。 [0004] 近年来,鱼油是最丰富以及被广泛使用的天然omega-3脂肪酸资源,但这种资源遭受到过渡捕捞、缺乏含充足DHA/EPA含量的高品质油的供给、以及质量问题(味道、成分挑战等)的考验。已经建立或正在开发涉及以藻类和卵菌(oomycetes)作为生产生物的备选方法[分别参考Hinzpeter I等人(2006)Grasas y Aceites 57:336-342,以及Ward OP,Singh A(2005).ProcessBiochemistry 40:3627-3652的综述]。由于对高品质鱼油供给的限制逐年递增,人们已经尝试寻找备选的、可持续的生物资源。在过去的20多年中,已经开发出多种类型的海藻,并且一些基于藻类生物质的产品已同时进入了市场。也出现过有关一些属于原生藻菌界(stramenopiles)(一种类藻类真核生物,以前也称为″黄藻(Chromophyta)″)的卵菌生产上述化合物(例如,Achyla属和腐霉属(Pythium);[Aki T等人(1998)J Ferm Bioengin 86:504-507;Cheng MH等人(1999)Bioresour Technol 67:101-110;Athalye SK等人(2009)JAgric FoodChem 57:2739-2744])的报道。在其它的原生藻菌(例如,裂殖壶菌属(Schizochytrium)和破囊壶菌属(Thraustochytrium);如US 7022512和WO2007/068997所述)以及在甲藻前沟藻(dinoflagellate Amphidinium)(US2006/0099694)中,DHA可能会占据细胞脂肪酸含量的最多48%,这是目前已知的在真核生物中的最高含量。但是,即使在数年的发展之后,以工业水平来培养这些生物仍然面临挑战。 [0005] 迄今为止,已发现的omega-3PUFA的其它备选生物来源是原核真细菌[Nichols D等人(1999),Curr Opin Biotechnol 10:240-246;Metz JG等人(2001),Science 293:290-293;Gentile G等人(2003)J Appl Microbiol 95:1124-1133]。但是,对这些生物用于以工业规模生产PUFA的商业开发遇到了阻碍,这是由于这些嗜冷微生物缓慢生长的特性,以及它们固有的低收率和低生产性。在粘细菌中,首先在海洋菌属(marine genera)Plesiocystis和Enhygromyxa中发现了具有20个碳原子和4个双键的未辨别的PUFA[Iizuka T等人(2003)IntJ Syst Evol Microbiol 53:189-195;Iizuka T.等人(2003),Syst Appl Microbiol26:189-196]。近年来,在作为新粘细菌家族代表的Phaselicystis flava中发现了ARA(omega-6PUFA)[Garcia RO等人(2009),Int J Syst Evol Microbiol50(PT12):1524-1530]。 [0006] 还完全没有关于在粘细菌中发现omega-3PUFA例如DHA和EPA的报道,以及到目前为止,已报道的方法的产率、PUFA量以及特别是有关重要的omega-3PUFA的产率和量仍然不能充分满足要求。 [0007] 粘细菌的分类学和系统发生学 [0008] 粘细菌被认为是粘球菌目(Myxococcales)(在变形菌门的δ亚纲中)的生物的单系群。目前,已经识别了粘细菌中的三个亚目(孢囊杆菌亚目(Cystobacterineae)、侏囊菌亚目(Nannocystineae)、以及堆囊菌亚目(Sorangiineae))[Reichenbach H(2005)Order VIII.Myxococcales Tchan,Pochon and Prévot 1948,398AL.In Brenner DJ等(eds.)Bergey′s Manual of Systematic Bacteriology,2nd edn,vol.2,part C,pp.1059-1072,New York:Springer]。这些亚目被分为六个科,即孢囊杆菌科(Cystobacteraceae)、粘球菌科(Myxococcaceae)、侏囊菌科(Nannocystaceae)、Kofleriaceae、多囊菌科(Polyangiaceae)以及Phaselicystidaceae。 [0009] 粘球菌科由粘球菌属(Myxococcus)、珊瑚球菌属(Corallococcus)以及Pyxidicoccus构成。已知与其相关的孢囊杆菌科有五个属(孢囊杆菌属(Cystobacter)、原囊 菌属(Archangium)、Hyalangium、蜂窝 囊菌 属(Melittangium)和标 记菌 属(Stigmatella))。侏囊菌亚目的侏囊菌科由侏囊菌属(Nannocystis)和海洋菌属(Enhygromyxa和Plesiocystis)构成。与其相关的Kofleriaceae由陆生菌属(terrestrial genus)Kofleria和海洋菌属Heliangium构成。多囊菌科包括Jahnella、软骨霉状菌属(Chondromyces)、多囊菌属(Polyangium)、Byssovorax、以及堆囊菌属(Sorangium)。到目前为止,在整个目中后两者是唯一已知的纤维素降解菌属;其它分类单元中的大部分菌均难以分离和培养。近期发现的Phaselicystis是近来确立的Phaselicystidaceae科中的唯一一个菌属[GarciaRO等人(2009)Int J Syst Evol Microbiol 59:1524-1530]。目前,有20个菌属可识别并且已被正确地记录在粘细菌中以覆盖所有已知的土壤和海洋分离菌株。 [0010] 16S rDNA在细菌分类学和系统发生学中的通常重要性 [0011] 16S rDNA已经被广泛和普遍地用于细菌的系统学中,以指定分类单元的遗传分组,这是因为该基因在各菌种之间高度保守[Weisburg WG等人(1991)J Bacteriol 173:697-703]。在粘细菌中,16S rDNA系统发生学结合形态学特征为遗传分类提供了强有力的证据[ C等人(1999),Int J SystBacteriol 49(PT 3):1255-1262]。发现那些由形态学分类为相同属的粘细菌菌株在它们的16S rDNA基因系统发生学上也紧密地聚集。该方法还提供了其种属成员之间遗传的亲缘关系的图谱,该遗传的情缘关系会以表性特征的程度体现[Vellicer GJ,Hillesland K(2008)In Myxobacteria:MultiCellularity andDifferentiation(Whitworth DE,ed.),pp.17-40,Washington,DC:ASM Press]。 [0012] 脂肪酸模式(fattv acid profile)作为细菌化学分类学指标的重要性[0013] 系统发生学与粘细菌的形态和生理特征相关。最为重要的是,由细胞的脂肪酸含量的GC-MS分析推出的脂肪酸模式被通常用于并被认为是可以接受的粘细菌、以及其它多种细菌生物种类的分类学分离,这是因为已经发现脂肪酸模式是一个恒定的特征,至少在应用经标准化的方法学时,其是恒定的特征。这项技术的首次应用早在1989年之前[Tornabenet G(1985)Methods in Microbiology 18,209-234]。因此,这种基于GC-MS(或GC-)的脂肪酸模式已经被广泛地用于细菌的系统发生学和分类学中。然而,还从未进行过将对特别经济重要的脂肪酸的搜索与研究以评价各自的脂肪酸生产者的分类和系统发生学位置的其它手段相结合的系统研究。 [0014] 基于PCR的方法研究生态系统中的细菌菌种多样性和功能生物多样性的重要性[0015] 对于现存的细菌菌种的整体多样性远远多于已知的、被很好表征的、可培养菌种的数量的讨论已经进行了很久(并同时利用针对环境样品中的真细菌进行原位鉴定的分子生物学方法得以证实)[Amann Rl等人(1995)Microbiol Rev 59:143-169;Torsvik V等人(1990)Appl Environ Microbiol56:782-787]。根据目前的评估,多大90%的现存的细菌仍然未被发现。利用例如对来自土壤和其它环境样品的16S rDNA进行直接测序的方法日益显示:大量DNA序列无法和任何已知的、可培养的细菌菌种相关联。但是,它们系统发生学上的亲缘性可以通过它们的16S rDNA与那些相关菌株的同源比对来显示。目前还处于发展中的宏基因组技术(metagenomic technique),将来可能会最终促进直接利用这些“未能培养(unculturable)”生物的基因和酶。目前,在大多数情况下,仍然需要针对迄今尚未开发的细菌生物寻找合适的培养条件并且在它们的纯培养物的基础上对其进行开发。作为对所有未开发的细菌的定性研究,以及针对它们的生物技术开发的前提,特别需要建立分离技术。分离技术对于特别是涉及发现新粘细菌分类单元,以及对于发现在生物技术方面具有巨大潜力的真细菌的多种其它种类和其它微生物种类也是非常重要的。 [0016] 利用特异的16S rDNA引物通过PCR可以特定地搜索粘细菌群。之前针对土壤生态位(soil niche)的研究显示利用该方法可以检测出至少30种另外未知的粘细菌系统分类学类别。不但可以将它们彼此区分,而且它们的16S rDNA基因也与那些在GenBank和其它公众领域的数据库中已有的粘细菌的16S rDNA基因序列不同。这些结果说明存在需要对它们进行培养和开发的大量未被发现的多种土壤粘细菌[Zhi-Hong W.等人(2005)Env.Microbiol7(10):1602-1610]。 [0018] 通常在浸没需氧条件(submerged aerobic condition)下的含水营养培养基中发酵粘细菌菌株。