用于低CTE石墨电极的针状焦的制备方法

申请号 CN200780024397.6 申请日 2007-05-24 公开(公告)号 CN101663375A 公开(公告)日 2010-03-03
申请人 格拉弗技术国际控股有限公司; 发明人 道格拉斯·J·米勒; 欧文·C·刘易斯; 张清风; 理查德·托马斯·刘易斯;
摘要 一种从针状焦制备低CTE 石墨 电极 的方法,所述针状焦由初始沸点相对较高的 煤 焦油馏分物质形成。
权利要求

1.一种制备低热膨胀系数针状焦的方法,其包括:
(a)在压下加热焦油馏分,得到原焦;
(b)煅烧原焦,形成低热膨胀系数针状焦。
2.如权利要求1所述的方法,其进一步包括在进行步骤(b)的煅烧之前,破碎 步骤(a)的原焦。
3.如权利要求1或2所述的方法,其中煤焦油馏分的初始沸点高于约280℃。
4.如权利要求1、2或3所述的方法,其中煤焦油馏分的改进的康氏残炭值为至 少约1%。
5.如权利要求1、2、3或4所述的方法,其中步骤(a)的压力为约20psig至 约100psig。
6.如前述权利要求中任一项所述的方法,其中将步骤(a)的煤焦油馏分加热到 约450℃至约525℃的温度
7.如前述权利要求中任一项所述的方法,其进一步包括以约35℃/小时至约65℃ /小时的速率加热步骤(a)的煤焦油馏分。
8.如前述权利要求中任一项所述的方法,其进一步包括将步骤(a)的温度保持 约16小时至约25小时。
9.如前述权利要求中任一项所述的方法,其中将步骤(b)的经破碎的原焦煅烧 至约1300℃至约1500℃的温度。
10.如权利要求9所述的方法,其进一步包括将步骤(b)的温度保持约20分钟 至约40分钟。
11.一种制备低热膨胀系数石墨电极的方法,其包括:
(a)在压力下加热煤焦油馏分,得到原焦;
(b)煅烧原焦,形成低热膨胀系数针状焦;
(c)碾磨针状焦;
(d)将经碾磨的针状焦与煤焦油粘结剂沥青进行混合,形成混合物;
(e)挤出该混合物,形成生电极;
(f)焙烧生电极,形成经焙烧的电极;
(g)对经焙烧的电极进行石墨化,形成低热膨胀系数石墨电极。
12.如权利要求11所述方法,其中步骤中的混合物包含约15重量%至约35重量 %的煤焦油粘结剂沥青。

说明书全文

我们,美国公民D.J.米勒(Douglas J.Miller),居住在俄亥俄州北奥尔姆斯特 市野蔷薇大道26553号(26553Sweetbriar Drive,North Olmsted,Ohio);美国公民 I.C.刘易斯(Irwin C.Lewis),居住在俄亥俄州奥柏林市肯德尔大道191号(191 Kendal Drive,Oberlin,Ohio);美国公民张清(Ching-Feng Chang),居住在俄亥 俄州斯特朗斯维尔市莎拉拓加路19314号(19314Saratoga Trail,Strongsville,Ohio); 以及美国公民R.T.刘易斯(Richard Thomas Lewis),居住在俄亥俄州奥博恩市山 梅花广场595号(595Mock Orange Circle,Auburn,Ohio)发明了一种新颖、有用的 “用于低CTE石墨电极的针状焦的制备方法”。

发明背景

技术领域

本发明涉及有用于包括制备石墨电极在内的应用的针状焦。更具体地,本发明涉 及以焦油馏分为原料制备用于石墨电极的针状焦的方法,所述石墨电极具有降低的 热膨胀系数。

背景技术

工业在电热炉中使用电极(尤其是石墨电极)来熔化金属和补充成分以形 成钢。通过使电流通过至少一个电极(更通常是多个电极),并在电极与金属之间形 成电弧来产生熔化基底金属所需要的热量。通常采用超过100,000安培的电流。
