各向异性导电粘合剂及连接结构体

申请号 CN201380041395.3 申请日 2013-09-17 公开(公告)号 CN104520398B 公开(公告)日 2017-10-17
申请人 迪睿合电子材料有限公司; 发明人 波木秀次; 蟹泽士行; 石神明;
摘要 一种 各向异性 导电 粘合剂 包含: 导电性 粒子、导热性粒子、及使导电性粒子和导热性粒子分散的粘合剂成分。该导电性粒子含有 树脂 粒子和在该树脂粒子的表面上形成的导电性金属层。该导热性粒子是平均粒径小于导电性粒子的金属粒子,或是含有金属粒子和在该金属粒子的表面上形成的绝缘层且平均粒径小于导电性粒子的绝缘被覆粒子。
权利要求

1.一种各向异性导电粘合剂,其中,导电性粒子和粒状的导热性粒子分散在粘合剂成分中,所述导电性粒子是在树脂粒子的表面上形成有导电性金属层的导电性粒子,所述导热性粒子的平均粒径小于所述导电性粒子,
所述导热性粒子是金属粒子的表面上形成有绝缘层的绝缘被覆粒子,
所述绝缘层是通过按压而破裂的苯乙烯树脂、环树脂及丙烯酸树脂、SiO2、Al2O3中任一种,所述绝缘层的厚度为20nm~1000nm。
2.权利要求1所述的各向异性导电粘合剂,其中,
所述绝缘被覆粒子的所述金属粒子具有200W/(m·K)以上的热导率。
3.权利要求1或2中所述的各向异性导电粘合剂,其中,
所述绝缘被覆粒子的所述金属粒子含有Ag或Ag合金
4.权利要求1所述的各向异性导电粘合剂,其中,
所述绝缘被覆粒子的含有量为5%(体积)~50%(体积)。
5.权利要求1至4中的任一项所述的各向异性导电粘合剂,其中,
所述导热性粒子的平均粒径为所述导电性粒子的平均粒径的5%~80%。
6.权利要求1至5中的任一项所述的各向异性导电粘合剂,其中,
所述导热性粒子是白色或灰色的非彩色。
7.一种连接结构体,所述连接结构体由第1电子部件的端子和第2电子部件的端子经由导电性粒子电连接所构成,所述导电性粒子是在树脂粒子的表面上形成有导电性金属层的导电性粒子,
在所述第1电子部件的端子与所述第2电子部件的端子之间,平均粒径小于所述导电性粒子的粒状的导热性粒子被捕捉,
所述导热性粒子是在金属粒子的表面上形成有绝缘层的绝缘被覆粒子,所述绝缘层是通过按压而破裂的苯乙烯树脂、环氧树脂及丙烯酸树脂、SiO2、Al2O3中任一种,所述绝缘层的厚度为20nm~1000nm。
8.权利要求7所述的连接结构体,其中,
所述第1电子部件是LED元件,所述第2电子部件是基板
9.权利要求7所述的连接结构体,其中,
所述导热性粒子是白色或灰色的非彩色。

说明书全文

各向异性导电粘合剂及连接结构体

技术领域

[0001] 本技术涉及一种分散有导电性粒子的各向异性导电粘合剂、以及使用它的连接结构体,尤其涉及一种能够散发驱动IC(Integrated Circuit)、LED(Light Emitting Diode)等芯片(元件)所发热的各向异性导电粘合剂、以及使用它的连接结构体。