在学术领域,已经广泛了解能够在中试和工厂规模大规模发酵这类生物的多个实例,例如涉及近年来被批准作为抗癌药物的埃坡霉素(epothilones)的发现和开发。 [0019] 在对它们的生长和营养条件进行彻底的评估之后,这类生物通常可以在实验室培养条件下良好生长,并且能够直接按比例放大它们的生产。通常,在含有碳源和蛋白质材料的营养培养基中发酵微生物。优选的碳源包括葡萄糖、红糖(brown sugar)、蔗糖、甘油、淀粉、玉米淀粉、乳糖、糊精、糖蜜等。优选的氮源包括棉籽粉、玉米浆、酵母、具有乳固体(milk solid)的自溶的面包酵母(brewer’yeast)、大豆粕、棉籽粕、玉米粉、乳固体、酪蛋白的胰腺消化物、酒糟固体(distillers′solid)、动物蛋白胨液体、肉和骨头碎片(bone scrap)等。可以方便地使用这些碳源和氮源的组合。没有向发酵培养基中加入痕量金属,例如锌、镁、锰、钴、铁等的必要,这是因为使用自来水和未纯化的成分来作为培养基的组分。 [0020] 可以在与微生物良好生长相关的约18℃~32℃,以及优选在约28℃的任何温度诱导用于生产培养物的大规模发酵。通常,在发酵约2~8天,优选发酵约4~5天时,可以获得最佳化合物的生产。 [0021] 生产可以在摇瓶中进行,也可以在固体培养基和搅拌的发酵罐中进行。当生长在摇瓶或较大容器以及槽中进行时,优选使用营养体型(vegetative form)的,而不是用于接种的微生物的孢子形式。这样可以避免在PUFA化合物生产方面显著的迟滞,以及对所使用的仪器的维护不足。相应地,期望通过用来自土壤或斜面培养物的部分样品来接种含水营养培养基,从而在含水营养培养基中生产营养型接种物。在随后得到了初期的、活性的营养型接种物时,将其无菌转移到其它摇瓶或用于微生物发酵的适合的装置中。用于生产营养性接种物的培养基可以与用于生产化合物的培养物相同,也可以不同于用于生产化合物的培养物,只要能够获得充分生长的微生物即可。 [0022] 通常来说利用下述过程:接种粘细菌菌株并在搅拌的容器中,以深层需氧发酵的形式发酵,以及生产化合物。生产不受所使用的容器、发酵罐和启动程序的制约。也可以通过摇瓶培养或者通过其它特别设计的容器(例如气升式发酵罐或Biowave发酵罐)来得到该化合物。针对大容量的发酵,优选使用营养型接种物。通过下述方法来制备营养型接种物:通过接种少量的孢子形式的培养物或者生物的冻干颗粒(lyophilised pellet)。然后将营养型接种物转移到发酵容器中,然后在合适的温育时间之后,在其中以最适收率生产化合物。 [0023] 正如传统的需要深层培养过程,无菌空气分散在培养基中。为了使生物充分生长,所使用的空气的体积在约0.25~约0.5vvm的范围内。在10l的容器中搅拌的最适速率为约0.3vvm,这是由传统的搅拌叶轮以约240rpm的速度转动所提供的。如果起泡成为问题,则根据需要可以向发酵培养基中加入少量(即1ml/l)的消泡剂(例如硅树脂)。针对微需氧生物,优选进一步减少通气从而支持生物质的产生。通常以分批方式来进行发酵,但是为了获得更好的生长和提高的产物收率,可以利用补料分批发酵来进行,该补料分批发酵是通过在原始培养基中缺少营养源时向生长的培养物中提供所需的营养物源的方式来进行的。 [0024] 所需的产物通常大部分存在于已发酵的粘细菌菌株的生物质中,但是在它们过量生产的情况下,产物也可以位于发酵液的培养物过滤液中。可以通过过滤或压滤的方式来分离培养液。可以利用多种方法从发酵液中分离和纯化PUFA化合物,例如利用如下方法:色谱吸附过程,然后利用合适的溶剂进行洗脱、柱色谱法、分配层析、利用超临界流体提取、以及上述这些方法的组合。 发明内容[0025] 在鉴定和识别迄今未知的堆囊菌亚目粘细菌菌株的过程中,令人惊奇地发现所有被分类在迄今未知的、新发现的属(在此将该属命名为Aetherobacter)中的所有菌株均可以生产大量的不饱和脂肪酸(PUFA),特别是omega-3多不饱和脂肪酸,例如EPA和DHA。发现有三株EPA和DHA的过量生产者,将它们属于Aetherobacter fasciculatus新种未出版(sp.nov.ined)(以菌株DSM21835表示),Aetherobacter rufus新种未出版(以菌株DSM23122来表示),以及Aetherobacter sp.DSM 23098。本发明还涉及令人惊奇的新发现:属于粘细菌分类(特别是Enhygromyxa和堆囊菌属的菌株)的某些其它菌株也可以生产较低含量的DHA和EPA。同时,在公共数据库中基于公开的DNA序列进行的系统发生学上相关的细菌的筛选显示:一些“未能培养的”细菌作为新得到的omega-3PUFA过量生产菌株的最靠近的亲缘菌株也被推测为粘细菌。 [0026] 认为针对生物多样性的这种细菌的系统发生学分类还尚未被广泛地进行,因此极有可能在不远的将来发现可以大量生产DHA和/或EPA的另外新的、以及迄今为止尚未研究的分类单元以及菌株。利用相似的筛选方法可以促进上述过程,所述筛选方法是在发现本发明主题的PUFA-生产菌株的过程中使用的筛选方法。该方法不仅涉及新的、尚未出版的Aetherobacter的另外的新菌株,还涉及其它目和粘细菌科的新菌株。附图说明 [0027] 图 1:“Aetherobacter fasciculatus”DSM 21835 的 生 长 阶 段 (a-d),“Aetherobacter rufus”DSM 23122的生长阶段(e-h),以及“Aetherobacter sp.”DSM23098的生长阶段(i-l)。深色区域营养细胞(a,e,i)。标尺10μm。VY/2琼脂上的群游菌落(swarming colony)显示酵母细胞的传统的透明圈(b,f,j)。标尺15mm。VY/2琼脂上的子实体(fruiting body)的立体解剖照片(c,g,k)。标尺300μm。来自粉碎的小孢子囊(sporangioles)的略微折光的粘孢子(d,h,l)。标尺10μm。 [0028] 图2:从5天培养物的三份样品中提取的Aetherobacter fasciculatus DSM21835的细胞脂肪酸的GC-MS色谱图。 [0029] 图3:DHA片段图谱, [0030] 上图:Aetherobacter fasciculatus DSM 21835的典型培养物样品 [0031] 下图:购买的参比DHA甲基酯。 [0032] 图4:EPA片段图谱, [0033] 上图:Aetherobacter fasciculatus DSM 21835的典型培养物样品 [0034] 下图:购买的参比EPA甲基酯。 [0035] 图5:基于粘细菌16S rDNA基因序列的邻接法进化树(Neighbor-joining tree),并示出EPA和DHA生产菌株(黑体)的系统发生学位置。在分支点上的数字表示自展支持度水平(the level of bootstrap support),基于1000个再取样。仅示出大于60的值。标尺,每个核苷酸位置0.05置换(substitution)。符号*:在该进化树中的纤维堆囊菌(Sorangium Cellulosum)模式株代表在堆囊菌属中唯一能够生产omega-3脂肪酸的菌株。纤维堆囊菌的其它菌株,例如由SBSo021和SBSo024(它们的DNA序列未包括在该进化树中)所表示的菌株,已经发现它们可以生产EPA,但是该模式株本身缺失omega-3PUFA生产。 [0036] 图6:NCBI-BLASTn产生的邻接法进化树,其显示Aetherobacter fasciculatus DSM 21835(箭头)的16S rDNA序列与2009年11月29日时GenBank中提供的最为同源的50个典型序列的亲缘关系。 [0037] 发明详述 [0038] 本发明的粘细菌菌株应当被分类在新的属Atherobacter中,并且为新的菌种A.fasciculatus、A.rufus以及尚未命名的Aetherobacter菌株。这些所有的菌株均从最初在1962年于印度尼西亚收集的土壤和植物碎片样品中分离。该样品被保藏在Zentrum für Biodokumentation,Landsweiler-Reden,德国。为了分离粘细菌,使用活的大肠杆菌(Escherichia coli作为诱饵(bait),按照之前描述的方法[Reichenbach H&Dworkin M(1992)The Myxobacteria,In The Prokaryotes,第二版,pp.3416-3487(Balows A等人编)NewYork:Springer]处理土壤/植物碎片样品。 [0039] 于2007年11月从含有根部碎片和其它腐烂植物材料的土壤样品中分离出Aetherobacter fasciculatus DSM 21835。于2007年12月分离出菌株A.rufusDSM 23122以及于2009年2月分离出Aetherobacter sp.DSM 23098。 [0040] 上述粘细菌菌株属于粘球菌目的堆囊菌亚目,为新编订的属Aetherobacter的代表菌株,由此提出作为新编订的菌种(A.fasciculatus、A.rufus、Aetherobacter sp.),所述菌株是需氧的~兼性需氧的,并且为化学异养的,具有的16S rDNA序列如SEQ ID NO:1所示(DSM 21835),如SEQ ID NO:2所示(DSM 23122)以及如SEQ ID NO:4所示(DSM T 23098),与菌株Byssovorax(同物异名Byssophaga)cruenta DSM 14553(GenBank登录号AJ833647,SEQ ID NO:3)具有约96%的同一性和/或具有的omega-3PUFA含量为总细胞脂肪酸含量的至少10%,优选至少15重量%。下文将对提出的分类单元进行详述。 [0041] 本发明菌株的学名尚未公开。现有技术中无已知属于属Aetherobacter的其它菌株。在本发明中首次对该属进行了描述。其系统发生学关系概述如下所述。更具体来说,在实施例中对其性质进行了概述。 [0042] 粘球菌目包括下述列举的亚目,其依次包括下述列举的科、列举的属以及列举的种。 [0043] [0044] [0045] 系统发生学关系是通过比较现存活的可培养的代表性的属和菌株的16S rDNA序列数据而获得的,如图10所示。 [0046] 三株新菌株在形态上有一定程度的相似。关于营养细胞以及子实体,Aetherobacter fasciculatus DSM 21835与Aetherobacter sp.DSM 23098生长阶段的外观基本相同。Aetherobacter rufus DSM 23122不同,在于其具有红色的子实体以及更小的小孢子囊。另外,DSM 23122产生发白的群游(swarm),其与Aetherobacter剩余的两株菌株的发黄桔色不同。 [0047] 生理学检测也显示新菌株和种之间的区别。明显地,三株新菌株优选不同的糖和氮源以用于生长。分离菌株的抗生素抗性不同,例如DSM 21835和DSM 23098对于潮霉素B有抗性,而DSM 23122对于该化合物敏感。对于氨苄青霉素和新霉素的抗性使得可以从菌株DSM 23098中区分出A.fasciculatus DSM 23098和A.rufus DSM 23122。此外,与DSM23122相比,DSM 21835和DSM 23098似乎显示出更广范围的抗生素抗性。 [0048] 在系统发生树中,来自三株新菌株的16S rDNA序列聚集在一起,由100%自展值(bootstrap value)支持。Aetherobacter fasciculatus DSM 21835不仅形态上与A.sp.DSM 23098相似,而且16S rDNA序列也显示它们具有高度的同源性(99.4%同一性)。发现A.rufus DSM 23122与DSM 21835具有98.9%的同一性,与DSM 23098具有99.2%的同一性。上述关系在系统发生树中非常明显,其中,与DSM 23122相比,DSM 21835的序列与DSM23098聚集在一起(图10)。 [0049] 对新属和种的描述 [0050] 1.Aetherobacter R.O.Garcia& R.Müller.新属未出版(gen,nov.ined.)[0051] 语源:Aetherobacter[Ae.the.ro.bac′ter.希腊语(Gr.)阳性名词(masc.n.)Aether 希腊光之神(Greek God of Light)(是指清澈透明的群游);希腊语阴性名词(fem.n.)bacter来自希腊语中性名词(neut..n.)bakterium小棒,杆;现代拉丁语(M.L.)阳性名词Aetherobacter清澈群聚的棒] [0052] 营养细胞长度适当并且为具有平端(blunt end)的细长圆柱棒状;通过在表面上以及在琼脂下滑动来运动。群游,类似于膜状~透明清澈的菌落。刚果红-阴性,其边缘为彼此粘附迁移的细胞,穿透到大部分固体培养基下;琼脂稍有凹陷。粘孢子具有平端的折光的细长棒,比营养细胞短,并封装在孢子囊壁(sporangial wall)中。子实体作为微小的卵形体小孢子囊,通常较为致密或是聚集的。酵母被完全降解。强溶菌性。具有omega-3多不饱和脂肪酸作为细胞FA的主要成分。G+C百分比,68.0-70%。 [0053] 新属Atherobacter与最为类似的、已接受的粘细菌属Byssovorax在很多方面明显不同。在形态上,Byssovorax在琼脂培养基上显示为深红色类伪原质团群游和子实体。迁移细胞的独立群体被认为是该属的典型特征。小孢子囊较大(60-180μm宽),并且也显示为深红色的颜色。相反,由下面将要详细描述的菌株所代表的新属Aetherobacter的种会产生群游的形式,该群游可以深深地穿透琼脂。Aetherobacter spp.的穴居细胞(burrowing cell)形成的群游显示出放射状(环状)外观。另外,群游细胞(swarming cell)显示出白色~浅桔色的颜色。在酵母琼脂(VY/2)上,在所有这些新菌株中,菌落的中间通常为清澈的。单个小孢子囊较小(<20μm),并且排列成紧密填充的聚集体或束状,并通常位于琼脂中。 [0054] Aetherobacter spp.与Byssovorax另一个显著的区别在于该新属的成员无法降解纤维素。两种属在它们的脂肪酸模式上也有明显不同。Byssovorax含有较高含量的iso-15:0和直链脂肪酸,而且不含有DHA和EPA。 [0055] 16S rDNA的96%相似性的遗传学特征也用于近期建立的粘细菌属Enhygromyxa[Iizuka T. 等 人 (2003)Syst Appl Microbiol 26:189-196] 以 及Byssovorax[Reichenbach 等 人,2006.Int J Syst Evol Microbiol.56(PT 10): 2357-2363]。 [0056] 基于上述数据,新Aetherobacter菌株显示与已知的属Byssovorax(即粘细菌的属)明显不同,根据它们16S rDNA的同源比对推断该属Byssovorax与新Aetherobacter菌株最为相关。综合考虑在形态学、生理化学、16S rDNA基因拓扑学、以及系统发生学分析方面的这些不同,显示这些不同是一致的从而证明新属的创建是正确的。 [0057] 2.Aetherobacter fasciculatus R.O.Garcia&R.Müller新种未出版 [0058] 语源:fasciculatus[fasc.i.cu′la.拉丁语阴性名词(L masc.n.)fasciculum小束或串(是指小孢子囊的排列)]。 [0059] 具有该属的全部特征。营养细胞宽棒状,大小为1.2-1.3×2.9-5.7μm,以及为深色相(phase dark)。群游为桔色微小的,其显示出酵母细胞诱饵的完整透明圈,在琼脂的表面上具有浅的凹陷,并且该群游通常深深地穿透该培养基从而形成彼此粘附的类似于丝膜(coherent curtain-like)的结构。子实体的颜色为黄色~桔色,通常在琼脂下被发现,由5-20微小小孢子囊(10.4×11.4μm)紧密地排列成串作为孢子堆(30×50μm)。粘孢子折光、短粗棒状,具有圆形末端,与营养细胞类似,但比营养细胞短(1.0-1.2×3.2-4.0μm); 封装在孢子囊壁中。营养型,溶菌的,酵母降解者。不降解纤维素和壳多糖。在蔗糖、果糖、D-甘露糖和L-阿拉伯糖中生长良好。对光谱的抗生素具有抗性:艮他霉素、阿泊拉霉素、妥布拉霉素、链霉素、氨苄青霉素、新霉素和潮霉素B。对下述抗生素敏感:卡那霉素、壮观霉素、四环素、土霉素、羧苄青霉素以及利福平(rifampicin)。主要的细胞脂肪酸成分为C22:6(二十二碳六烯酸,DHA)iso-C15:0、C20:5.(二十碳五烯酸,EPA)。G+C的摩尔百分比为 68.9。 [0060] 模式株:根据布达佩斯条约,于2008年8月27日将Aetherobacter fasciculatus保藏在DMSZ,德意志微生物和细胞培养物保藏中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH),Inhoffenstr.7B,38124Braunschweig,德国,保藏号为DSM 21835。 [0061] A.fasciculatus DSM 21835具有的16S rDNA序列与Byssovorax(同物异名:T Byssophaga)cruenta DSM 14553 的16S rDNA序列96%相同。其omega-3PUFA含量至少为总细胞脂肪酸含量的10%,优选至少为15重量%。 [0062] 根据显示出下述特征确认A.fasciculatus DSM 21835为粘细菌纲、粘球菌目的成员,所述特征:革兰氏阴性菌的群游、细长棒形营养细胞、子实体的形成、以及溶菌活性。该菌株为需氧~兼性需氧,化学异养,以及还显示出对于多种抗生素具有抗性。 [0063] 主要脂肪酸为C22:6(二十二碳六烯酸),iso-C15:0,anti-iso C17:0以及C20:5(二十碳五烯酸)。基因组DNA的G+C含量为68.9摩尔%。其16S rDNA序列显示出与纤维素降解菌Byssovorax cruenta 96%的同一性,以及与纤维堆囊菌95%的同一性。这些清楚地显示该菌株属于粘球菌目的堆囊菌亚目。另外,形态上的生长阶段以及新脂肪酸模式上的唯一性清楚地表明DSM 21835属于新的分类单元,其应当被分类为属于新属Aetherobacter以及新种A.fasciculatus。 [0064] 3.Aetherobacter rufus R.O.Garcia& R.Müller.新种未出版 [0065] 语源:rufus(ru.fus.拉丁语阴性形容词(L.masc.adj.)rufus红色)。 [0066] 具有该属的全部特征。营养细胞宽棒状,大小为1.0-1.2×3.0-6.0μm,最长15μm,深色相。在酵母琼脂中,群游粘附在培养基中移动从而形成具有白色边缘的环或圆形结构。菌落(在VY/2琼脂上)显示为清澈和透明的,这是酵母完全降解的结果。在琼脂的表面上,它们通常产生为具有朝向菌落边缘的细胞聚集体的凸起的薄片或膜,显示出浅的琼脂凹陷。子实体显示出红色~朱红色颜色,以单个凸起(120×140μm)的形式出现,或者以非常长的辊(340×400μm-1900×2900μm)的形式出现,肉眼可见,最初由细胞聚集体的白色隆起发展而成。由微小的小孢子囊(6-12μm)构成,形成孢子堆(14×15μm-16×26μm)。粘孢子折光、短粗和短棒状(1.0-2.0μm),具有圆形末端与营养细胞类似;封装在孢子囊壁中。营养型,溶菌的。不降解纤维素和壳多糖。在下述所有检测过的糖中均同样良好生长:L-阿拉伯糖、果糖、半乳糖、D-葡萄糖、D-甘露糖、糖蜜、山梨糖醇、木糖、纤维二糖、乳糖、麦芽糖、蔗糖以及可溶淀粉。对于氨苄青霉素、新霉素和艮他霉素具有抗性。