通常使用混有沥青粘结剂的针状焦填料来制造电极。针状焦是指一种等级的焦炭, 其具有针状各向异性的微结构。为了产生能够经受超高功率通过的石墨电极,针状焦 必须具有低电阻率和低热膨胀系数(CTE),同时还能够输出石墨化制备相对高强度 的制品。针状焦的CTE值通常是这样测定的:将经碾磨、煅烧的焦炭与沥青粘结剂 混合,挤出焦炭/沥青掺混物以形成电极,接着在约3000℃对电极进行热处理,使所述 电极石墨化,然后在石墨化电极上测定CTE值。
针状焦的具体性质取决于对原料的选择,以及对其中将合适的碳原料转化为针状 焦的焦化过程中的参数的控制。一般地,针状焦是通过等级平系统进行分类的,各 种等级水平根据在一定温度范围内随CTE而变化的情况加以区分。例如,优质 (premium)针状焦通常被归类为在约100℃至约400℃的温度范围内平均CTE小于 约1.00×10-6/℃,而普通级针状焦在约100℃至约400℃的温度范围内的平均CTE为约 1.00×10-6/℃至约1.25×10-6/℃。使用膨胀计或如G.Wagoner等(Carbon Conference 1986Proceedings第234页,Baden-Baden,1986)所述的电容方法沿挤出方向(即纵 向)测定用焦炭填料制备的石墨化电极的CTE值。
为了将针状焦转化为石墨,通常应在约2000℃至约3500℃的温度范围内加热含针 状焦的制品(如电极),以将针状焦转化成石墨结晶结构,同时消除挥发性杂质。这 样的杂质会不利地提供所形成的石墨电极的CTE,并在施加电流时会导致电极膨胀。 所述膨胀将改变电极的起弧(arcing)性质,导致处理过程的效率降低,或者有可能 导致电极破裂。
适合形成高性能石墨电极的低CTE针状焦主要从来自石油的原料制备。为此, 所述原料应当具有高度芳香性,焦化后能提供良好的碳产率,并且含有很低的灰分和 难熔固体物。在石油针状焦的制备中,通常用流化催化裂化(FCC)倾析油作为原料, 其含有约0.02重量%至约0.04重量%的灰分。灰分的主要组分是在倾析油的初始裂化 中残余的FCC催化剂。该FCC催化剂提高所得电极的热膨胀特性,因而有必要去除 该催化剂,以便由石油针状焦制备低CTE石墨电极。因此,许多人开发了去除灰分 颗粒以降低所得电极的CTE的方法。例如,在美国专利第5695631号中,Eguchi等 公开了一种制备石油针状焦的方法,其包括过滤、离心和/或静电聚集,以从倾析油中 去除绝大部分FCC催化剂。
尽管使用石油基针状焦可以形成低CTE石墨电极,但使用石油基针状焦存在显 著缺陷。一种缺陷是随着石油价格的持续上涨,石油基针状焦有可能短缺。而且,提 供适合制备低CTE石墨电极的石油针状焦的供应商少而有限。此外,由于需要通过 过滤从倾析油中去除绝大部分灰分,因此石油针状焦的成本甚至被推得更高。
另一种途径是利用煤基原料提供用于石墨电极的针状焦。在此方法中,煤焦油来 自用煤生产冶金焦炭的焦化过程。所得的煤焦油是塔顶产物,包含通过基于气体的碳 化并还由于夹带煤而形成的难熔的含碳固体。在形成针状焦时,这些残余固体干扰大 区域(domain)中间相的形成,而是结果形成高CTE焦炭。
尽管存在这些固体,煤焦油仍然是制备焦炭的合意原料,因为煤焦油具有高度芳 香性并具有高的碳产率。如改进(modified)的康拉德逊残炭(MCC)测定法所测定, 煤焦油的碳产率通常为约10%至约30%。然而,为了从煤焦油得到低CTE焦炭,必 须采用物理固体分离法以去除最高占焦油的10%不合乎需要的固体。