背景技术

[0002] 作为在基板上安装LED元件的工法,焊线工法被使用。除此之外,作为不使用焊线的工法,有提议使用导电膏的工法,而作为不使用导电膏的工法,有提议使用各向异性导电粘合剂的工法。
[0003] 另外,用于安装倒装芯片(FC:Flip Chip)的LED元件已被开发,作为在基板上安装该FC安装用LED元件的工法,可以使用金共晶接合。除此之外,作为不使用金锡共晶接合的工法,有提议使用焊膏焊接工法,而作为不使用焊膏的工法,有提议使用各向异性导电粘合剂的工法。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2005-108635号公报
[0007] 专利文献2:日本特开2009-283438号公报
[0008] 专利文献3:日本特开2008-041706号公报
[0009] 专利文献4:日本特开2007-023221号公报发明内容
[0010] 然而,由于各向异性导电粘合剂的固化物的热导率为0.2W/(m·K)左右,不能充分地将LED元件产生的热量释放至基板侧。另外,使用各向异性导电粘合剂安装FC,因为仅由电连接部分的导电性粒子成为散热路径,所以散热性差。
[0011] 因此,最好能提供一种可获得高散热性的各向异性导电粘合剂及连接结构体。
[0012] 在本技术中,发现通过配合在树脂粒子的表面上形成有导电性金属层的导电性粒子和平均粒径小于导电性粒子的导热性粒子,可达到上述目的。
[0013] 即,本技术的一种实施方式中的各向异性导电粘合剂包含:导电性粒子、导热性粒子、及使导电性粒子和导热性粒子分散的粘合剂成分。导电性粒子含有树脂粒子和在该树脂粒子的表面上形成的导电性金属层。导热性粒子是平均粒径小于导电性粒子的金属粒子,或是含有金属粒子和在该金属粒子的表面上形成的绝缘层且平均粒径小于导电性粒子的绝缘被覆粒子。
[0014] 另外,本技术的一种实施方式中的连接结构体具备:第1电子部件的端子、第2电子部件的端子、导电性粒子及导热性粒子。导电性粒子含有树脂粒子和在该树脂粒子的表面上形成的导电性金属层,且配置在第1电子部件的端子与第2电子部件的端子之间使第1电子部件的端子与第2电子部件的端子电连接。导热性粒子是平均粒径小于导电性粒子的金属粒子,或是含有金属粒子和在该金属粒子的表面上形成的绝缘层且平均粒径小于导电性粒子的绝缘被覆粒子,且配置并保持在第1电子部件的端子与第2电子部件的端子之间。
[0015] 根据本技术的一种实施方式中的各向异性导电粘合剂或连接结构体,因为在压接时导电性粒子被按压成扁平状,同时导热性粒子被压碎使其与对向端子间的接触面积增大,所以能够获得高散热性。附图说明
[0016] 图1是表示压接前的对向端子间的截面图。
[0017] 图2是表示压接后的对向端子间的截面图。
[0018] 图3是表示本技术的一种实施方式中的LED安装体的一例的截面图。
[0019] 图4是表示本技术的其他实施方式中的LED安装体的一例的截面图。
[0020] 图5是表示使用焊线工法的LED安装体的一例的截面图。
[0021] 图6是表示使用导电膏的LED安装体的一例的截面图。
[0022] 图7是表示使用各向异性导电粘合剂的LED安装体的一例的截面图。
[0023] 图8是表示FC安装用LED是由金锡共晶接合安装的LED安装体的一例的截面图。
[0024] 图9是表示FC安装用LED是由导电膏安装的LED安装体的一例的截面图。
[0025] 图10是表示FC安装用LED是由各向异性导电粘合剂安装的LED安装体的一例的截面图。

