利用传导性纤维散热胶带及其制备方法

申请号 CN201280020563.6 申请日 2012-04-27 公开(公告)号 CN103563504A 公开(公告)日 2014-02-05
申请人 索略得; 发明人 闵义泓;
摘要 本 发明 涉及一种利用传导性 纤维 的 散热 胶带 及其制备方法。具体涉及一种如下的散热胶带:将 镀 敷了传导性物质的传导性纤维用作传导性基材部,并在这种传导性基材部涂敷散热粘结剂来形成散热粘结部,其中,上述散热粘结剂通过在 丙烯酸 粘结剂或者 硅 酮 粘结剂中包含 石墨 而成。本发明的散热胶带,对外 力 的抵抗性优秀,并且因表面平滑而外观好、损伤少,传导性基材部和散热粘结部不易脱离。
权利要求

1.一种散热胶带,包括传导性基材部和散热粘结部,用于屏蔽从电子器件的部件产生的电磁波,并除去热,
上述散热胶带的特征在于,
上述传导性基材部由传导性纤维形成,
上述散热粘结部通过在上述传导性纤维至少一面涂敷散热粘结剂而成,其中,上述散热粘结剂通过在丙烯酸粘结剂或者粘结剂中包含石墨而成。
2.根据权利要求1所述的散热胶带,其特征在于,上述传导性基材部的传导性纤维是聚酯纤维。
3.根据权利要求1所述的散热胶带,其特征在于,上述石墨的直径是5~15μm。
4.根据权利要求1所述的散热胶带,其特征在于,相对于100重量份的丙烯酸粘结剂或硅酮粘结剂,包含10重量份至15重量份的上述石墨。
5.根据权利要求1所述的散热胶带,其特征在于,上述传导性纤维的至少一面依次敷有镍、、镍。
6.一种散热胶带的制备方法,其特征在于,包括如下步骤:
对在制备散热胶带时用作传导性基材部的传导性纤维进行洗的步骤;以及在上述传导性纤维的至少一面涂敷散热粘结剂来形成散热粘结部,其中,上述散热粘结剂通过在丙烯酸粘结剂或者硅酮粘结剂中包含石墨而成。
7.根据权利要求6所述的散热胶带的制备方法,其特征在于,上述传导性基材部的传导性纤维是聚酯纤维。
8.根据权利要求6所述的散热胶带的制备方法,其特征在于,上述石墨的直径是5~
15μm。
9.根据权利要求6所述的散热胶带的制备方法,其特征在于,相对于100重量份的上述丙烯酸粘结剂或硅酮粘结剂,包含10重量份至15重量份的上述石墨。
10.根据权利要求6所述的散热胶带的制备方法,其特征在于,还包括在上述传导性纤维的至少一面依次镀敷镍、铜、镍的步骤,该步骤在进行上述对在制备散热胶带时用作传导性基材部的传导性纤维进行水洗的步骤之后进行。

说明书全文

利用传导性纤维散热胶带及其制备方法

技术领域

[0001] 本发明涉及一种利用传导性纤维的散热胶带及其制备方法,具有有效的热传递效果及电磁波屏蔽效果的散热胶带及其制备方法。

背景技术

[0002] 一般,驱动电子产品的情况下,电子产品中包括的电子器件内部会产生热。如果不将所产生的上述热尽快迅速地向外部放出,热会对电子器件造成不良影响,从而产生电子器件不能执行本身功能的结果。具体地,因在电子器件产生的热,而在电子器件周边的部件或者机器产生噪音和故障,因此可缩短电子产品的寿命。
[0003] 最近,电子产品趋于高性能化、高功能化及轻薄短小化。因此,电子器件需要大容量化和高集成化。在这种实情下,如何将在这些电子产品的部件产生的热有效地放出是决定产品性能和质量的核心因素。
[0004] 为了解决在如上所述的电子器件产生的热,试图采用各种散热方法。作为这种散热方法有散热扇(Finfan)冷却方式、珀贴元件(Peltier)冷却方式、液体喷射(Water-jet)冷却方式、浸渍(Immersion)冷却方式、热管(Heatpipe)冷却方式等。然而,为了顺应电子产品逐渐薄型化和小型化的目前趋势,针对电子器件要求更加有效的冷却装置和散热装置。
[0005] 为此,最近试图针对笔记本电脑移动电话等超轻量化、超轻薄化趋势的产品,将散热胶带附着在电子器件,除去电子器件的热的方式。
[0006] 但是,现有的散热胶带的传导性基材部由丙烯酸泡沫(Foam)的形态制作,在传导性基材部的薄型特性及散热特性上有局限。并且,在散热胶带加工过程中,有外作用于产品的情况下,发生产品拉长或收缩的现象,并且,那样拉长或收缩的情况下,就算再作业,也会因散热胶带受到损伤而存在不能再使用的缺点。并且,以往将等用作散热粉末,但这种情况导致表面变粗糙而无法体现良好外观,在传导性纤维产生脱离现象,且因粗糙的表面而导致产品经常被损伤。