为制备针状焦而从煤焦油中去除固体的例子包括Misao等的日本专利No. JP19850263700,该专利中,从煤焦油和/或煤焦油沥青中去除不溶于喹啉的组分,以 便用于延迟焦化,来制备针状焦。
Masayoshi等(德国专利No.DE3347352)描述了一种制备针状焦的方法,其中 利用氢化从煤焦油中去除固体组分。具体而言,在氢化催化剂的存在下,通过氢化来 纯化煤焦油和/或煤焦油沥青原料,直至脱氮比至少达到15重量%。
遗憾的是,现有技术制备煤焦油基针状焦包括昂贵的步骤,同时还产生了处理残 余焦油与分离出来的固体的混合物的问题。使用各种不同的催化剂去除煤焦油的固体 组分会产生废物,其既引起经济问题,也带来环境问题,这会影响利用煤焦油制备低 CTE针状焦的成本。而且,现有技术中的许多方法需要很高的能量输入,因为催化剂 常常需要在高温下从原料中去除实质性量的固体。此外,当利用氢化催化剂从煤焦油 中去除固体组分时,反应过程的进行需要恒定的氢气流。这种氢化过程还会因降低芳 香性而降低原料的总焦炭产率。
人们已开发了利用煤焦油馏分而非利用煤焦油来制备中间相沥青的方法。Lewis 等(美国专利No.4,317,809)描述了一种方法,其中在750psig的压和450℃的温度 下将煤焦油馏分加热5小时,形成中间相沥青。中间相沥青的总产率比需要的低,对 于商业上采用的操作压力通常低于约100psig的延迟焦化工艺来说,所用压力被认为 太高。
因此,需要一种方法,其制备用于低CTE石墨电极的针状焦,而无须采用来自 石油的原料,因而也不会含有会提高所得石墨电极的CTE的灰分。另外,需要一种 由煤焦油制备低CTE石墨电极的方法,其消除存在于煤焦油中,因而需要去除的难 熔含碳固体。实际上,希望有这样一种方法,它能直接将煤基前体转化为高度各向异 性的针状焦而无需固体分离过程,而且该方法也可容易地适用于工业延迟焦化工艺。 还希望有一种得到高的焦炭产率的方法,同时它采用的压力低于目前在工业炼油厂焦 化操作中采用的标准压力。
发明概述
本发明提供一种方法,其独特地能够从基于煤焦油馏分的针状焦经济地制备具有 低热膨胀系数的石墨电极。本发明方法提供这样的方法:其中在制备针状焦的过程中 从原料去除提高CTE的固体成分时,既不需要添加剂,也不需要高温氢化步骤。这 样产生的针状焦在受热时抵御膨胀,提供具有改进的热稳定性和降低的CTE的石墨 电极制品,针状焦的这种综合特性迄今尚未看到。此外,制备针状焦的本发明方法提 供来自煤焦油馏分的低CTE针状焦,而无需过度消耗氢气和热能,或者不需要使用 极高的压力。
更具体地,本发明方法利用具有相对高的沸程的煤焦油馏分原料。本发明方法中 所用的煤焦油馏分的初始常压沸点高于约280℃。这种高沸点煤焦油馏分的MCC值 应当为至少约1%,至多为约3%或更高。可按照ASTM E 2008,利用改进的热重分 析(TGA)方法来测定煤焦油馏分的初始沸点。
本发明从基于煤焦油馏分的针状焦制备低CTE石墨电极的方法一般应在中等压 力至常规的延迟焦化工艺所用压力下操作。具体而言,煤焦油馏分原料应当在至少约 20psig的压力下,优选在约30psig至约100psig的压力下加热。可以采用更高的压 力,但这需要更昂贵的焦化容器。更低的压力将降低从煤焦油馏分得到的焦炭的产率。
本发明从煤焦油馏分原料制备针状焦以用于制备低CTE石墨电极的方法可以在 不加入过多的热能或氢气或多种催化剂的条件下操作。与煤焦油原料相比,煤焦油馏 分原料含有明显较少的固体;实际上,与煤焦油原料相比,它基本上不含固体。因此, 它将不需要去除固体即可得到低CTE的针状焦。另外,与从石油原料产生的针状焦 相反,本发明方法不含为了制备低CTE针状焦而必须首先将其去除的残留的FCC催 化剂或其它灰分组分。