对于下述抗生素敏感:阿泊拉霉素、妥布拉霉素、卡那霉素、壮观霉素、潮霉素B、氨苄青霉素、四环素、土霉素、链霉素、羧苄青霉素以及利福平,主要的细胞脂肪酸成分为iso-C15:0、C22:6(DHA)、C15:0、C16:0。也产生C20:5.(EPA)。G+C的摩尔百分比为68.0。 [0067] 模式株:于2009年11月25日将Aetherobacter rufus 保藏在德意志微生物和细胞培养物保藏中心(DSMZ),Braunschweig,德国,保藏号为DSM23122。 [0068] 发现A.rufus菌株DSM 23122也产生EPA和DHA。在形态上,该菌株与A.fasciculatus菌株DSM 21835具有许多相似之处。但是,这两个种在一些生理学特征上存在不同,例如抗生素敏感性、碳需求、pH耐受性以及在16S rDNA序列方面。在omega-3脂肪酸的分析中,A.rufus DSM 23122也产生DHA和EPA两者。 [0069] 4.Aetherobacter sp. DSM 23098 [0070] 还发现Aetherobacter sp.DSM 23098也与上述提到的菌株相关,并且在其细胞生物质中含有大量omega 3-PUFA。因此,根据布达佩斯条约,于2009年11月12日该菌株也保藏在DMSZ,保藏号为DSM 23098。 [0071] 在本申请的的公开内容中,通常的表述优选具有下述或上述体积的含义,在每一个实施方式中,超过一个或全部更多的通常表述可彼此独立,可被更具体的定义所代替,从而分别形成本发明优选的实施方式。 [0072] 优选,下述缩写用于说明本发明的意图: [0073] [0074] 优选按照下述来对粘细菌进行科学分类:界:细菌界,门:变形菌门,纲:δ-变形菌纲,目:粘球菌目。 [0075] 出于本发明的目的,术语“粘细菌”和“粘细菌菌株”优选指属于粘球菌目的任何种或其它微生物成员。 [0076] 在此使用的术语“成员”优选用于指代被定义为Aetherobacter的邻近同系物的本发明的任何粘细菌菌株。 [0077] 出于本发明的目的,所有使用的分类学关系均依据Brenner DJ,等人(eds.)Bergey′s Manual of Systematic Bacteriology,第二版,New York:Springer,特别是本发明的方法参考该标准。 [0078] 出于本发明的目的,利用术语“同源性”来描述遗传上的亲和性。这基于16S rDNA序列在二元比对中的应用,该二元比对是利用BLASTn 2.2.22算法将FASTA序列(通过表1中列出的它们的登录号来确认)与本发明的特定菌株各自的16S rDNA进行比对,该BLASTn2.2.22算法来自urlhttp://blast.ncbi.nlm.nih.gov/Blast.cgi,对其的进一步描述参见Zhang Z等人(2000)J Comput Biol 7:203-214。 [0079] 本发明的“omega-3多不饱和脂肪酸(PUFA)”包括二十-顺式-5,8,11,14,17-五烯酸(20∶5EPA)以及二十二-顺式-4,7,10,13,16,19-六烯酸(22∶6DHA)。本发明的第一方面的方法具体用于生产EPA和DHA,以及所述脂肪酸的混合物。 [0080] 本发明优选的实施方式涉及omega-3多不饱和脂肪酸的生产,其包括培养能够生产一种或多种omega-3多不饱和脂肪酸的粘细菌菌株。 [0081] “能够”生产omega-3PUFA的粘细菌菌株优选为在总脂肪酸含量中至少含有0.5%的omega-3PUFA的菌株(按照实施例5所描述的方法测定),更优选至少含有1%,进一步优选至少含有2%,更为优选至少含有5%,最优选至少含有10%以及尤其优选至少含有15重量%的omega-3PUFA的菌株。 [0082] 本发明优选的实施方式涉及方法,其中该粘细菌菌株属于粘球菌目的堆囊菌亚目。 [0083] 在 优 选 的 实 施 方 式 中,该 粘 细 菌 菌 株 具 有 的 16S rDNA序 列 与TByssovorax(Byssophaga)cruenta DSM 14553 具有至少84%、更优选至少85%或86%、更优选至少87%、88%、89%或90%,进一步优选至少91%、92%或93%、最优选至少94%、 95%、96%的同一性。 [0084] 本发明优选的实施方式涉及方法,其中该粘细菌菌株属于粘球菌目多囊菌科。 [0085] 在 优 选 的 实 施 方 式 中,该 粘 细 菌 菌 株 具 有 的 16S rDNA序 列 与TByssovorax(Byssophaga)cruenta菌株DSM 14553 具有至少85%或86%、更优选至少 87%、88%、89%或90%、进一步优选至少91%、92%或93%、最优选至少94%、95%、96%的同一性。 [0086] 本发明优选的实施方式涉及方法,其中,该粘细菌菌株具有omega-3的不饱和脂肪酸含量,至少为总细胞脂肪酸10%,优选至少为15重量%。 [0087] 在另外优选的实施方式中,该omega-3多不饱和脂肪酸选自二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)以及它们的混合物。 [0088] 在本发明另外的方法优选的实施方式中,所述培养包括所述粘细菌菌株的种子培养和后续的针对omega-3PUFA生产的主培养。优选种子培养在VY/2(酵母培养基)琼脂培养基上进行,更优选在MD1G琼脂上进行。另外,培养优选在25~32℃的温度、更优选在约30℃进行。 [0089] 在本发明另外的方法优选的实施方式中,针对omega-3PUFA生产的培养在液体培养基中进行。特别优选在MD1G液体培养基(broth)中进行培养。此外,培养优选在25~32℃的温度、更优选在约30℃进行。培养另外优选的方式如下进行:在将pH调节至7.0的相同的培养基中,并且培养基体积高以减少空气。 [0090] 在本发明方法的另外优选的实施方式中,该方法还包括: [0091] (i)从培养物中分离所述一种或多种omega-3PUFA;和/或 [0092] (ii)纯化所述一种或多种omega-3PUFA;和/或 [0093] (iii)分离单独的omega-3PUFA。 [0094] 在另外优选的实施方式中,该粘细菌菌株属于粘球菌目的堆囊菌亚目,并且是由此提出的新属(Aetherobacter)和新种(fasciculatus)的代表,该菌株为需氧~兼性需氧的,并且化学异养,其具有的16S rDNA序列与SEQ ID NO:3中所示的TByssovorax(Byssophaga)cruenta DSM 14553 具有约96%的同一性和/或具有的omega-3多不饱和脂肪酸的含量为总细胞脂肪酸含量的至少10%,优选至少15重量%。 [0095] 在优选的实施方式中,该粘细菌菌株具有的16S rDNA序列与SEQ IDNO:1中所示的16S rDNA序列具有至少94%、更优选至少94.5%或95%、更优选至少95.5%、96%、96.5%或97%、进一步优选至少97.5%、98%或98.5%、最优选至少99.0%、 99.2%、99.4%、99.6%或99.8%的同一性。在特别优选的实施方式中,该粘细菌菌株为Aetherobacter fasciculatus(DSM21835),其16S rDNA序列如SEQ ID NO:1所示。 [0096] 在优选的实施方式中,该粘细菌菌株具有的16S rDNA序列与SEQ IDNO:2中所示的16S rDNA序列具有至少94%、更优选至少94.5%或95%、更优选至少95.5%、96%、96.5%或97%、进一步优选至少97.5%、98%或98.5%、最优选至少99.0%、 99.2%、99.4%、99.6%或99.8%的同一性。在特别优选的实施方式中,该粘细菌菌株为Aetherobacter rufus(DSM 23122),其16S rDNA序列如SEQ ID NO:2所示。 [0097] 在优选的实施方式中,该粘细菌菌株具有的16S rDNA序列与SEQ IDNO:4中所示的16S rDNA序列具有至少94%、更优选至少94.5%或95%、更优选至少95.5%、96%、96.5%或97%、进一步优选至少97.5%、98%或98.5%、最优选至少99.0%、 99.2%、99.4%、99.6%或99.8%的同一性。在特别优选的实施方式中,该粘细菌菌株为Aetherobacter sp.(DSM 23098),其16SrDNA序列如SEQ ID NO:4所示。 [0098] 下述实施例将进一步对本发明进行说明,但不应解释为对本发明范围的限制。本领域技术人员理解在实施例中所使用的步骤可以根据鉴定的另外单独能够生产omega-3PUFA的菌株进行调整。例如,可以使用与下面所列举的方法不同的其它已知的色谱方法以及已知的质谱方法。 [0099] 常规实验步骤 [0100] 材料与方法 [0101] 培养粘细菌所用的培养基列表 [0102] [0103] [0104] 痕量元素溶液SL-4 [0105] [0106] 痕量元素溶液SL-6 [0107] [0108] HS-培养基 [0109] [0110] 调节pH至7.2 [0111] 高压灭菌后用下述物质补充: [0112] [0113] [0114] 可溶培养基M [0115] [0116] MD1液体培养基 [0117] [0118] MD1G液体培养基 [0119] [0120] VY/2液体培养基 [0121] [0122] [0123] VY/2麦芽糖 [0124] [0125] VY/2-SWS [0126] [0127] LB培养基 [0128] [0129] VY/2琼脂培养基 [0130] [0131] MD1G琼脂培养基 [0132] [0133] 经缓冲的水琼脂(water agar) [0134] [0135] 无机盐琼脂(ST21琼脂) [0136] 溶液A [0137] [0138] 溶液B [0139] [0140] CT 7琼脂 [0141] 上琼脂层 [0142] [0143] 底部琼脂层 [0144] [0145] Cel3琼脂 [0146] [0147] 单独高压灭菌KNO3,然后在培养基已经冷却至约50℃后,将其添加到培养基中。