各向异性导电粘接剂、发光装置和各向异性导电粘接剂的制造方法

申请号 CN201480009458.1 申请日 2014-02-14 公开(公告)号 CN105102567B 公开(公告)日 2017-06-23
申请人 迪睿合株式会社; 发明人 波木秀次; 蟹泽士行; 马越英明; 青木正治; 石神明;
摘要 本 发明 提供放射光强度高的发光装置。将在360nm以上且500nm以下的范围内具有发射光的峰的蓝色LED芯片20通过 各向异性 导电粘接剂12粘接于 电极 基板 11。在各向异性导电粘接剂12中所含的导电粒子1的表面,形成 银 合金 的光反射层,对于蓝色光的反射率高。光反射层为,将Ag、Bi、Nd的总量记为100重量%时,将以0.1重量%以上且3.0重量%以下的值含有Bi、以0.1重量%以上且2.0重量%以下的值含有Nd的溅射靶溅射来形成,对于迁移的耐性高。
权利要求

1.各向异性导电粘接剂,
其是含有导电粒子和粘接粘合剂
并且将发射光的最大强度的峰位于波长360nm以上且500nm以下的范围内的LED元件粘接于电极基板,使上述LED元件的电极和上述电极基板的电极电连接的各向异性导电粘接剂,其中,
上述导电粒子具有树脂粒子;在上述树脂粒子表面通过电法形成的基底层;和在上述基底层表面通过溅射法形成、含有Ag、Bi、Nd的导电性的光反射层,
上述光反射层是,将Ag、Bi、Nd的总重量记为100重量%,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的溅射靶进行溅射来形成的。
2.权利要求1所述的各向异性导电粘接剂,其中,上述各向异性导电粘接剂的固化物的反射率在360nm以上且740nm以下的波长区域中,为30%以上。
3.权利要求1所述的各向异性导电粘接剂,其中,上述基底层是镍薄膜
4.权利要求1所述的各向异性导电粘接剂,其中,相对于加热固化绝缘性的上述粘接粘合剂100重量份,以1重量份以上且100重量份以下的范围含有上述导电粒子。
5.发光装置,其是将发射光的最大强度的峰位于波长360nm以上且500nm以下的范围内的LED元件和基板用粘接剂中含有导电粒子的各向异性导电粘接剂进行粘接而成的发光装置,
上述导电粒子具有树脂粒子;在上述树脂粒子表面通过电镀法形成的基底层;和在上述基底层表面通过溅射法形成、含有Ag、Bi、Nd的导电性的光反射层,
上述光反射层是,将Ag、Bi、Nd的总重量记为100重量%,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的溅射靶进行溅射来形成的。
6.各向异性导电粘接剂的制造方法,其是在粘接剂中分散导电性粒子来制造各向异性导电粘接剂的各向异性导电粘接剂的制造方法,
上述导电性粒子如下形成,
在树脂粒子的表面通过电镀法形成基底层,
将Ag、Bi、Nd的总重量记为100重量%,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的溅射靶进行溅射,在上述基底层的表面形成光反射层,来形成上述导电粒子。

说明书全文

各向异性导电粘接剂、发光装置和各向异性导电粘接剂的制

造方法

技术领域

[0001] 本发明涉及用于将LED元件在电极基板上进行各向异性导电连接的各向异性导电粘接剂以及用该各向异性导电粘接剂将LED元件安装于电极基板而成的LED发光装置。

背景技术

[0002] 近年来,使用LED而得的光功能元件广受关注。
[0003] 作为这种光功能元件,为了小型化等,进行了将LED芯片在布线基板上直接安装的倒装芯片(フリップチップ)安装。
[0004] 作为在布线基板上将LED芯片进行倒装芯片安装的方法,如图7(a)~(c)所示,以往已知各种方法。
[0005] 图7(a)是利用打线接合(ワイヤボンディング)的安装方法。
[0006] 图7(a)中所示的发光装置101中,在使LED芯片103的第1和第2电极104、105为上侧(布线基板102的相反侧)的状态下,通过裸片连接(ダイボンド)粘接剂110、111将LED芯片103固定在布线基板102上。