此外已发现,本发明方法使用相对适中的压力从煤焦油馏分原料制备相对高产率 的原焦,这是非常有利的。具体而言,原焦的产率可为煤焦油馏分的约60%至约90 %。这显著高于在类似(comparable)压力下对来自石油的倾析油进行焦化所得到的 30%至50%的产率。
将煤焦油馏分原料送入延迟焦化装置,用来制备针状焦。如本领域已知的,延迟 焦化是热裂化过程,在该过程中将液态煤焦油馏分原料转化为固态针状焦。在一种实 施方式中,从煤焦油馏分原料制备针状焦的延迟焦化过程是间歇连续(batch continuous)过程,其中采用多个针状焦罐,以致总是一个罐中装满煤焦油馏分原料, 而另一个罐是排空的。从煤焦油馏分原料产生针状焦的总产率可预期为初始煤焦油馏 分原料的约55%至约85%。
因此,本发明的一个目的是提供制备低CTE石墨电极的方法。
本发明的另一个目的是提供形成针状焦的方法,可将该针状焦挤出,以形成 (create)低CTE石墨电极。
本发明的又一个目的是提供从煤焦油馏分原料制备低CTE针状焦的方法。
本发明的再一个目的是提供其中利用相对高沸点的煤焦油馏分原料来制备低 CTE针状焦的方法。
对于本领域技术人员,一经阅读以下描述,这些方面及其它方面将变得显而易见, 可通过以下方法来实现它们:提供平均初始沸点高于约280℃的煤焦油馏分原料,然 后在压力下对所述煤焦油馏分原料进行焦化,以产生针状焦。本发明方法从煤焦油馏 分原料有利地制备针状焦,所述针状焦可用来制备CTE为约0.005pρm/℃至约0.150 ppm/℃的石墨电极。
此外,本发明方法可采用标准的工业延迟焦化工艺设备。
应当理解,前面的总体描述和以下的详细描述均提供了本发明的实施方式,其意 在提供理解如本发明所要求保护的性质和特征的综述或框架
优选实施方式的详述
通过煤焦油的蒸馏得到煤焦油馏分,其用作原料经由本发明方法形成低CTE针 状焦。从用来以煤制备冶金焦炭的焦化过程得到煤焦油。此外,从煤制备煤焦油的过 程是高温分解蒸馏过程,通过该过程将烟煤转化为焦炭和煤焦油。
从煤的分解蒸馏以塔顶产物得到的煤焦油含有难熔的含碳固体,所述固体通过气 相碳化形成或通过夹带煤(coal carryover)而形成。此外,在蒸馏煤焦油的后续蒸馏 过程中,一般在煤焦油中加入性物质以防止腐蚀
在煤焦油的蒸馏中,将煤焦油分离成至少两种产物,重产物是煤焦油沥青残留物, 而塔顶产物是煤焦油馏分。在蒸馏煤焦油的一种实施方式中,利用多个蒸馏塔将煤焦 油分离成具有不同沸程的煤焦油沥青和煤焦油馏分。
所得煤焦油沥青残留物和煤焦油馏分可具有极宽的沸点范围特性,这取决于蒸馏 过程、处理条件以及煤焦油原料。一般分离含有一个环和两个环的芳香族化合物的低 沸点馏分,以得到诸如苯和这样的化学物质,而较高沸点的馏分用途有限。
类似于经由裂化石油原料产生的芳族残留物,通过煤焦油蒸馏得到的煤焦油馏分 含有高比例的多稠合(polycondensed)芳。具体而言,煤焦油馏分的碳重量百分比 为约85%至约95%,氢重量百分比为约3%至约8%。煤焦油馏分中的其它元素组分 包括氮、、硫和钠。与石油原料相比,煤焦油馏分具有更多的芳香性并含有较少的 烷基侧链。煤焦油馏分在化学方面的其它细节描述于题为“从来自煤的馏分制备芳族 沥青(Aromatic Pitch Production from Coal-Derived Distillate)”的美国专利No. 4,448,670中,通过引用将该专利并入本文。