倾倒在无机盐琼脂(ST21琼脂)上形成薄层。 [0148] 参考菌株 [0149] 在实施例5和6的工作中使用了一些菌株作为参考,已经从公共数据库中寻找到它们参考的DNA序列数据用于比对,所述公共数据库例如为GenBank(由美国国立生物技术信息中心(National Center for Biotechnology Information)提供的数据库;http://www.ncbi.nlm.nih.gov/)和/或由EMBL(欧洲分子生物学实验室(European Molecular Biology Laboratory),http://www.embl.de/)产生的分别的数据库。将它们列在表1中。需要时,可以引用这些序列相关的公开出版物,在此没有具体列出序列数据。 [0150] 表1:用于与本发明申请中所述的Aetherobacter spp.新粘细菌菌株比对的参考DNA序列数据。 [0151] [0152] [0153] omega-3PUFA特别是DHA、EPA的生产:从生长良好的琼脂平板的MD1G琼脂上刮下活性的群游细胞并接种在100ml烧瓶中,该烧瓶中含有20ml MD1G液体培养基。在160rpm和30℃的条件下,在旋转摇床上温育该培养物7天以作为种子培养物。从种子培养物中取出2ml的等量样品并加入到三个250ml烧瓶中,每个烧瓶中含有50ml液体MD1G培养基(即,用于进行脂肪酸分析的生产培养基)。在与种子培养物同样的速度和温度下,摇动烧瓶10天。在温育5天和10天之后,从每个烧瓶中取出2ml主要含有凝聚细胞的等量样品。然后计算细胞的湿重和干重。 [0154] 细胞脂肪酸的提取:利用FAME方法[Bode HB等人(2006)J.Bacteriol188:6524-6528;Ring MW等人(2006),J Biol Chem 281:36691-36700(2006)]来提取细胞脂肪酸。利用GC-MS分析提取物的等量样品(5μ1)。 [0155] 细胞脂肪酸包括EPA和DHA的鉴定:基于裂解图谱和保留时间来鉴定包括omega-3PUFA(EPA和DHA)的细胞脂肪酸。将这些脂肪酸(FA)与FAME混合参比标准(Sigma-Aldrich)(其含有37种脂肪酸甲基酯)进行比较。利用来自Sigma-Aldrich的参比标准确认存在DHA和EPA(顺式-4,7,10,13,16,19-DHA,顺式-5,8,11,14,17-EPA)。 [0156] EPA和DHA的定量: [0157] 如下进行GC-MS:在具有5973电子轰击质量选择检测器和7683B注射器的Agilent 6890N气相色谱(Agilent,Waldbronn,德国)上,利用二甲基-(5%苯基)-聚硅氧烷毛细管柱(Agilent HP-5ms,0.25mm×30m×0.25_m)以及以氦作为载气(流动速率1ml/分钟)。以分流模式(split mode)注射样品(分流比例,10∶1)。柱温保持在130℃、2.5分钟,并以5℃/分钟的速率升高至240℃,然后以30℃/分钟变速升温至300℃,并保持在300℃,5分钟。其它温度如下所示:入口,275℃;GC-MS传送管线,280℃;离子源,230℃;以及四极,150℃。以扫描模式操作质量选择检测器,扫描的质量范围从m/z40~500。利用AMDIS软件,版本2.64(NIST,Gaithersburg,MD,USA)进行数据分析,利用“集成信号”值进行定量。以占总脂肪酸甲基酯的积分总和的比例的形式计算其量。 [0158] 基于在FAME混合物中的量的百分比来评价DHA和EPA(分别,各自为2%或0.2μg/μl)。从参考混合物中取出5μl等量样品并与95μl氯仿混合以使终体积为 100μl。通过该混合物,等量样品被注入到柱中以进行上述GC-MS分析。 [0159] 通过裂解图谱和保留时间在FAME混合物中首先确定DHA和EPA。然和利用积分信号面积(其代表在标准品中的百分比量)来计算它们的峰面积。 [0160] 当在GC-MS中对细胞脂肪酸提取物进行分析之后,利用积分信号(intergrated signal)(其代表在样品中的百分比量)来测定DHA和EPA对应的峰(保留时间范围:EPA17.5-18.5分钟,DHA 20.5-21.5分钟)。 [0161] 按照下述方式计算DHA和EPA量:取样品积分信号的平均值除以标准品积分信号的值。然后乘以标准品脂肪酸的浓度和脂肪酸提取物的总体积,参照如下方程: [0162] [0163] SFA=标准品FA浓度[质量/体积] [0164] AIS=样品积分信号的平均值 [0165] IS=标准品的积分信号 [0166] TVFAE=FA提取物的总体积[体积] [0167] 多不饱和omega-3PUFA的总比例最终由平均EPA和DHA的总和得到。细胞脂肪酸的比例由三个样品的平均值来确定。 [0168] 菌株的维持:对所有生产omega-3PUFAs的粘细菌菌株定期进行培养并将其维持在VY/2琼脂上,发现在VY/2琼脂粘细菌生长适当。在液氮中,在10%甘油中进行长期保存。 [0169] 形态观察:在Olympus(Hamburg,德国)SH-ILLB立体显微下观察群游和子实体并使用Axiocam MRC(Zeiss, ,德国)相机拍照。还利用激光扫描荧光显微镜(Zeiss)对子实体进行分析。使用相差显微镜(Zeiss)对营养细胞和粘孢子的形态进行研究。所有生长阶段均在VY/2琼脂上观察。 [0170] 生理学测试:对营养细胞与革兰氏和刚果红染色的反应进行测定;利用后者进行染色依据如下方法:McCurdy,H.D.,Can.J.Microbiol.15:1453-1461(1969)。利用3%H2O2测定过氧化氢酶活性。在VY/2和ST21琼脂上进行纤维素降解,全部用滤纸(2×1cm)覆盖,并且在Cel-3琼脂上进行平行测试[Reichenbach H.&Dworkin M(1992)The Myxobacteria,In The Prokaryotes.第二版pp.3416-3487(Balows A等人编)New York:Springer],以确定纤维素粉的降解。按照Reichenbach H等人(2006)Int J Syst Evol Microbiol56:2357-2363所述进行壳多糖的降解分析。 [0171] 微生物捕食测试:在水琼脂上接种革兰氏阴性细菌大肠杆菌的过夜培养物菌斑(直径约10mm),并且在接种环境样品之前使其自然干燥。通过封口膜密封培养平板并且于30℃温育一周。微生物食物诱饵的透明显示蔓延的粘细菌菌落的溶菌作用。 [0172] 温度、pH、碳源和氮源,以及抗生素对于生长的影响:不同温度和抗生素水平对于生长影响的测试也在VY/2琼脂上进行。营养细胞的接种物来自从相同培养基上取得的活跃生长的群游。使用了如下抗生素:阿泊拉霉素(Fluka,Buchs,瑞士)、氨苄青霉素、卡那霉素、潮霉素B(Roth,Karlsruhe,德国)、妥布拉霉素(Sigma-Aldrich)、壮观霉素(Serva,Heidelberg,德国)、四环素、土霉素、链霉素(均来自Synopharm,Barsbüttel,德国)、羧苄青霉素、新霉素、利福平和艮他霉素(Applichem.Darmstadt,德国),所有抗生素菌均经过膜过滤灭菌并且,在经高压灭菌的培养基冷却(50℃)之后添加该抗生素。 [0173] 在添加有10mM的L-天冬氨酸、L-谷氨酸、尿素、KNO3和(NH4)2SO4的水琼脂中对含氮化合物的利用进行分析。所有测试均在相同的培养基中进行,该培养基的水解酪蛋白氨基酸(BD)浓度为0.3%以及具有不同的蛋白胨源[胰化蛋白胨、酪胨、蛋白胨、新胨蛋白胨、植物蛋白胨(phytone)(BD)]。 [0174] 在添加有5mM HEPES的水琼脂中对碳源的利用进行分析。在进行高压灭菌之前,用KOH将最终pH调节至7.0。添加果糖、D-甘露糖、蔗糖、L-阿拉伯糖、D-葡萄糖、D-半乳糖、山梨糖醇、纤维二糖、可溶淀粉、糖蜜、麦芽糖、木糖和山梨糖醇并使得每一个的浓度为0.35%。 [0175] G+C含量和16S rDNA分析:利用Qiagen基因组DNA纯化试剂盒针对革兰氏阴性细菌的方法,从活跃生长的细胞中提取基因组DNA。利用HPLC测定新细菌的DNA的G+C含量[Li G等人(2003)Bio Techniques 34:908-909(2003);Shimelis O&Giese R(2006)J.Chrom.1117:132-136]。 根 据Garcia RO 等人 (2009)Int J Syst Evol Microbiol50(PT12):1524-1530所述进行16S rDNA分析。得到的16S rDNA序列还用于与NCBI-BLAST核苷酸-核苷酸数据库进行比对。这种服务是由位于美国国家医学图书馆(8600,Rockville Pike,Bethesda MD,20894USA)的美国国立生物技术信息中心所提供的,作为序列局部比对查询工具(BLAST)。特别是检索了核苷酸数据库(BLASTn)。 实施例 [0176] 实施例1:利用本发明菌株生产脂肪酸 [0177] Aetherobacter fasciculatus DSM 21835、Aetherobacter rufus DSM 23122以及Aetherobacter sp.DSM 23098 [0178] A.生产omega-3PUFA (DHA.EPA):来自MD1G琼脂培养基表面得活性的群游细胞,Aetherobacter fasciculatus DSM 21835、A.rufus DSM 23122和Aetherobacter sp.DSM23098在MD1G液体培养基上聚集生长。这样的条件使得能够利用光密度来定量细胞。从摇动第5天的培养物中收获的细胞显示出浅黄色,其通过显微镜观察显示为细长棒状(营养细胞)。