[0007] 并且,通过接合线106、108将布线基板102上的第1和第2图案电极107、109与LED芯片103的第1和第2电极104、105分别电连接。
[0008] 图7(b)为利用导电性糊料的安装方法。
[0009] 图7(b)所示的发光装置121中,在使LED芯片103的第1和第2电极104、105朝向布线基板102侧的状态下,将这些第1和第2电极104、105与布线基板102的第1和第2图案电极124、125通过例如糊料等导电性糊料122、123来电连接,同时通过密封树脂126、127将LED芯片103粘接在布线基板102上。
[0010] 图7(c)是利用各向异性导电粘接剂的安装方法。
[0011] 图7(c)所示的发光装置131中,在使LED芯片103的第1和第2电极104、105朝向布线基板102侧的状态下,将这些第1和第2电极104、105与在布线基板102的第1和第2图案电极124、125上设置的凸点132、133通过各向异性导电粘接剂134中的导电性粒子135进行电连接,同时通过各向异性导电粘接剂134中的绝缘性粘接剂树脂136,将LED芯片103粘接在布线基板102上。
[0012] 但是,上述以往的技术中,存在各种问题。
[0013] 首先,利用打线接合的安装方法中,由金组成的接合线106、108吸收例如波长400~500nm的光,因此发光效率降低。
[0014] 另外,在这种方法的情况下,由于使用烘箱使裸片连接粘接剂110、111固化,固化时间长,难以提高生产效率。
[0015] 另一方面,在使用导电性糊料122、123的安装方法中,仅仅是导电性糊料122、123时,粘接弱,需要使用密封树脂126、127进行补强,但由于该密封树脂126、127,光向导电性糊料122、123内扩散,或者在导电性糊料122、123内光被吸收,由此发光效率降低。
[0016] 另外,这种方法的情况下,由于使用烘箱使密封树脂126、127固化,因此固化时间长,难以提高生产效率。
[0017] 另一方面,使用各向异性导电粘接剂134的安装方法中,由于各向异性导电粘接剂134中的导电性粒子135的颜色是茶色,因此绝缘性粘接剂树脂136的颜色也变成茶色,在各向异性导电粘接剂134内光被吸收,由此发光效率降低。
[0018] 为了解决这种问题,还提出了提供一种各向异性导电粘接剂,其通过使用光反射率高、电阻低的(Ag)来形成导电层,抑制光的吸收,而不使发光效率降低。
[0019] 但是,银是化学上不稳定的材料,因此存在易化、硫化的问题,另外,在热压接后,通电而导致发生迁移,由此存在以下问题:布线部分发生断线、粘接剂的劣化导致粘接强度降低。
[0020] 为了解决这种问题,例如如专利文献4所述,还提出了反射率、耐腐蚀性、耐迁移性优异的Ag系薄膜合金
[0021] 若将该Ag系薄膜合金被覆于导电性粒子的表面,则可以提高耐腐蚀性、耐迁移性,但该Ag系薄膜合金在最表层使用,若基底层使用例如镍,则由于镍的反射率比Ag低,因此存在导电性粒子整体的反射率降低的问题。
[0022] 另外,若在导电性粒子135的表面暴露出Au、Ni,则由于光吸收,发光效率降低。
[0023] 专利文献
[0024] 专利文献1特开2005-120375号公报
[0025] 专利文献2特开平5-152464号公报
[0026] 专利文献3特开2003-26763号公报
[0027] 专利文献4特开2008-266671号公报。

发明内容

[0028] 本发明的课题在于,提供360nm以上且500nm以下的波长的放射光的强度高的发光装置。
[0029] 为了解决上述课题,本发明提供一种各向异性导电粘接剂,其是含有导电粒子、粘接粘合剂,将发射光的最大强度的峰位于波长360nm以上且500nm以下的范围内的LED元件粘接于电极基板,使上述LED元件的电极和上述电极基板的电极电连接的各向异性导电粘接剂,其中,上述导电粒子具有树脂粒子;在上述树脂粒子表面通过电法形成的基底层;和在上述基底层表面通过溅射法形成、含有Ag、Bi、Nd的导电性的光反射层,上述光反射层是,将Ag、Bi、Nd的总重量记为100重量%,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的溅射靶进行溅射来形成的。