发明内容

[0007] 技术问题
[0008] 本发明是为了解决上述的问题而提出的,本发明的目的在于提供散热胶带及其制备方法,在传导性基材部适用传导性纤维,实现更薄的厚度,从而有益于产品的薄型化,在制备过程中,即使有外力作用于产品,也能够防止拉长或缩短的现象,并且,即使在再作业后,也能够具有有效的热传递效果及电磁波屏蔽效果,且因散热胶带本身的表面平滑而外观好、损伤少。
[0009] 解决技术问题的手段
[0010] 为了解决上述问题,本发明一特征的散热胶带,包括传导性基材部和散热粘结部,用于屏蔽从电子器件的部件产生的电磁波,并除去热,上述散热胶带的特征在于,上述传导性基材部由传导性纤维形成,上述散热粘结部通过在上述传导性纤维至少一面涂敷散热粘结剂而成,其中,上述散热粘结剂通过在丙烯酸粘结剂或者粘结剂中包含石墨而成。并且,特征在于,上述传导性基材部的传导性纤维是聚酯纤维。并且,特征在于,上述石墨的直径是5~15μm。并且,特征在于,相对于100重量份的丙烯酸粘结剂或硅酮粘结剂,包含10重量份至15重量份的上述石墨。并且,特征在于,上述传导性纤维的至少一面依次敷有镍、、镍。
[0011] 本发明另一特征的散热胶带的制备方法,其特征在于,包括如下步骤:对在制备散热胶带时用作传导性基材部的传导性纤维进行洗的步骤;以及在上述传导性纤维的至少一面涂敷散热粘结剂来形成散热粘结部,其中,上述散热粘结剂通过在丙烯酸粘结剂或者硅酮粘结剂中包含石墨而成。并且,特征在于,上述传导性基材部的传导性纤维是聚酯纤维。并且,特征在于,上述石墨的直径是5~15μm。并且,本发明的特征在于,相对于100重量份的上述丙烯酸粘结剂或硅酮粘结剂,包含10重量份至15重量份的上述石墨。并且,特征在于,还包括在上述传导性纤维的至少一面依次镀敷镍、铜、镍的步骤,该步骤在进行上述对在制备散热胶带时用作传导性基材部的传导性纤维进行水洗的步骤之后进行。
[0012] 发明的效果
[0013] 本发明的利用传导性纤维的散热胶带,在传导性基材部适用传导性纤维,而达到了产品的薄型化。
[0014] 并且,本发明的散热胶带将传导性纤维用作其基材,能够防止当外力作用于产品时发生拉长或缩短的现象。
[0015] 并且,本发明的散热胶带能够达到优秀的电磁波屏蔽性能和散热性能。
[0016] 并且,本发明的散热胶带,因粘结能力优秀且表面平滑而外观好且对散热胶带的损伤少,不易产生传导性纤维和散热粘结层的脱离。附图说明
[0017] 图1是表示实施例1的利用传导性纤维的散热胶带的剖面的图。
[0018] 图2是将测定实施例1的利用传导性纤维的散热胶带的屏蔽功能的实验结果整理出来的曲线图。
[0019] 图3是将测定实施例1和比较例1的拉伸强度的实验结果整理出来的曲线图。