制备用于制备低CTE石墨电极的基于煤焦油馏分的针状焦的第一步是选择具有 相对高的初始沸点的煤焦油馏分。煤焦油馏分的沸点应当高于约280℃。此外,经MCC 测定,所述相对高沸点的煤焦油馏分的焦化值应当至少为1%。
选定相对高沸点的煤焦油馏分后,使煤焦油馏分经历碳化步骤,其中施加压力和 温度。将馏分物质加热到约450℃至约525℃的温度,优选温度约为475℃左右。可通 过在间歇焦化操作中加热该馏分来达到该温度,具体是以约35℃/小时至约65℃/小时 的速率逐步升高煤焦油馏分的温度,其中升温速率优选为约50℃/小时。一旦馏分物质 达到上述温度,在焦化容器中将煤焦油馏分维持在该温度约16小时至约25小时。规 定温度越低,所需时间越长,以保证全部馏分转化为焦炭。或者,可将煤焦油馏分连 续送入维持在450℃至约525℃下的焦化容器中,然后保持在该温度下至少3小时,以 完成焦化过程。
此外,在煤焦油馏分物质的碳化步骤期间,本发明方法包括使用适中的压力,其 范围为约20psig至约100psig。系统压力最好维持在约50psig。在不采用上述压力的 情况下,馏分组分将挥发,从而通常会降低焦炭产率。
碳化步骤导致煤焦油馏分物质转化为称作生焦或原焦的物质。该生焦具有黑样 (black mass-like)外观,因挥发性气体在碳化步骤中逸出而具有可见的孔。采用该 方法,生焦的产率为对碳化步骤提供的初始高沸点煤焦油馏分的约60%至约90%。
碳化之后及煅烧之前,可将生焦破碎,以增加焦炭的表面积,从而减少煅烧所需 的时间。
煅烧步骤在明显高于前面碳化步骤的温度下进行。该步骤包括在约1300℃至约 1500℃,更优选在约1400℃至约1450℃的温度下加热经破碎(crushed)的原焦。此 步骤中,去除了焦炭中的氢以及大部分氮和硫,将焦炭转化为碳结构。此外,在间歇 操作中通过以约300℃/小时至约400℃/小时(理想为约350℃/小时)的速率逐步提高 原焦温度来达到该设定温度。对于工业处理工艺,可将原焦连续送入煅烧炉,其中分 阶段升高温度至达到最终值。
根据本发明方法所得的产物是低CTE针状焦,其具有各向异性,使它成为适于 制备低CTE石墨电极的理想材料。采用该方法,针状焦的产率可高达碳化步骤制得 的原焦的约95%,通常为至少约80%,甚至90%。本发明方法的最终产率为送入所 述处理过程的初始煤焦油馏分的约55%至约85%。
由于压力和温度的操作条件,本发明方法可完全应用现有的延迟焦化处理设备, 而不需要额外的设施或设备。典型的延迟焦化操作通过间歇-连续方式进行,进料物流 在至少两个不同的焦化罐之间切换。最常见的是,一个罐在线填充进料,而另一个罐 正准备用于接纳进料。如延迟焦化领域的技术人员所知的,多个焦化罐之间的规则切 换产生不同处理过程(events)的循环,所述处理过程以有规则的时间间隔进行,结 果形成一套可重复的操作条件。
本发明方法制备的低CTE针状焦可直接用于某些应用,或者可用于制备石墨电 极。首先将针状焦碾磨,以形成颗粒和粉末,然后将其与约15重量%至约35重量% 的煤焦油粘结剂沥青进行热混合。然后在约90℃至约120℃的温度下挤出该混合物, 形成生电极。通过将煤焦油粘结剂沥青与经过碾磨的针状焦的热混合物加热,将沥青 中的颗粒熔化,使热混合物变成流体,因而容易通过挤出、模塑或其它成形技术成形。
然后在约800℃至约900℃的温度下焙烧生电极,以碳化生电极中的煤焦油粘结剂 沥青成分。对生电极的焙烧将包含在粘结剂沥青材料中的挥发性物质驱除,以使所得 电极具有更均匀的内部结构。