[0030] 另外,本发明的各向异性导电粘接剂中,上述各向异性导电粘接剂的固化物的反射率在360nm以上且740nm以下的波长区域为30%以上。
[0031] 另外,本发明的各向异性导电粘接剂中,上述基底层为镍薄膜。
[0032] 另外,本发明的各向异性导电粘接剂中,相对于加热固化绝缘性的上述粘接粘合剂100重量份,以1重量份以上且100重量份以下的范围含有上述导电粒子。
[0033] 另外,本发明提供一种发光装置,其是将发射光的最大强度的峰位于波长360nm以上且500nm以下的范围内的LED元件和基板用粘接剂中含有导电粒子的各向异性导电粘接剂进行粘接而成的发光装置,上述导电粒子具有树脂粒子;在上述树脂粒子表面通过电镀法形成的基底层;和在上述基底层表面通过溅射法形成、含有Ag、Bi、Nd的导电性的光反射层,上述光反射层是,将Ag、Bi、Nd的总重量记为100重量%,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的溅射靶进行溅射来形成的。
[0034] 另外,本发明提供一种各向异性导电粘接剂的制造方法,其是在粘接剂中分散导电性粒子来制造各向异性导电粘接剂的各向异性导电粘接剂的制造方法,上述各向异性导电粘接剂为,在树脂粒子的表面通过电镀法形成基底层,将Ag、Bi、Nd的总重量记为100重量%,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的溅射靶进行溅射,在上述基底层的表面形成光反射层,来形成上述导电粒子。
[0035] 发明效果
[0036] 通过本发明,各向异性导电粘接剂对于360nm以上且500nm以下的波长的光的反射率高,导电粒子的耐迁移性也高,因此,可以得到360nm以上且500nm以下的波长的发射光的强度高、可靠性也高的发光装置。附图说明
[0037] 图1(a):用于说明本发明的各向异性导电粘接剂的图;(b):在各向异性导电粘接剂中分散的导电粒子的截面图
[0038] 图2(a):表示在电极基板上涂布各向异性导电粘接剂的状态的截面图;(b):用于说明LED发光装置的截面图
[0039] 图3用于说明本发明中使用的蓝色LED元件的发射光的峰的曲线图
[0040] 图4表示使用蓝色LED元件和荧光体的本发明的发光装置的放射光的波长分布的曲线图
[0041] 图5用于说明红、绿、蓝的LED元件的发射光的峰的曲线图
[0042] 图6表示本发明中使用的导电粒子和比较例的形成金薄膜的导电粒子的反射率与波长的关系的曲线图
[0043] 图7(a):用于说明利用打线接合的安装方法的截面图;(b):用于说明使用导电性糊料的工艺的截面图;(c):用于说明使用各向异性导电粘接剂的工艺的截面图。
[0044] 符号说明
[0045] 1……导电粒子
[0046] 2……树脂粒子
[0047] 3……基底层
[0048] 4……光反射层
[0049] 7……发光装置
[0050] 9……半导体芯片
[0051] 11……电极基板
[0052] 10、12、21……各向异性导电粘接剂
[0053] 20……LED元件。

具体实施方式

[0054] 首先,对于本发明的发光装置进行说明。
[0055] 参照图2(b),本发明的发光装置7具有在360nm以上且500nm以下的范围的波长区域具有发射光强度的最大值的峰的LED元件20和电极基板11。
[0056] LED元件20具有由被切断的半导体基板组成的半导体芯片9,通过导入到半导体芯片9的内部的杂质(掺杂剂)形成PN结,在半导体芯片9的一个表面上,相分离地设置2个电极13。
[0057] 在设置有电极13的半导体芯片9的表面上,以露出电极13的至少一部分的方式形成绝缘性的保护膜17。