具体实施方式

[0026] 以下将参照附图按下面的顺序详细说明本技术的一种实施方式。
[0027] 1、各向异性导电粘合剂及其制造方法
[0028] 2、连接结构体及其制造方法
[0029] 3、实施例
[0030] <1.各向异性导电粘合剂及其制造方法>
[0031] 本技术的一种实施方式中的各向异性导电粘合剂是在粘合剂(粘合剂成分)中分散有在树脂粒子的表面上形成有导电性金属层的导电性粒子、及平均粒径小于该导电性粒子的导热性粒子的粘合剂,其形状有膏状、膜状等,可按使用目的适宜选择。
[0032] 图1及图2分别是压接前及压接后的对向端子间的示意截面图。在本技术的一种实施方式中,通过使各向异性导电粘合剂具有后述的构成,可在压接前使导电性粒子31与导热性粒子32存在于端子间。随后在压接时,因为使用树脂粒子作为芯材的导电性粒子31被按压成扁平状而产生反弹,所以可维持电连接的状态。另外在压接时,因为导热性粒子32伴随导电性粒子的扁平变形被压碎,使其与端子的接触面积增大,所以可提高散热性。此外,作为导热性粒子32,当使用在高导热性金属粒子的表面形成有绝缘层的绝缘被覆粒子时,因为通过按压绝缘层破裂使金属部分与端子接触,所以可提高散热性并获得优异的耐电压性。
[0033] 导电性粒子是对环树脂、树脂、丙烯酸树脂、丙烯腈-苯乙烯(AS)树脂、苯并胍胺(benzoguanamine)树脂、二乙烯基苯类树脂、苯乙烯类树脂的表面用Au、Ni、Zn等金属(导电性金属层)被覆的金属被覆树脂粒子。因为金属被覆树脂粒子在压缩时容易变形、压碎,所以可增大与配线图案的接触面积,另外,可吸收配线图案的高度变动。
[0034] 此外,导电性粒子的平均粒径优选1μm~10μm,更优选2μm~6μm。另外,鉴于连接可靠性和绝缘可靠性,导电性粒子的配合量优选对100质量份的粘合剂配合1质量份~100质量份的导电性粒子。
[0035] 导热性粒子是金属粒子、或是在金属粒子的表面形成有绝缘层的绝缘被覆粒子。另外,导热性粒子的形状有粒状、鳞片状等,可按使用目的适宜选择。
[0036] 金属粒子、及绝缘被覆粒子的金属粒子优选具有200W/(m·K)以上的热导率。若热导率不满200W/(m·K),则热阻变大,散热性变差。作为具有200W/(m·K)以上的热导率的金属粒子、及绝缘被覆粒子的金属粒子,可列举Ag、Au、Cu、Pt等金属单质或它们的合金。其中,鉴于LED的取光效率及压接时容易压碎,优选Ag或以Ag为主要成分的合金。
[0037] 另外,金属粒子的配合量优选5%(体积)~40%(体积)。若金属粒子的配合量太少则不能获得优异的散热性,配合量太多则不能获得连接可靠性。
[0038] 此外,绝缘被覆粒子的绝缘层优选苯乙烯树脂、环氧树脂及丙烯酸树脂等树脂,或者SiO2、Al2O3、TiO2等无机材料。另外,绝缘被覆粒子的绝缘层的厚度优选10nm~1000nm,更优选20nm~1000nm,进一步优选100nm~800nm。若绝缘层太薄则不能获得优异的耐电压性,绝缘层太厚则连接结构体的热阻变大。
[0039] 另外,绝缘被覆粒子的配合量优选5%(体积)~50%(体积)。若绝缘被覆粒子的配合量太少则不能获得优异的散热性,配合量太多则不能获得连接可靠性。
[0040] 另外,导热性粒子的平均粒径(D50)优选导电性粒子的平均粒径的5%~80%。相对于导电性粒子若导热性粒子太小,则压接时在对向端子间不能捕捉到导热性粒子,不能获得优异的散热性。另一方面,相对于导电性粒子若导热性粒子太大,则不能高密度填充导热性粒子,不能提高各向异性导电粘合剂的固化物的热导率。