然后通过加热至约2700℃至约3300℃,优选在约3000℃的温度,使焙烧电极石 墨化。总石墨化时间可以短至数小时,或长至数天,这取决于石墨电极的尺寸和用途。
通过本发明方法制备的石墨电极具有相对低的CTE。具体而言,通过采用如G. Wagoner等(Carbon Conference 1986Proceedings,第234页,Baden-Baden,1986) 所描述的电容法,由本发明方法得到的电极具有约0.005ppm/℃至约0.150/℃的热膨胀 系数。
为了进一步阐述本发明的原理和操作,提供了以下实施例。然而,这些实施例不 应视为构成任何限制。
实施例1
将初始沸点为312℃的煤焦油馏分用作焦炭前体。使用按照ASTM E 2008的改进 的TGA法测定初始沸点。馏分的MCC值经测定为1.2%。将容纳于盖得不紧的不锈 钢容器中的馏分物质,在保持在50psig的高压釜中进行热处理。以50℃/小时的速率 将该物质加热到475℃,然后在该温度保持20小时。所得原焦的产率很高,为75%。
然后将原焦破碎,并通过以下方法对其进行煅烧:在管式炉中于惰性气氛下以约 350℃/小时的速率加热到1420℃,然后在该温度保持30分钟。煅烧焦炭的产率为92 %,因而基于最初馏分计的总产率为73%。
为了测定CTE值,将该焦炭碾磨成粉,然后在165℃将其与约25重量%的常规 煤焦油粘结剂沥青进行热混合。然后在110℃挤出该混合物,形成直径为19毫米的生 电极。将该生电极在管式炉中焙烧到850℃,然后加热到3000℃进行石墨化。采用G. Wagoner等(Carbon Conference 1986Proceedings,第234页,Baden-Baden,1986) 所描述的电容法测定电极的热膨胀系数(CTE)。在30~110℃的温度范围内测定, CTE值为0.038ppm/℃。
实施例2
为了说明本发明方法的优点,在相同的装置中使用相同的焦化计划表和100psig 的压力,对用来制备针状焦以制备石墨电极的来自石油的倾析油进行焦化。原料倾析 油的MCC为8.7%。焦化后,得到产率为49%的生焦。即便倾析油的初始MCC值比 煤焦油馏分的高得多,其焦炭产率也显著地低。对生焦进行煅烧,总的煅烧焦炭产率 为48%。按照与前面相同方法进行该焦炭的CTE估测,CTE测定为0.286ppm/℃。
实施例3
通过相同的操作对80%的煤焦油馏分与20%的上述倾析油的掺混物进行焦化。原 焦和煅烧焦炭的产率分别为72%和65%。由该焦炭制得的电极的CTE经测定为0.074 ppm/℃。CTE值和碳产率均处于前面两个实施例中用初始组分所得的结果之间。
因此,通过实施本发明,经由转化煤焦油馏分的方法制备低CTE石墨电极,其 具有至今未认识到的特性。本发明方法直接将煤基前体转化为高度各向异性的针状焦, 而无需进行固体分离,这使得其可容易适用于制备石墨电极的工业延迟焦化系统。
申请中引用的所有专利和出版物的公开内容均通过引用并入本文。
以上描述旨在使本领域技术人员能够实施本发明。其无意详细说明所有可能的变 化和改进,这些变化和改进在技术人员阅读本说明书后将变得显而易见。不过,所有 这样的改进和变化都有意包括在由所附权利要求书所限定的本发明范围内。这些权利 要求意在覆盖所说明的要素和步骤,这些要素和步骤可以能够有效地达到本发明预定 目的的任何方式或顺序进行,除非上下文具体说明了相反的情况。
因此,尽管已经描述了新颖的、有用的“用于低CTE石墨电极的针状焦的制备 方法”的本发明的特定实施方式,但本发明人的意图是,不可将这些实施方式理解为 对本发明范围的限制,本发明范围仅按照所附权利要求书的陈述。
QQ群二维码
意见反馈