[0058] 电极基板11具有玻璃环氧树脂制的基板主体5,在基板主体5上相分离地设置由金属膜构成的2个连接端子15。
[0059] 在基板主体5的表面上,以露出连接端子15的至少一部分的方式形成绝缘性保护膜22,在连接端子15的露出部分设置上部平坦的凸点6。
[0060] 应予说明,凸点6在电极基板11的连接端子15的表面上、或者在LED元件20的电极13的表面上的至少任一者上形成即可,在LED元件20的电极13上形成的情况下,也期望凸点
6的上部是平坦的。在此,在1个连接端子15的表面上设置1个上部平坦的凸点6。
[0061] 在LED元件20上设置的2个电极13间的距离与在电极基板11上设置的2个凸点6间的距离相同,LED元件20与电极基板11为,在LED元件20和电极基板11之间配置有未固化的各向异性导电粘接剂的状态下,将电极13和凸点6以一对一相对接触的方式挤压,使未固化的各向异性导电粘接剂固化,将LED元件20固定于电极基板11。
[0062] 图1(a)的符号21表示固化前的各向异性导电粘接剂。
[0063] 该各向异性导电粘接剂21具有在未固化的状态下具有粘接性的粘合剂树脂8、和在粘合剂树脂8中分散的导电粒子1。
[0064] 粘合剂树脂8的种类没有特别限定,从透明性、粘接性、耐热性、机械强度、电绝缘性优异的观点考虑,可以适合使用包含环氧系树脂和其固化剂的组合物。
[0065] 环氧系树脂具体而言,是脂环式环氧化合物、杂环式环氧化合物、氢化环氧化合物等。作为脂环式环氧化合物,优选列举在分子内具有2个以上环氧基团的化合物。它们为液状或者为固体状均可以。具体而言,可以列举缩甘油基六氢双酚A、3,4-环氧基环己烯基甲基-3',4'-环氧基环己烯甲酸酯等。其中,从可以确保固化物中适合LED元件的安装等的光透过性、快速固化性也优异的方面出发,可以优选使用缩水甘油基六氢双酚A、3,4-环氧基环己烯基甲基-3',4'-环氧基环己烯甲酸酯。
[0066] 作为杂环系环氧化合物,可以列举具有三嗪环的环氧化合物,特别优选可以列举1,3,5-三(2,3-环氧丙基)-1,3,5-三嗪-2,4,6-(1Η,3Η,5Η)-三
[0067] 作为氢化环氧化合物,可以使用上述脂环式环氧化合物、杂环式环氧化合物的氢化化合物、其它的公知的氢化环氧树脂。
[0068] 另外,除这些环氧化合物之外,只要不损害本发明的效果,可以联用其他的环氧树脂。例如,可以列举出双酚A、双酚F、双酚S、四甲基双酚A、二芳基双酚A、对苯二酚、邻苯二酚、间苯二酚、甲酚、四溴双酚A、三羟基联苯、二苯甲酮、双间苯二酚、双酚六氟丙酮、四甲基双酚A、四甲基双酚F、三(羟基苯基)甲烷、联二甲苯酚、苯酚酚清漆、甲酚酚醛清漆等的多元酚与表氯醇反应而得到的缩水甘油基醚1甘油;新戊二醇、乙二醇、丙二醇、丁二醇(チレングリコール)、己二醇、聚乙二醇、聚丙二醇等的脂肪族多元醇与表氯醇反应而得到的聚缩水甘油基醚1对羟基苯甲酸;β-羟基甲酸这种羟基羧酸与表氯醇反应而得到的缩水甘油基醚酯1邻苯二甲酸;由甲基邻苯二甲酸、间苯二甲酸、对苯二甲酸、四氢苯二甲酸、桥亚甲基四氢苯二甲酸、桥亚甲基六氢苯二甲酸、偏苯三酸、聚合脂肪酸这种多元羧酸得到的聚缩水甘油基酯1基苯酚;由氨基烷基苯酚得到的缩水甘油基氨基缩水甘油基醚1氨基苯甲酸得到的缩水甘油基氨基缩水甘油基酯1苯胺;由甲苯胺、三溴苯胺、二甲苯二胺、二氨基环己烷、双氨基甲基环己烷、4,4'-二氨基二苯基甲烷、4,4'-二氨基二苯基砜等得到的缩水甘油基胺1环氧化聚烯等公知的环氧树脂类。
[0069] 另外,作为固化剂,可以举出酸酐、咪唑化合物、双氰等。其中,可以使用不易使固化剂变色的酸酐、特别是脂环式酸酐系固化剂。具体地说,甲基六氢苯二甲酸酐等是合适的。
[0070] 应予说明,在使用脂环式环氧化合物和脂环式酸酐系固化剂的情况下,各自的用量为,脂环式酸酐形固化剂若过少,则未固化的环氧化合物增多,若过多,则由于剩余的固化剂的影响,存在促进被粘物材料的腐蚀的倾向,因此,相对于脂环式环氧化合物100质量份,可以使用80-120质量份,更适合以95-105质量份的比例使用。