[0041] 另外,导热性粒子优选白色或灰色的非彩色。由此,导热性粒子充当光反射粒子,当使用LED元件时,可获得高亮度
[0042] 作为粘合剂,可以利用在以往的各向异性导电粘合剂及各向异性导电膜中使用的粘合剂组成物。作为粘合剂组成物,可列举以脂环式环氧化合物、杂环环氧化合物、氢化环氧化合物等为主要成分的环氧固化系粘合剂。
[0043] 作为脂环式环氧化合物,优选分子内具有两个以上环氧基的化合物。它们可以是液体状态也可以是固体状态。具体可列举六氢双酚A缩甘油醚、3,4-环氧环己烯基甲基-3′,4′-环氧环己烯羧酸酯等。其中,鉴于能确保适合于LED元件安装等的固化物的光学透射性、及具有优异的快速固化性,可优选使用3,4-环氧环己烯基甲基-3′,4′-环氧环己烯羧酸酯。
[0044] 作为杂环环氧化合物,可列举具有三嗪环的环氧化合物,可特别优选列举1,3,5-三(2,3-环氧丙基)-1,3,5-三嗪-2,4,6-(1H,3H,5H)-三
[0045] 作为氢化环氧化合物,可以使用上述脂环式环氧化合物及杂环环氧化合物的氢化产物、及其它已知的氢化环氧树脂。
[0046] 脂环式环氧化合物、杂环环氧化合物及氢化环氧化合物可以单独使用,也可以两种或两种以上组合使用。另外,只要不损害本技术的效果,这些环氧化合物也可与其他环氧化合物组合使用。例如可列举:双酚A、双酚F、双酚S、二芳基双酚A、对苯二酚、邻苯二酚、间苯二酚、甲酚、四溴双酚A、三羟基联苯、二苯甲酮、双间苯二酚、双酚六氟丙酮、四甲基双酚A、四甲基双酚F、三(羟苯基)甲烷、双二甲苯酚(bixylenol)、苯酚酚醛清漆、甲酚酚醛清漆等多元酚与环氧氯丙烷反应生成的缩水甘油醚;甘油、新戊二醇、乙二醇、丙二醇、己二醇、聚乙二醇、聚丙二醇等脂族多元醇与环氧氯丙烷反应生成的聚缩水甘油醚;对-羟基苯甲酸、β-羟基甲酸那样的羟基羧酸与环氧氯丙烷反应生成的缩水甘油醚酯;从邻苯二甲酸、甲基邻苯二甲酸、间苯二甲酸、对苯二甲酸、四氢邻苯二甲酸、内亚甲基四氢邻苯二甲酸、内亚甲基六氢邻苯二甲酸、偏苯三酸、聚合脂肪酸那样的聚羧酸获得的聚缩水甘油酯;从基苯酚、氨基烷基苯酚获得的缩水甘油氨基缩水甘油醚;从氨基苯甲酸获得的缩水甘油氨基缩水甘油酯;从苯胺、甲苯胺、三溴苯胺、苯二甲胺、二氨基环己烷、双氨基甲基环己烷、4,4′-二氨基二苯基甲烷、4,4′-二氨基二苯基砜等获得的缩水甘油氨;环氧化聚烯等已知的环氧树脂类。
[0047] 作为固化剂,可列举酸酐、咪唑化合物、双氰等。其中,可优选使用不易使固化物变色的酸酐,特别是脂环式酸酐系固化剂。具体可优选列举甲基六氢邻苯二甲酸酐等。
[0048] 在粘合剂组成物中,当使用脂环式环氧化合物及脂环式酸酐系固化剂时,各自的使用量是:脂环式酸酐系固化剂太少则未固化的环氧化合物增多,而太多则由于剩余的固化剂的影响,有促进被粘合材料腐蚀的倾向,因此,相对于100质量份的脂环式环氧化合物,优选以80质量份~120质量份,更优选95质量份~105质量份的比例使用脂环式酸酐系固化剂。
[0049] 如此构成的各向异性导电粘合剂,在压接时因导电性粒子被按压成扁平状且导热性粒子被压碎,使其与对向端子间的接触面积增加,可获得高散热性及高连接可靠性。
[0050] 另外,本技术的一种实施方式中的各向异性导电粘合剂可通过均匀混合粘合剂组成物、导电性粒子与导热性粒子而制成。
[0051] <2.连接结构体及其制造方法>