在生长的第10天,细胞变红,显微镜观察之后显示结构可能代表子实体(图1a)。 它们含有封闭的壁(小孢子囊),其内部含有孢子并且显示与在琼脂表面发现的子实体(图 1b)相似。营养细胞可能是为浅黄色物质的原因,并且推测在温育10天之后转变为孢子。 这种现象仅在A.fasciculatus DSM 21835中观察到。 [0179] 如果接种在含有750ml MD1G的11烧瓶中(用50m1种子培养物接种),所有菌株均生长良好,但是会产生更多的块状细胞颗粒,即使在温育10天或更多天之后,细胞也不会转变为子实体。 [0180] 观察显示在高体积培养基中生长更好,推测这反映了所有细菌钻入到琼脂下面的特性,表明用于生长所需的空气可能更少。另外,观察到弱过氧化氢酶反应也支持这一假设。对这些数据的分析显示所有Aetherobacter菌株可能是微需氧或兼性需氧的。该基本信息对于菌株的培养以及后续对PUFA生产进行分析较为重要。 [0181] 表2-7示出了分别在MD1G摇瓶中培养5天和10天之后,对Aetherobacter fasciculatus DSM 21835、A.rufus DSM 23122和Aetherobactersp.DSM 23098的三次重复细胞重量测量的结果。利用积分信号从三个重复样品中检测DHA和EPA峰。 [0182] 表2:利用GC-MS测定Aetherobacter fasciculatus DSM 21835中的EPA和DHA生产。 [0183] [0184] 表3:Aetherobacter rufus DSM 23122中的EPA和DHA生产 [0185] [0186] 表4:Aetherobacter sp.DSM 23098中的EPA和DHA生产 [0187] [0188] 图2示出从在MD1G培养基中发酵5天之后取出的含有脂肪酸的提取物的GC-MS色谱图菌株DSM 23122和DSM 23098的收率相当,但DHA和EPA的含量稍低(参见表3和4)。 [0189] B.包括EPA和DHA的细胞脂肪酸的确定:图2示出A.fasciculatus DSM21835细胞脂肪酸的GC-MS色谱图。在表5-7中列出了从培养第5天和第10天中提取的脂肪酸相应的百分比。 [0190] 表5:Aetherobacter fasciculatus DSM 21835细胞脂肪酸的百分比[0191] [0192] [0193] 表6:Aetherobacter rufus DSM 23122细胞脂肪酸的百分比 [0194] [0195] 表7:Aetherobacter sp菌株DSM 23098细胞脂肪酸的百分比 [0196] [0197] [0198] 按照在方法和材料部分所述的方法确定细胞脂肪酸。 [0199] 如在图3和4中示例性列出的菌株A.fasciculatus DSM 21835所示,样品的裂解图谱显示其与DHA和EPA甲基酯标准品的质量单元一致。 [0200] C.细胞脂肪酸的提取和定量:如表2-7所示,所有三株菌株含有至少占干细胞质量15%的总PUFA(EPA和DHA一起考虑)。观察到的最高PUFA量超过25%。该数据进一步显示在10天的周期内得到最佳的生产。 [0201] 实施例2:菌株A.fasciculatus DSM 21835的鉴定 [0202] 于2007年11月,从印度尼西亚的含有根部碎片和其它腐烂植物材料的土壤样品中分离出菌株DSM 21835。发现该菌株是因为其形成了在经缓冲的水琼脂的表面的细菌诱饵中生长的浅黄色~桔色的子实体。在解剖显微镜下的形态观察显示小孢子囊的簇进入到孢子堆中。在新鲜的VY/2琼脂上接种经清洗的子实体材料,从而产生薄并且致密的群游,该群游在琼脂表面或内部彼此粘附地迁移。进行一系列群游的重复转移从而分离得到纯菌株。 [0203] 形态和培养特征: [0204] 群游:在VY/2琼脂上细菌菌落或群游通常穿透到琼脂下从而形成类似于丝膜的外观(图1b)。在群游的边缘细菌密度较高。迁移的细胞彼此粘附地进行移动并同时清除酵母细胞。细胞也可以在琼脂的表面上伸展并且琼脂显示出稍有凹陷。在以活的大肠杆菌作为诱饵的水琼脂中,在琼脂表面群游稀薄地伸展,从而形成长的、微细的放射性静脉形状。在MD1琼脂中,细菌难以在琼脂表面伸展,而是通常趋向于向琼脂的深处生长,特别是在接种的位置。在具有特有的琼脂凹陷的该培养基上通常形成浅黄色奶酪色的菌落。在该琼脂上出现细长的类似于膜的群游结构。 [0205] 营 养 细 胞:在 载 玻 片 上 的 营 养 细 胞 为 长 且 细 的 棒 状,尺 寸 为1.2-1.3×2.9-5.7μm(图1a),具有堆囊菌亚目的特征即圆形末端。细胞极性末端(polar ends)上存在的深点颗粒,在相差显微镜下可以清楚地观察到。其显示出滑动到琼脂下和在琼脂表面上滑动的运动性。在MD1G培养基中进行摇瓶发酵的过程中,营养细胞聚集以产生浅黄色的色素。 [0206] 子实体:在VY/2琼脂上,子实体由小孢子囊形成,该小孢子囊群集为通常排列成簇或链状的束或孢子堆(图1c)。通常在温育2个星期后形成子实体。通常在群游的边缘和琼脂下生成子实体。有时,在子实体形成的过程中,可以观察到黄色、可扩散的色素。小孢子囊的形状为球形~椭圆形,其尺寸为10.4×11.4μm。典型的孢子堆的尺寸为30×50μm并含有5-20个微小的小孢子囊。经常发现清澈的、闪烁并且透明的粘液(slime)包围着在VY/2琼脂的表面的子实体。 [0207] 粘孢子:压碎的小孢子囊释放出致密堆积、光学折光的棒状细胞,推测这种细胞为粘孢子(图1d)。与营养细胞相比,它们较短而宽度类似(1.0-1.2×3.2-4.0μm),并且或多或少具有圆形末端。 [0208] 生理学特征 [0209] 染色、降解和溶菌性质:营养细胞是革兰氏阴性且过氧化氢酶阳性的。该群游不被刚果红染色,这是堆囊菌亚目的典型特征。水琼脂上的活细菌的食物诱饵(大肠杆菌)被完全降解,并且在室温条件下,6天后被完全清楚,这表明该菌株具有强的溶菌性质。该菌株在覆盖有滤纸Cel-3琼脂和ST21琼脂上无法降解纤维素,并且也无法降解CT-7琼脂上的壳多糖粉末。在VY/2和MD1琼脂中生长的培养物中经常观察到琼脂的降解。 [0210] 温度和pH对生长的影响。在酵母琼脂上,观察最适生长出现在30℃温育时,但在相同的琼脂上,即使温度达到18℃仍然可以保持充分地生长。在37℃时没有生长。在相同的培养基中,该菌株可以在pH 5-9的范围内生长,而最大的群游直径明显出现在pH7.0时。但是,在pH低于4.0以及高于10时,没有发现生长的证据。 [0211] 碳源的利用。支持该菌株生长的最佳碳源为乳糖。在糖蜜、麦芽糖和木糖中也观察到充分地生长;而在蔗糖、果糖、D-甘露糖、L-阿拉伯糖、半乳糖、山梨糖醇、甘露糖和葡萄糖上可以进行适当的生长。在纤维二糖和可溶淀粉上生长较差。在单糖(例如葡萄糖、甘露糖)和山梨糖醇的存在下,可以观察到子实体。 [0212] 氮源的利用。在有谷氨酸、硝酸钾和天冬氨酸时获得最大的群游直径。尿素和硫酸铵仅可以得到较差的生长,得到不仅薄而且分散的群游。在复合氮源方面,酪胨、蛋白胨和新胨蛋白胨最为合适;胰化蛋白胨和植物蛋白胨仍然可以显示充分地生长,但是在菌株在水解酪蛋白氨基酸上生长缓慢。 [0213] 抗生素抗性:该菌株对于下述抗生素敏感:卡那霉素、壮观霉素、四环素、土霉素、羧苄青霉素和利福平。观察到对于下述抗生素具有抗性:艮他霉素、阿泊拉霉素、妥布拉霉素、链霉素、氨苄青霉素、新霉素和潮霉素B。 [0214] 摩尔%G+C分析DNA的G+C含量为68.9摩尔%。 [0215] 实施例3:Aetherobacter rufus菌株DSM23122的鉴定 [0216] 于2007年11月,从印度尼西亚的含有根部碎片和其它腐烂植物材料的土壤样品中分离出粘细菌菌株DSM23122。最初于1962年收集到该样品并且保藏在Zentrum für Biodokumentation,Landsweiler-Reden,德国。处理该土壤并利用标准的诱集方法 (baiting method)[Reichenbach H&Dworkin M(1992)The Myxobacteria,In The Prokaryotes,第二版,pp.3416-3487(BalowsA等人编)New YorkrSpringer]进行分离。识别出该菌株是通过在无机盐琼脂上的滤纸表面上其呈红色的子实体[Shimkets等人, 2006.The Myxobacteria.In The Prokaryotes:a Handbook on the Biology ofBacteria,第三版,vol.7,pp.31-115(Dworkin M等人编)New York:Springer]。在同样的新鲜培养基上接种该子实体可以得到薄并且致密的群游,该群游在琼脂表面彼此粘附地迁移。在群游重复转移至新的培养基之后,将分离的菌株纯化。 [0217] 形态和培养特征: [0218] 群游。在固体VY/2培养基(图1f)上,细菌菌落或群游通常在琼脂的表面伸展以及伸展到琼脂下。在群游的边缘观察到较高的细菌密度,可以看到白色的条带。迁移的细胞彼此粘附地进行移动并同时清除经高压灭菌的酵母细胞。在琼脂表面上进行群游显示出琼脂表面稍有凹陷。在以活的大肠杆菌为诱饵的水琼脂中,该群游薄并且透明地伸展,有时形成长的、微细的放射性静脉形状。在与诱饵接触的条件下,产生了类似于波纹状或山脊状的群游边缘结构。在温育2~3天之后,诱饵细菌被完全降解。 [0219] 营养细胞。该营养细胞(图1e)为长、细的棒状,尺寸为1.1-1.2×3.0-7.0μm,并具有堆囊菌亚目的特征即圆形末端。细胞极性末端上存在的深点颗粒,在相差显微镜下可以观察到。通过在琼脂表面上滑动以及滑动到琼脂下来完成运动。在液体MD1培养基中营养细胞颗粒发白。 [0220] 子实体。在温育两周后可以观察到完全成形的子实体。在VY/2和水琼脂中,子实体(图1g)由红色的物质(尺寸375×650μm-425×1400μm)构成,通常可以通过肉眼观察。