[0071] 粘合剂树脂8是具有热固化性和绝缘性的树脂,使粘合剂树脂8与粘接对象物接触,在各向异性导电粘接剂21与粘接对象物粘接的状态下加热,则各向异性导电粘接剂21以粘接于粘接对象物的状态发生固化。
[0072] 图2(b)的符号12表示固化的各向异性导电粘接剂。
[0073] 即使是固化状态的各向异性导电粘接剂12,导电粒子1维持分散的状态,多个导电粒子1位于电极13和凸点6之间。
[0074] 未固化的各向异性导电粘接剂21配置于基板主体5上,进而,在该未固化的各向异性导电粘接剂21上配置LED元件20,将LED元件20挤压于未固化的各向异性导电粘接剂21,则未固化的各向异性导电粘接剂21的基板主体5侧的底面与基板主体5的保护膜22和凸点6接触,LED元件20侧的表面与LED元件20的保护膜17和电极13接触。
[0075] 并且,对于未固化的各向异性导电粘接剂21,通过LED元件20挤压于电极基板11,导电粒子1与电极13和凸点6两者接触,将电极13和凸点6可靠地电连接。应予说明,固化的粘合剂树脂19具有绝缘性,位于电极13和凸点6之间的外侧的导电粒子1与其它的导电粒子1是非接触的,使得电极13之间和凸点6之间不会发生短路
[0076] LED元件20在内部形成PN结。
[0077] 将连接端子15与电源的输出端子连接,以使PN结为正向偏压的方式在两个连接端子15之间施加电压时,通过连接端子15、凸点6、导电粒子1、电极13,电流流向PN结部,在PN结部分产生发光。
[0078] 在LED元件20的表面中,不与电极基板11相对的一面,朝向外侧的表面是发射光的放射面,设置透明包封即可,在用透明包封保护的状态下,发射光向着大气中放射。
[0079] 半导体芯片9、半导体芯片9上的保护膜17具有透过发射光的透明性,在PN结产生的发射光中,向着放射面侧行进的发射光通过半导体芯片9、保护膜17和透明封装等,向着发光装置7的外部放射。
[0080] 固化的粘合剂树脂19相对于发射光也是透明的,向着与电极基板11相对的一面侧行进,入射到固化的各向异性导电粘接剂12中的发射光,一部分照射到导电粒子1上。
[0081] 如图1(b)所示,各向异性导电粘接剂12、21中所含的导电粒子1具有树脂粒子2;在树脂粒子2的表面上通过电镀法形成的由金属薄膜组成的基底层3、在基底层3的表面上通过溅射法形成的光反射层4。
[0082] 对于树脂粒子2,没有特别限定,从可以得到高传导可靠性的观点考虑,可以使用例如包含交联聚苯乙烯系、苯胍胺系、尼龙系、PMMA(聚甲基丙烯酸酯)系等的树脂粒子。
[0083] 树脂粒子2的大小没有特别限定,从可以得到高传导可靠性的观点考虑,可以使用以平均粒径计为3μm~5μm的粒子。
[0084] 在此,树脂粒子2是丙烯酸树脂成型为球状而构成的,基底层3是在树脂粒子2的表面上通过电镀法形成的镍薄膜。
[0085] 光反射层4为,在后述的含量范围内,将含有Ag、Bi、Nd的溅射靶通过溅射气体(稀有气体)进行溅射,形成薄膜而构成的。
[0086] 溅射法是在物体上形成薄膜的方法之一,是在真空中进行的方法。溅射法中,在使容器内为真空的状态下,在成膜对象物和溅射靶之间施加电压,产生辉光放电。由此产生的电子、离子以高速冲击靶,由此靶材料的粒子被弹飞,该粒子(溅射粒子)在成膜对象物的表面附着,形成薄膜。
[0087] 在此,作为本发明这种对微小的粒子通过溅射形成薄膜的方法,可以是将分散至一次粒子的微粒设置在装置内的容器中,使容器旋转,使微粒流动。即,通过对于这种流动状态的微粒进行溅射,各微粒的整个面成为成膜面,靶材料的溅射粒子与成膜面相冲击,可以在各微粒的整个表面形成薄膜。
[0088] 另外,作为适用于本发明的溅射方法,可以采用包括二极溅射法、磁控溅射法、高频溅射法、反应性溅射法的公知的溅射法。
[0089] 在溅射时,溅射粒子所到达的成膜面上露出基底层3,树脂粒子2的表面不露出。溅射粒子到达基底层3的表面,因此树脂粒子2的表面不会受到由溅射粒子导致的损伤,导电粒子1可以形成表面平坦的光反射层4。