具体实施方式

[0020] 为此,本发明人为了克服上述现有技术的问题,锐意研究努力的结果确认到,在将传导性纤维用作传导性基材部来制备散热胶带的情况下,有益于产品的薄型化,作业时不会因作业者而发生产品拉长或缩短的情况,并且在将石墨用作散热粉末的情况下,所制备出的散热胶带的表面平滑,因而外观好,能够防止胶带的损伤,并防止散热粘结部与传导性纤维脱离,从而完成了本发明。
[0021] 本发明的散热胶带包括传导性基材部和散热粘结部,用于屏蔽从电子器件的部件产生的电磁波,并除去热,上述传导性基材部由传导性纤维形成,上述散热粘结部通过在上述传导性纤维至少一面涂敷散热粘结剂而成,其中,上述散热粘结剂通过在丙烯酸粘结剂或者硅酮粘结剂中包含石墨而成。上述传导性基材部的传导性纤维不受特别限制,但优选是聚酯纤维。并且,作为上述传导性纤维,优选使用纺布为30~40μm而无纺布为100μm厚度的产品。并且优选地,在上述传导性纤维镀敷传导性物质,以赋予传导性,上述传导性物质只要能够赋予传导性,就不受特别限制,但优选地可以由镍或铜形成传导性物质。并且上述传导性物质的镀敷顺序不受特别限制,但优选地可在传导性纤维的至少一面依次镀敷镍、铜、镍。并且,优选地,进行上述镀敷时,在至少一面镀敷20~50μm。
[0022] 优选地,上述散热粘结部通过在作为传导性基材部的上述传导性纤维的至少一面涂敷散热粘结剂而形成。包含在上述散热粘结剂中的粘结剂作为可将散热粉末粘结到上述传导性基材部的物质,优选地可以由丙烯酸粘结剂或者硅酮粘结剂形成。并且优选地,上述散热粘结剂中包含散热粉末,以达到优秀的散热效果,可以包含石墨作为上述散热粉末。如果将上述石墨包含在散热粘结剂,相比使用氧化铝等其他种类的散热粉末的情况,因散热胶带的表面平滑,而外观好,并且因平滑的表面而能够防止散热胶带本身的损伤。并且相比包含别的物质作为散热粉末的情况,能够防止散热粘结部与传导性基材部之间的剥离,从而提供粘结能力更加提高的散热胶带。并且,能够提供即使有外力作用也能够保持优秀的粘结能力的散热胶带。并且,上述石墨的大小不受特别限制,但优选地由直径为5~15μm的石墨形成。上述石墨的大小为5μm以下的情况下,散热效果会下降,而大小为15μm以上的情况下,表面会变得粗糙(参照以下实施例1)。并且,相对于100重量份的丙烯酸粘结剂或硅酮粘结剂,添加10重量份至15重量份的上述石墨。如果上述石墨的添加量为10重量份以下,则热导率下降,则如果上述石墨的添加量为15重量份以上,则粘结力下降(参照以下实验例4)。
[0023] 本发明另一特征的散热胶带的制备方法可包括如下步骤:对在制备上述散热胶带时用作传导性基材部的传导性纤维进行水洗的步骤;以及在上述传导性纤维的至少一面涂敷散热粘结剂来形成散热粘结部,其中,上述散热粘结剂通过在丙烯酸粘结剂或者硅酮粘结剂中包含石墨而成。上述传导性基材部的传导性纤维不受特别限制,但优选是聚酯纤维。并且,作为上述传导性纤维,优选使用纺布为30~40μm而无纺布为100μm厚度的产品。
并且优选地,在上述传导性纤维镀敷传导性物质,以赋予传导性,并优选地还包括镀敷上述传导性物质的步骤,该步骤在进行上述对在制备散热胶带时用作传导性基材部的传导性纤维进行水洗的步骤之后进行。并且,上述传导性物质只要能够赋予传导性,就不受特别限制,但优选地可以由镍或铜形成传导性物质。并且上述传导性物质的镀敷顺序不受特别限制,但优选地可在传导性纤维的至少一面依次镀敷镍、铜、镍。并且,优选地,进行上述镀敷时,在至少一面镀敷20~50μm。