在亮视野和相差显微镜下,显示这些物质是由微小和致密的小孢子囊构成的。通常在温育一周之后,它们开始形成营养细胞的白色聚集体。通常子实体位于琼脂的表面,以及经常位于群游的边缘,但有时也在琼脂下形成子实体,从而得到形态类似的结构。单个小孢子囊(4.0×7.0μm)的尺寸基本上是单个孢囊杆菌科营养细胞长度的两倍。 [0221] 粘孢子。压碎的小孢子囊释放出致密堆积、光学上微折光的棒状细胞,推测其为粘孢子(图1h)。与营养细胞相比,它们较短而宽度类似(1.0×2.0μm-1.1×3.0μm),并且具有圆形末端。 [0222] 生理学特征 [0223] 染色和溶菌性质:该群游不被刚果红染色,这是堆囊菌亚目的典型特征;营养细胞是革兰氏阴性且过氧化氢酶阳性的。该菌株与相关属的不同在于其在Cel-3和ST21琼脂的滤纸上无法降解纤维素粉末。该菌株也无法降解在CT-7琼脂上的壳多糖粉末。通常在VY/2和MD1琼脂上观察到部分琼脂降解。 [0224] 温度和pH对生长的影响。在酵母琼脂上,观察最适生长出现在30℃温育时,但在相同的琼脂上,即使温度达到18℃仍然可以保持充分地生长。在37℃时没有生长。在相同的培养基中,该菌株可以在pH 5-8的范围内生长,pH7.0时最适。在pH低于4.0以及高于9时,没有发现生长的证据。 [0225] 碳源的利用。经检测的所有碳源均可被同样地利用。 [0226] 氮源的利用。在有谷氨酸、天冬氨酸、硫酸铵和硝酸钾时获得最大的群游直径,而在尿素中菌株生长缓慢。在复合氮源方面,酪胨显示出最适的生长;蛋白胨、新胨蛋白胨和胰化蛋白胨仍然可以显示充分地生长,而植物蛋白胨显示生长缓慢,有水解酪蛋白氨基酸时没有观察到生长。 [0227] 抗生素抗性。该菌株对于下述抗生素具有抗性:艮他霉素、氨苄青霉素和新霉素。观察到对于下述抗生素敏感:阿泊拉霉素、妥布拉霉素、卡那霉素、壮观霉素、潮霉素B、四环素、土霉素、链霉素、羧苄青霉素和利福平。 [0228] 摩尔%G+C分析。DNA的G+C含量为68.0摩尔%。 [0229] 实施例4:Aetherobacter sp.菌株DSM 23098的鉴定 [0230] 于2009年2月,从印度尼西亚的土壤样品中分离出菌株DSM 23098。最初于1962年收集到该样品并且保藏在Zentrum für Biodokumentation,Landsweiler-Reden,德国。处理该土壤并根据[Shimkets等人,2006.TheMyxobacteria.In The Prokaryotes:a Handbook on the Biology of Bacteria,第三版vol.7,pp.31-115(Dworkin M等人编)New York:Springer]所述的方法,利用活诱饵大肠杆菌以进行分离。识别出该细菌是由于其在琼脂的表面上形成与群游独立的几乎透明的菌落,并通过重复转移至新的培养基以对分离的菌株进行纯化。 [0231] 形态和培养特征: [0232] 群游。在酵母培养基(VY/2)上,菌落(图1k)沿着群游的中心几乎透明地伸展。在生长好的菌落的边缘上出现环。在较低琼脂浓度(例如,8-10g/l琼脂)中,扩大的环菌落更为明显,通过围绕边缘通常显示为桔色。在光下温育可能会导致较强的色素生成从而得到较深的、桔色群游。迁移的细胞彼此粘附地进行移动并同时溶菌经高压灭菌的酵母细胞,从而得到部分~完全透明的琼脂培养基。在酵母琼脂表面上进行群游显示出琼脂表面稍有凹陷;然而在降低琼脂浓度时,该凹陷可能会变得更深。在以活的大肠杆菌为诱饵的水琼脂中,该群游薄并且几乎透明的伸展。在琼脂表面,边缘通常呈波纹状。有时,还可以在琼脂表面观察到短并且微细的纹路。作为最为溶菌的粘细菌,在与外来细菌接触的情况下,产生了类似于波纹状或山脊状的菌落结构。在营养细胞到达琼脂平板培养基的边缘之后,营养细胞通常会死亡,这在粘细菌中可以经常观察到。在饥饿以及不利条件下,迁移的细胞或群游会经历子实体形成过程。 [0233] 营养细胞。该营养细胞(图1i)为长、细的以及深色相的棒状,尺寸为1.1-1.2×3.0-11.0μm(但通常仅有6-7μm长),并具有通常在堆囊菌亚目中发现的圆形末端。通过在琼脂的表面或在琼脂的内部滑动来进行运动。当在液体培养基中生长后,可以产生黄色~浅桔色的营养细胞颗粒,这与在琼脂表面的、子实体生成的凸起形成过程类似。 [0234] 子实体。在VY/2琼脂中,子实体(图11)由可以看成桔色点的小孢子囊构成,通常位于琼脂中。有时在琼脂表面观察到围绕子实体的透明粘液,这与A.fasciculatus类似。子实体的形成起源于营养细胞质的聚集体,营养细胞质的聚集体显示为黄色~浅桔色的凸起。小孢子囊由尺寸30×37μm-125×67.5μm的束形成。这些束含有3-9个椭圆~球形的小孢子囊(大小8×7-17×15μm)。 [0235] 粘孢子:压碎的小孢子囊释放出致密堆积、光学上微折光的棒状细胞,推测其为粘孢子(图1m)。与营养细胞相比,它们稍短而宽度类似(1.0-1.2μm×3.0-5.0μm),并且具有圆形末端。该特征与堆囊菌亚目相吻合。 [0236] 生理学特征 [0237] 染色和溶菌性质:该营养细胞是革兰氏阴性且过氧化氧酶阳性的。与其它堆囊菌亚目一样,该群游不被刚果红染色。该菌株与相关的纤维素降解属的区别在于其在Cel-3和ST21琼脂的滤纸上无法降解纤维素粉末。在CT-7琼脂上的壳多糖粉末也无法被群游细胞降解。在大多数固体培养基上可以观察到轻微的琼脂凹陷,这说明该菌株也能够降解琼脂。 [0238] 微生物捕食测试:在30℃温育5~7天的过程中,用作诱饵的细菌被清除,表明该菌株的溶菌活性。 [0239] 温度和pH对生长的影响:在酵母琼脂上,在18~30℃的范围内可以实现充分的生长。在相同的培养基中,在pH 6-8的范围内可以观察到生长,最大的群游直径出现在pH7.0。 [0240] 碳源的利用:除可溶淀粉之外,没有经检测的碳源可以支持菌株的良好生长。 [0241] 氮源的利用:在所有经检测的无机碳源中,生长均缓慢。在不同的复合有机氮源中,胰化蛋白胨最为适合。但是,菌株在蛋白胨、新胨蛋白胨以及酪胨中也生长良好;并且甚至植物蛋白胨和水解酪蛋白氨基酸,与无机氮源相比,也更为适合。 [0242] 抗生素抗性。该菌株对于除妥布拉霉素和潮霉素B之外的所有抗生素敏感。 [0243] 实施例5:粘细菌中的PUFA生产的比较研究 [0244] 一方面,为了建立分类学和系统发生学之间的关系,以及另一方面研究omega-3PUFA的生产,对一系列模式株和其它已充分表征的来自不同粘细菌分类群的代表菌株,并结合滑行细菌进行研究,以比较DHA、EPA和其它脂肪酸的生产。这些菌株中的大部分列在表1中,将它们的16S rDNA序列用于系统发生学研究(实施例6)。另外,利用GC-MS也对一些来自SB保藏(SB collection)的其它菌株的FA模式进行研究,这些菌株在形态上与纤维堆囊菌一致,但到目前为止在分子系统发生学方面不一致。 [0245] 出于该目的,从DSMZ(Braunschweig;德国)、亥姆霍兹感染研究中心(Helmholtz Center for Infectious Diseases)(HZI,dto.)或者从萨尔大学(Universitat des Saarlandes )(Saarbrücken,德国;SB)的培养物保藏机构获得多种粘细菌和相关的系统发生学群的可信的模式株。大部分细菌,以摇瓶培养的方式,在含有的50mL各自的培养基(如上所述)的300ml Erienmeyer烧瓶中,在170rpm的条件下进行培养。除了Haliangium tepidum(其在37℃温育)之外,温育温度为30℃。多囊菌属、软骨霉状菌属、Jahnella以及Byssovorax的成员在VY/2培养基中培养,在Byssovorax的情况下,向培养基中加入麦芽糖,按照Kunze B等人提出的下述方法(Kunze B等人(2006)J Antibiotics59:664-668)进行培养。在MD1培养基(Shimkets等人2006)中培养原囊菌属、珊瑚球菌属、Hyalangium、Kofleria、蜂窝囊菌属、粘球菌属、侏囊菌属、Pyxidicoccus、标记菌属以及囊球菌属(Angiococcus)(目前被分类在孢囊杆菌属中)的菌种,以及Cystobacter armeniaca和盘状孢囊杆菌。其它孢囊杆菌属菌种(Cystobacter spp.)在M-med[Müller R&Gerth K(2006)J Biotechnol121:192-200]中生长,而HS培养基[Kopp M等人(2004)J Biotechnol107:29-40]用于堆囊菌属菌株。属于Enhygromyxa和Plesiocystis的海洋粘细菌在VY/4-SWS[Iizuka T等人(2003a)Int J Syst Evol Microbiol 53:189-195;Iizuka T等人(2003b)Syst Appl Microbiol 26:189-196]中生长,而Haliangium在CY-SWS[Iizuka T等人(1998)FEMS Microbiol Lett 169:317-322]中培养。Phaselicystis flava的脂肪酸模式从Garcia RO等人(2009)Int J Syst EvolMicrobiol 59:1524-1530处获得,属于滑柱菌属(Herpetosiphon)的滑行细菌从HZI处获得,属于屈挠杆菌属(Flexibacter)的滑行细菌从SB处获得。后一种细菌在LB培养基中培养,而滑柱菌属菌株在固体VY/2琼脂培养基上生长。 [0246] 提取用于分析的脂肪酸 [0247] 针对大多数菌株,从摇瓶培养物的2ml液体培养物等量样品中获得细胞颗粒,在真空离心中经60℃,30分钟使其完全干燥。在滑柱菌属菌种(Herpetosiphon spp.)的情况下,由于其在液体培养基中不生长,因此从已经良好生长的固体培养基的琼脂表面刮下细胞的菌环量。 [0248] 然后用500μL FAME溶液(甲醇、甲苯、硫酸;50∶50∶2v/v)过夜提取干细胞。