[0090] 因此,入射到导电粒子1的发射光被在基底层3的表面上形成的光反射层4反射,向着LED元件20的位置方向反光。
[0091] 形成光反射层4的溅射靶是含有Ag、Bi、Nd的合金,靶中的Ag、Bi、Nd的含量为,将Ag、Bi、Nd的总量记为100重量%时,Bi的含量为0.1重量%以上且3.0重量%以下的值,Nd的含量为0.1重量%以上且2.0重量%以下的值。Ag的含量是从100重量%的值中减去Bi的含量和Nd的含量的值。
[0092] 以该含量含有Ag、Bi、Nd的银合金薄膜对于波长360nm以上且740nm以下的范围的光比金薄膜、Ni薄膜等不含有银的薄膜的光反射率要高。
[0093] 另一方面,如图3所示,本发明的发光装置7所具有的LED元件20是在波长360nm以上且500nm以下的范围内存在强度最大的峰的LED元件,LED元件20的发射光通过导电粒子1以高反射率反射,向着LED元件20侧反光,比通过金薄膜、Ni薄膜等进行反射的情况要强的反射光通过LED元件20,由半导体芯片9的放射面向发光装置7的外部放射。
[0094] 本发明的情况中,导电性粒子1相对于加热固化绝缘性的粘合剂树脂8的含量没有特别限定,但考虑到光反射率、耐迁移性、确保绝缘性,优选为相对于100重量份粘合剂树脂8,含有1重量份以上且100重量份以下的导电性粒子1。
[0095] 在粘合剂树脂8的内部,除导电粒子1之外,分散有光反射性绝缘填充物(未图示)。本实施方式的光反射性绝缘填充物例如为白色SiO2,不入射到导电粒子1、而入射到光反射性绝缘填充物的发射光以比导电粒子1要低的反射率被反射,反射光向着LED元件20侧反光。
[0096] 另外,基板主体5的表面染色为白色,入射到基板主体5表面的发射光以比导电粒子1要低的反射率被反射,向着LED元件20侧反光。
[0097] 在光反射性绝缘填充物、基板主体5的表面反射的反射光通过LED元件20,由放射面向外部放射。
[0098] 应予说明,LED元件20的发射光不透过电极13、凸点6和连接端子15。
[0099] 若发光装置7的发光时间变长,则电流在导电粒子1中流动的时间变长,在Ag薄膜的情况下,发生由于(电)迁移导致的断线。以上述范围的重量%值含有Bi和Nd的银合金薄膜与纯银的薄膜相比,难以发生迁移。因此,在本发明的发光装置7的情况下,不发生由于迁移导致的断线。
[0100] 金属薄膜的反射率的值根据入射光的波长而发生变化。
[0101] 图6是表示入射光的反射率相对于波长的关系的曲线图,该曲线图的曲线f是,上述导电粒子1的光反射层4是将以Ag、Bi、Nd的总重量记为100重量%时,将含有Bi含量为0.7重量%、Nd含量为0.3重量%(Ag为99重量%)的溅射靶溅射形成的时,各向异性导电粘接剂的反射率。
[0102] 该曲线图的曲线g表示分散有在表面露出由Au层组成的光反射层的导电粒子的各向异性导电粘接剂的反射率。
[0103] 曲线f、g的各向异性导电粘接剂除了导电粒子表面的光反射层的构成之外,其他构成相同。
[0104] 由图6可知,本发明的各向异性导电粘接剂与Au层的导电粒子相比,即使在360nm以上且500nm以下的范围,反射率为30%以上,是高值。
[0105] 以下,将在360nm以上且500nm以下的范围具有峰的LED元件称为蓝色LED元件,上述实施例的发光装置7不具有除图3所示的发光强度分布的蓝色LED元件之外的LED元件,在通过本发明的各向异性导电粘接剂粘贴于基板的蓝色LED元件的基础上,一起配置在360nm以上且500nm以下的范围之外具有峰的LED元件,一起发出蓝色和除蓝色之外的发射光的发光装置也包括在本发明之内。
[0106] 图5是以白色亮灯的发光装置的发射光的相对强度分布的一个例子,在发光装置的内部配置发射光为蓝色、绿色、红色的LED元件的情况。在该发光装置中,只要蓝色LED元件是通过本发明的各向异性导电粘接剂粘贴于基板,就包括在本发明之内。