[0024] 并且优选地,在上述传导性纤维的至少一面形成散热粘结部,优选地包括涂敷散热粘结剂来形成上述散热粘结部的步骤。包含在上述散热粘结剂中的粘结剂作为可将散热粉末粘结到上述传导性基材部的传导性纤维的物质,优选地可以由丙烯酸粘结剂或者硅酮粘结剂形成。并且优选地,上述散热粘结剂中包含散热粉末,以达到优秀的散热效果,可以包含石墨作为上述散热粉末。如果将上述石墨包含在散热粘结剂,相比使用氧化铝等其他种类的散热粉末的情况,因散热胶带的表面平滑,而外观好,并且因平滑的表面而能够防止散热胶带本身的损伤。并且相比包含别的物质作为散热粉末的情况,能够防止散热粘结部与传导性基材部之间的剥离,从而提供粘结能力更加提高的散热胶带。并且,能够提供即使有外力作用也能够保持优秀的粘结能力的散热胶带。并且,上述石墨的大小不受特别限制,但优选地由直径为5~15μm的石墨形成。上述石墨的大小为5μm以下的情况下,散热效果会下降,而大小为15μm以上的情况下,表面会变得粗糙(参照以下实施例1)。
[0025] 并且,相对于100重量份的丙烯酸粘结剂或硅酮粘结剂,添加10重量份至15重量份的上述石墨。如果上述石墨的添加量为10重量份以下,则热导率下降,则如果上述石墨的添加量为15重量份以上,则粘结力下降(参照以下实验例4)。
[0026] 以下,参照本发明优选的实施例进行详细说明,以使本发明所属技术领域的普通技术人员能够容易实施。但是本发明可以由各种不同的方式实施,不局限于在这说明的实施例。
[0027] 用于实施发明的方式
[0028] 实施例:
[0029] 实施例1:
[0030] 作为聚酯面料,使用了由作为纺布的平纹丝织物(Taffeta)30~40μm和作为无纺布的非织造物(Non-Woven)100μm形成的产品20g。将这种聚酯面料充分清洗来制备纤维基材。
[0031] 并且,作为催化工序,制备包含钯0.07g/L、4.5g/L、36%盐酸220ml/L的水溶液,并在30℃温度下将所制备的聚酯面料浸渍2分钟后水洗。
[0032] 然后,作为蚀刻工序,在60℃温度下将聚酯面料在15%硫酸中浸渍1分钟后水洗。
[0033] 然后,用硫酸镍22.7g/L、次磷酸钠17g/L、柠檬酸钠34g/L来制备第一无电解镍镀液。
[0034] 然后,用硫酸镍27g/L、次磷酸钠20g/L、柠檬酸钠40g/L来制备第二无电解镍镀液。
[0035] 然后,将聚酯面料在第一无电解镍镀液中于38℃温度下浸渍1分钟后水洗,并在第二无电解镍镀液中浸渍2分钟后水洗。
[0036] 接着,在30℃温度下在由铜3.5g/L、37%甲水4g/L、烧8g/L形成的46℃无电解铜镀液中浸渍10分钟后水洗。接着,用硫酸镍22.7g/L、次磷酸钠17g/L、柠檬酸钠34g/L来制备第一无电解镍镀液。然后,用硫酸镍20.5g/L、次磷酸钠15g/L、柠檬酸钠30g/L来制备第二无电解镍镀液。然后,将在上述无电解铜镀液中水洗过的聚酯面料在36℃温度下在制备好的第一无电解镍镀液中浸渍1分钟后水洗,并在36℃温度下在第二无电解镍镀液中浸渍3分钟后水洗,从而得到包含被均匀镀敷的传导性纤维的传导性基材部。
[0037] 然后,在上述传导性基材部导入的用于形成散热粘结部的散热粘结剂的制备过程具体如下,相对于100重量份的丙烯酸粘结剂,混合粒子大小为5~15μm且密度为2g/cm3的石墨11.1重量份,并通过高速搅拌机将石墨均匀地分散30~60分钟左右。之后,为了脱泡,而利用30~60分钟左右的时间,在约20~30℃左右的常温下,使产品稳定化,来制备出散热粘结剂。之后,利用逗号涂布机,在上述传导性基材部涂敷上述散热粘结剂。然后,在与涂敷了传导性基材部的面相反的一面镀敷离型膜(纸)。
[0038] 这时,由于干燥后溶剂部分的蒸发,镀敷厚度会减少,因此在所需厚度的基础上加厚40%以上镀敷。之后,用40~60℃的温度,在稳定化腔室(Chamber)放置熟化24小时,来使散热粘结部的高分子稳定化。
[0039] 然后,剥离上述离型膜(纸),以能够在粘贴到热相关粘附体。
[0040] 由此,完成作为本发明的利用传导性纤维的散热胶带。
[0041] 在传导性基材部的上表面和下表面分别形成50μm厚度的散热粘结剂,再包括传导性基材部的厚度100μm,最终产品的厚度为200μm。以下图1是表示本实施例1的利用传导性纤维的散热胶带的剖面的图。而且,在以下图1中,附图标记100表示散热粘结部,附图标记200表示传导性基材部,附图标记300表示散热粘结部。