然后,添加400μL R2试剂(0.5M NH4HCO3,2M KCI)等量样品。在旋涡混合器中混合该样品之后,在5000rpm下离心该溶液4分钟,并利用25μl MSTFA衍生从溶液的上层相中取出的 75μl提取物。随后在37℃温育该样品30分钟后,进行GC-MS分析。 [0249] 结果如表8和9所示,显示大量EPA和DHA特别限定于新属Aetherobacter的成员。多种粘细菌显示完全没有omega-3-PUFA的产生。在其它堆囊菌亚目中,发现所有研究的模式株均无omega-3PUFA。令人惊奇的是,来自SB保藏的两株最新分离的纤维堆囊菌,这两株菌显示该属该种通常的形态学和生理学特征,并且利用GC-MS研究显示产生少量的EPA,如表8所示。这种观察引起如下设想:对其它堆囊菌属菌种(Sorangium spp.)和堆囊菌亚目的其它菌种进行详细研究,将会不注意地发现额外的这些omega-3PUFA的生产菌株。 [0250] 在海洋菌种Enhygromyxa salina(侏囊菌亚目)的模式株中,也发现了少量的EPA(表9),显示该亚目生产omega-3PUFA的通常能力。在同时研究的滑行无子实体真细菌(屈挠杆菌属、滑柱菌属)中没有发现所述化合物,并且在任何其它分类的革兰氏阳性和革兰氏阴性真细菌中也没有发现所述化合物,所述革兰氏阳性和革兰氏阴性真细菌是到目前为止已经在化学分类学研究的过程中对其脂肪酸分类进行广泛研究的细菌,除了在上述“现有技术陈述”中引用的例子。尽管尚未报道过在Enhygromyxa和堆囊菌属中发现EPA,但这很可能是因为目前为止在利用GC-MS进行的化学分类学评价中,仅涉及了细菌的主要FA成分。所以粘细菌是真细菌中唯一的一个纲,其具有多种细菌,这些能够容易地进行培养并且能够同时产生大量商业上有价值的omega-3PUFA(即DHA和EPA),正如本申请过程中发现的。利用针对FA-模式分析已充分建立的现代化学分类学技术,通过特别强调DHA和EPA的GC-MS,已经在本研究中指导了对于这些化合物的额外生产者的鉴定。根据这些数据可以得出如下结论:由于具有生产omega-3PUFA的能力,某些粘细菌分类单元能够与可培养的真细菌的剩余种类相区分。鉴于所有现存的真细菌菌种中高达90%的菌种仍然需要被发现和研究,除新属Aetherobacter可以生产omega-3PUFA之外,对于发现另外的生产者而言是非常有利的。因此提供了新的策略以发现额外的omega-3PUFA粘细菌生产者,该策略包括在本专利申请提供的实施例之后的系统发生学和化学分类学数据。 [0251] 表8.纤维堆囊菌菌株(SB保藏)中的脂肪酸模式。 [0252] [0253] [0254] 表9.Nann.ocystineae中的脂肪酸模式:在Enhygromyxa salina中发现EPA。说明:Hoch:Heliangium ochraceum,Htep:Heliangium tepidum,Esal:Enhygromyxa salina,Ppac:Plesiocystis pacifica,Kfla:Kofleria flava,Nexe:侵蚀侏囊菌,Npus:微小侏儒囊菌。 [0255] [0256] [0257] 实施例6:粘细菌系统发生学与脂肪酸生产(特别关注omega-3PUFA的生产)的关系 [0258] 粘细菌目前被分为六个科、二十个属以及46个种,可以基于形态的、生物化学的和生理学的特征进行分类。这种分类学也通过分子系统发生学研究体现,基于它们的16S rDNA的相似性分析,显示粘细菌为单系群[Velicer G,Hillesland K(2008)In Myxobacteria:multicellularity and differentiation(Whitworth D,ed),PP.17-40.ASM Press:Washington DC; C等人(1999)Int J Syst Bacteriol 49,1255-1262;Garcia RO等人(2009)Int J Syst Evol Microbiol 59:1524-1530]。 [0259] 在令人惊奇的发现新的、未表征的属Aetherobacter的成员可以产生omega-3PUFA作为它们生物质中的主要脂肪酸之后,选取了一组粘细菌纲的代表菌株以研究它们的脂肪酸模式,从而调查PUFA和其它脂肪酸的模式,特别是利用新属Aetherobacter过量生产PUFA的特异性。优选选择可以培养的菌种的模式株,包括陆地以及海洋菌种。 [0260] 在本研究使用的参考16S rDNA基因序列从GenBank下载。表1还包括模式株以及新菌株的经修正的序列。使用软件ClustalW(版本2.0)[Larkin等人(2007)Bioinformatics Applications Note 23(21):2947-2948]进行序列比对。 [0261] 利用Jukes-Cantor模型[Jukes TH,Cantor CR(1969)Evolution of protein molecules,pp.21-123in HN Munro(ed)Mammalian protein metabolism.NewYork:Academic Press]来计算序列之间的距离矩阵。根据距离矩阵,按照Saitou N&Nei M(1987)MoI Biol Evol 4:406-425所述的方法构建了邻接法进化树。定义1000次重复的自展[Felsenstein J(1985)Evolution 39:783-791],并利用Geneious tree builder构建公认的树。所有这些程序均打包在Geneious Pro 4.7.6软件中,可以从Geneious(Auckland,新西兰)公司购买。 [0262] 利用针对革兰氏阴性细菌的Qiagen基因组DNA纯化试剂盒(Gentra Systems Inc.,Minneapolis,美国)从活跃生长的培养物中提取基因组DNA。仅制备具有裂隙基因(gaps)和‘N’序列的菌株用于重复的16S rDNA基因测序。图5还包括所有无16S rDNA基因序列的模式株。使用通用引物通过PCR方法制备DNA样品[Lachnik J等人(2002)J Clin Microbiol 40:3364-3373]。这些引物(正向引物GAGTTTGATCCTGGCTCAGGA;反向引物AAGGAGGTGATCCAGCCGCA)也用于对PCR产物进行测序。设计另外的引物以覆盖基因的末端序列,以及也用于进一步的测序。利用NucleoSpin试剂盒(Macherey-Nagel,Düren,德国)进行PCR产品的纯化。 [0263] 16S rDNA序列数据的同源性分析:根据广泛使用和已良好建立的BLASTn分析[Zhang Z等人(2000)J Comput Biol 7:203-214],检测新得到的Aetherobacter菌株的16S rDNA序列与公开的序列数据的同源性。表10-12显示针对每一个单独菌株进行BLASTn搜索的结果。A.fasciculatus DSM21835的16S rDNA序列与纤维素降解菌TByssovorax(Byssophaga)cruentaDSM 14553 具有96%的同一性,与堆囊菌属(同物异名: 多囊菌属)纤维堆囊菌菌株具有95%的同一性(表10)。令人惊奇的是,A.rufus DSM 23122的16SrDNA序列以及Aetherobacter sp.DSM 23098也与Byssovorax cruenta具有96%的同一性(表11)与纤维堆囊菌菌株具有95%的同一性(表12)。 [0264] 上述数据显示根据16S rDNA的同源性推断,进一步确认了关于全部三种Aetherobacter菌株作为粘球菌目成员的鉴定。新细菌菌株与多囊菌科成员最为相关,如与Byssovorax(Byssophaga)cruenta和堆囊菌属(同物异名:多囊菌属)纤维堆囊菌的同源性所示。发现最接近的相似性(96-98%)是属于可能会进一步被研究的至今为未能培养的粘细菌菌种的细菌克隆,所述未能培养(uncultured)的粘细菌菌种或多或少与属Aetherobacter直接关联。Aetherobacter fasciculatus DSM 21835的关系如图6所示。其它Aetherobacter菌株也得到了几乎相同的结果。 [0265] 表10.Aetherobacter fasciculatus DSM 21835 的16S rDNA 序 列 数 据 的BLASTn2.2.22+同源性,显示最为相似的DNA序列,与2009年11月22日保存于GenBank。 [0266] [0267] 表11.Aetherobacter rufus DSM 23122的16S rDNA序列数据的BLASTn2.2.22+同源性,显示最为相似的DNA序列,与2009年11月22日保存于GenBank。 [0268] [0269] [0270] 表12:Aetherobacter sp.DSM 23098的16S rDNA序列数据的BLASTn2.2.22+同源性,显示最为相似的DNA序列,与2009年11月22日保存于GenBank。 [0271] [0272] [0273] 实施例7:其他类生物(outgroup organisms) [0274] 基于BLAST比对,利用在上述实施例中描述的相同的方法测定:易挠屈挠杆菌(Flexibacter flexilis)(Gen Bank登录号AB078050)的16S rDNA序列(来自菌株IFO15060)显示与Aerherobacter fasciculatus以及其它Aetherobacter菌种具有76%的相似性,而居泉滑柱菌(Herpetosiphon geysericola)(GenBank登录号AF039293)的16S rDNA序列显示75%的相似性。 [0275] 这两种菌种为滑行细菌并且属于变形菌门的δ亚组;认为它们与粘细菌较为接近,但是其不产生子实体和omega-3PUFA。 |