[0107] 另外,对于配置了通过本发明的各向异性导电粘接剂粘贴于基板的蓝色LED元件和被蓝色LED元件的放射光照射的荧光体的发光装置,放射光成为图4所示的强度分布,亮灯为白色。对于该发光装置,只要蓝色LED元件是通过本发明的各向异性导电粘接剂粘贴于基板,就包括在本发明之内。
[0108] 应予说明,本发明中使用的导电粒子的基底层可以是除镍以外的金属薄膜,只要是通过电镀法形成即可。
[0109] 对于本发明的各向异性导电粘接剂,优选为糊料状的各向异性导电粘接剂。
[0110] <导电粒子、各向异性导电粘接剂和发光装置的制造工序>
[0111] 对于本发明的各向异性导电粘接剂的制造工序进行说明。
[0112] 首先,将平均粒径5μm的树脂粒子(在此是丙烯酸树脂的粒子)浸渍在镍镀敷液内,通过电镀法,在树脂粒子的表面形成0.03μm以上且3.0μm以下的膜厚的镍薄膜作为基底层。用基底层将树脂粒子的表面覆盖,树脂粒子的表面不露出。
[0113] 预先在溅射装置(共立社制粉末溅射装置)的内部配置溅射靶,该溅射靶为将Ag、Bi、Nd的总重量记作100重量%时,以Bi为0.1重量%以上且3.0重量%以下、Nd为0.1重量%以上且2.0重量%以下的范围含有Ag、Bi和Nd,将在表面形成了基底层的树脂粒子配置于在溅射装置的内部设置的旋转容器内。
[0114] 使溅射装置的内部为真空气氛,导入溅射气体,对溅射靶施加电压进行溅射,使溅射粒子到达基底层的表面,在基底层的表面形成组成与溅射靶相同的由银合金组成的光反射层。
[0115] 此时,使旋转容器旋转,使形成了基底层的树脂粒子在旋转容器内部旋转,同时使溅射粒子无遗漏地到达基底层的表面,在基底层的表面形成均一膜厚的光反射层,得到基底层没有露出的导电粒子。
[0116] 由于树脂粒子表面没有露出,因此不会发生由溅射粒子的冲击导致的树脂粒子的表面粗糙。
[0117] 光反射层形成为规定的厚度后,停止溅射,将导电粒子从溅射装置中取出。图1(b)是导电粒子1的截面图。
[0118] 接着,对于由热固性树脂组成的粘合剂树脂100重量份,以1重量份以上且100重量份以下的范围混合由溅射装置取出的导电粒子并使其分散,制作各向异性导电粘接剂。
[0119] 如图2(a)所示,将未固化状态下具有粘接性的各向异性导电粘接剂10配置于电极基板11的凸点6上,接着,如该图(b)所示,将LED元件20载置于各向异性导电粘接剂10上,一边挤压一边加热使其固化。
[0120] 将LED元件20的电极13朝着电极基板11的表面,在导电粒子1位于电极13和凸点6之间的状态下挤压,同时进行加热,使各向异性导电粘接剂10固化。
[0121] 该图(b)的符号12表示固化了的各向异性导电粘接剂。
[0122] 导电粒子1被电极13和凸点6夹持并与两者接触,通过导电粒子1将电极13和凸点6电连接,将LED元件20固定于电极基板11,得到上述发光装置7。
[0123] 电流在LED元件20中流过产生发光,位于LED元件20的半导体芯片9和电极基板11相对部分的导电粒子1将发射光反射,向发光装置7的外部放射。
[0124] 应予说明,发光装置7的制造中,可以以LED元件20的整体被包覆的方式用透明模制树脂密封。
[0125] 实施例
[0126] 对测定中使用的样品进行说明。
[0127] 首先,通过电镀法在丙烯酸树脂粒子上形成镍薄膜作为基底层。接着,将Ag、Bi、Nd的总重量记作100重量%时,Bi为0.1重量%以上且3.0重量%以下,Nd为0.1重量%以上且2.0重量%以下的范围,将以该范围含有Ag、Bi和Nd的3种溅射靶溅射,在基底层的表面各自形成光反射层,制作3种导电粒子。
[0128] 将制作的导电粒子各自分散于粘合剂树脂,得到实施例1-3的各向异性导电粘接剂。镍薄膜的膜厚为0.10μm,光反射层的膜厚为0.2μm。
[0129] 形成分散于实施例1~3以及后述的比较例3~5的各向异性导电粘接剂中的导电粒子的、各光反射层的溅射靶的组成示于表1的“最表面金属”一栏中的“组成比”栏中。