[0042] 实施例2:
[0043] 除了将上述石墨的量调为8.8重量份以外,按照与上述实施例1相同的方法来制备出散热胶带。
[0044] 实施例3:
[0045] 除了将上述石墨的量调为16.6重量份以外,按照与上述实施例1相同的方法来制备出散热胶带。
[0046] 比较例:
[0047] 比较例1:
[0048] 由丙烯酸泡沫(Foam)形态制备传导性基材部的现有的散热胶带。
[0049] 比较例2:
[0050] 除了用镍代替上述石墨来用作散热粉末以外,按照与上述实施例1相同的方法来制备出散热胶带。
[0051] 实验例:
[0052] 实验例1:热导率测定
[0053] 委托韩国亚洲大学共同机器中心,测定上述实施例1的利用传导性纤维的散热胶带的热导率,作为测定方法采用闪光法。并且,作用测定设备采用的是耐驰公司(NETZSCH)的激光导热仪(LFA)。
[0054] 表1
[0055]
[0056] 上述表1是表示本实施例1的本发明的热传递率的表,表示其平均热传递率被测定为0.774W/mK。
[0057] 实验例2:电磁波屏蔽能力测定
[0058] 委托韩国电磁波研究院,按电磁波屏蔽标准[KSC0304]方式,测定实施例1的电磁波屏蔽能力。作为测定设备采用的是网络频谱阻抗分析仪(NetworkSpectrumImpedanceAnavlzer,模型名称:4396B,制造商:安捷伦公司(Agilent),测定范围:0.1kHz~1.8GHz)和屏蔽效能测试治具(ShieldingEffectivenesstestFixture,模型名称:EM-2017A,制造商:电光度量公司(Electo-MetricsCo.Ltd),测定范围:30~1500MHz)。
[0059] 图2作为将本实施例2的本发明的电磁波屏蔽功能的实验结果整理出来的曲线图,表示本发明实施例1的电磁波屏蔽功能将近达到70dB。
[0060] 实验例3:拉伸强度测定
[0061] 分别进行了测定上述实施例1的散热胶带和比较例1的散热胶带的拉伸强度的实验。图3是表示上述测定实施例1和比较例1的拉伸强度的实验结果的曲线图。
[0062] 如图3的(a)部分,本发明的实施例1在2.0kgf测定出断裂现象,但如图3的(b)部分,比较例1在1.2kgf测定出断裂现象。由此,可以确认本发明的实施例1与比较例1相比对外力的抵抗性优秀。这种实验结果表示,本发明的利用传导性纤维的散热胶带在作业时,即使有外力作用于散热胶带,拉长或缩短的现象相比比较例1少。
[0063] 实验例4:根据石墨含量而变化的热导率及粘结力的测定
[0064] 针对上述实施例1、实施例2及实施例3的情况下,进行了测定根据石墨含量而变化的热导率及粘结力的实验。实验方法与实验例1的方法相同。而且,结果表示在以下表2。
[0065] 表2
[0066]分类 热导率(W/mK) 粘结力(gf/25mm)
实施例1 0.774 1100~1200
实施例2 0.62 1000~1100
实施例3 0.896 700~800
[0067] 如在上述表2确认,实施例2的情况下,相对于相比实施例1的情况,热导率下降,实施例3的情况与实施例1的情况相比,粘结力下降。因此,上述实施例1的情况是同时达到优秀的热导率及粘结力的情况。
[0068] 实验例5:根据散热粉末差异而不同的散热带的热导率的测定
[0069] 针对上述实施例1及比较例2,进行了比较根据散热粉末差异而存在差异的热导率的实验。实验方法与实验例1方法相同。而且,结果表示在以下表3。
[0070] 图3
[0071]分类 热导率(W/mK)
实施例1 0.774
比较例2 0.491
[0072] 如在上述表3确认,将石墨用作散热粉末的实施例1相比比较例2使用如镍的其他金属粉末的情况,能够达到优秀的热导率。
[0073] 以上,说明了本发明优选的实施例,但本发明不局限于此,在本发明技术思想范围内,能够变形成各种方式来实施,这也当然属于本发明要求保护的技术范围内。
QQ群二维码
意见反馈