[0130]
[0131] 实施例1为Ag:Bi:Nd=99:0.7:0.3,实施例2为Ag:Bi:Nd=99.8:0.1:0.1,实施例3为Ag:Bi:Nd=95:3:2。
[0132] 比较例3、4、5中,使用含量与本发明不同的溅射靶,通过与实施例1-3相同的工序,制作除光反射层的组成不同之外的其他构成相同的导电粒子,使其分散于粘合剂树脂中,得到比较例3-5的各向异性导电粘接剂。
[0133] 比较例3~5的溅射靶的组成比各自为纯Ag、Ag:Bi:Nd=99.9:0.05:0.05、Ag:Bi:Nd=94:3:3。
[0134] 比较例1中,通过电镀法在作为树脂粒子的丙烯酸树脂露出的表面形成0.2μm的膜厚的由金(Au)薄膜组成的光反射层,制成导电粒子,在比较例2中,通过电镀法在作为树脂粒子的丙烯酸树脂露出的表面形成膜厚0.2μm的由镍薄膜组成的光反射层,制成导电粒子。制成的导电粒子各自分散于粘合剂树脂中,制成各向异性导电粘接剂。
[0135] 实施例1-3和比较例1-5中,相对于粘合剂树脂100重量份(除溶剂之外)分散20重量份的导电粒子。另外,各各向异性导电粘接剂的粘合剂树脂是相同种类的树脂,除导电粒子之外的构成相同。
[0136] 粘合剂树脂中,将环氧固化系粘合剂(ダイセル社制CEL2021P-MeHHPA)用于主成分。
[0137] 应予说明,形成金薄膜的露出丙烯酸树脂表面的树脂粒子、形成最表面的镍薄膜作为光反射层的露出丙烯酸树脂的树脂粒子、以及形成银合金(包括纯银)薄膜作为反射层的表面是镍薄膜的粒子的直径各自为5μm。
[0138] <树脂粒子的颜色>
[0139] 观察实施例1-3、比较例1~5的各各向异性导电粘接剂中所含的树脂粒子的颜色。观察结果示于表1的“粒子外观”一栏。可知比较例1、2的导电粒子发生着色,发光元件的反射光被着色而反光。
[0140] <反射率测定>
[0141] 将实施例1~3、比较例1~5的各各向异性导电粘接剂以厚度100μm涂布于白色板上,装入加热固化装置内,使其加热固化,然后用分光测色计(コニカミノルタ社制CM-3600d)测定反射率。固化在200℃、加热1分钟的条件下进行。
[0142] 测定结果如表1的“反射率”一栏所示。
[0143] <光学特性>
[0144] 对于设置了带有Au凸点的LED安装用Au电极的电极基板(玻璃环氧树脂基板)的表面,涂布实施例1-3、比较例1-5的各各向异性导电粘接剂,搭载LED元件,制成实施例1~3、比较例1~5的发光装置。
[0145] LED元件的搭载在200℃、1kg/元件的挤压圧力、加热压接20秒的条件下进行。
[0146] 对得到的发光装置,施加3.2V的电压,使20mA的电流在LED元件中流过,使其发光。来自于发光装置的放射光使用总光量测定装置(大塚電子株式会社制的总光束测定系统(积分球)LE-2100),对于实施例1~3、比较例1~5的各发光装置,测定总光束量。测定条件为常温常湿度。
[0147] 测定结果示于表1的“光学特性”的“初期”一栏。
[0148] 另外,将实施例1-3、比较例1-5的各发光装置置于85℃、85%RH的环境下亮灯500小时,然后通过相同的测定装置测定总光束量,计算出初期的总光束量和亮灯500小时后的总光束量之差的比值、即总光束量变化率。
[0149] 计算结果示于表1的“总光束量变化率”一栏中。
[0150] Ag的含量高的比较例3、4的反射率虽然高,但是总光束量变化率高,随时间推移的变化性差。
[0151] <可靠性实验>
[0152] 总光束量的测定中使用的电极基板是相隔宽度100μm的空间平行设置电极,将实施例1~3、比较例1~5的各向异性导电粘接剂与电极接触而涂布,在电极间、凸点间用各向异性导电粘接剂填充。
[0153] 置于85℃、85%RH的环境下亮灯500小时,结果Ag含量高的比较例3、4的电极间检测出泄漏电流。在表1的传导可靠性一栏中,比较例3、4记载为“×”。
[0154] 比较例3、4中,观察到导电粒子的变色,确认发生迁移。
QQ群二维码
意见反馈