[0052] 接下来,使用上述各向异性导电粘合剂对连接结构体进行说明。在本技术的一种实施方式中的连接结构体中,第1电子部件的端子与第2电子部件的端子通过在树脂粒子的表面上形成有导电性金属层的导电性粒子进行电连接,其中,在该第1电子部件的端子与该第2电子部件的端子之间,能捕捉到(保持)平均粒径小于该导电性粒子的导热性粒子。
[0053] 本技术的一种实施方式中的电子部件适用于发热的驱动IC(Integrated Circuit)、LED(Light Emitting Diode)等芯片(元件)。
[0054] 图3是表示LED的安装体的构成例的截面图。在该LED安装体中,使用在粘合剂成分中分散有上述导电性粒子、平均粒径小于该导电性粒子的导热性粒子的各向异性导电粘合剂,将LED元件(第1电子部件)与基板(第2电子部件)连接。
[0055] LED元件例如在由蓝宝石形成的元件基板11上,具备例如由n-GaN形成的第1导电型披覆层12、例如由InxAlyGa1-x-yN层形成的活性层13、及例如由p-GaN形成的第2导电型披覆层14,具有所谓的双异质结构体。另外,在第1导电型披覆层12的一部分上具有第1导电型电极12a,在第2导电型披覆层14的一部分上具有第2导电型电极14a。当在LED元件的第1导电型电极12a与第2导电型电极14a之间施加电压时,通过载流子在活性层13上集中并再结合以致发光。
[0056] 在基板中,基材21上具有第1导电型用电路图案22及第2导电型用电路图案23,在对应于LED元件的第1导电型电极12a及第2导电型电极14a处分别具有电极22a及电极23a。
[0057] 各向异性导电粘合剂与上述相同,在粘合剂33中分散有导电性粒子31、平均粒径小于导电性粒子31的导热性粒子32。
[0058] 如图3所示,在LED安装体中,LED元件的端子(电极12a、14a)与基板的端子(电极22a、23a)通过导电性粒子31电连接,在LED元件的端子与基板的端子之间,能捕捉到导热性粒子32。
[0059] 因此,可有效地将LED元件的活性层13产生的热量释放至基板侧,防止发光效率降低且可延长LED安装体的使用寿命。另外,由于导热性粒子32是白色或灰色的非彩色,能够反射来自活性层13的光,获得高亮度。
[0060] 另外,如图4所示,用于安装倒装芯片的LED元件因为通过钝化层105(参照图8及图9)可较大地设计LED元件的端子(电极12a、14a),以至在LED元件的端子(电极12a、14a)与基板的端子(电路图案22、23)之间能捕捉到更多的导电性粒子31及导热性粒子32。因此,能够更有效地将LED元件的活性层13产生的热量释放至基板侧。
[0061] 接下来,对上述连接结构体的制造方法进行说明。本技术的一种实施方式中的安装体的制造方法是:将在粘合剂成分中分散有上述导电性粒子、平均粒径小于该导电性粒子的导热性粒子的各向异性导电粘合剂夹于第1电子部件的端子与第2电子部件的端子之间,并且将第1电子部件与第2电子部件加热加压。
[0062] 因此,第1电子部件的端子与第2电子部件的端子通过导电性粒子电连接,并且能够获得在第1电子部件的端子与第2电子部件的端子之间能捕捉到导热性粒子的连接结构体。
[0063] 在本技术的一种实施方式中的连接结构体的制造方法中,因为在压接时导电性粒子被按压成扁平状且导热性粒子被压碎,使其与对向端子间的接触面积增加,所以可获得高散热性及高连接可靠性。
[0064] 此外,作为不使用上述本技术的一种实施方式中的各向异性导电粘合剂及连接结构体的工法及其问题,如下所述。
[0065] 作为在基板上安装LED元件的工法,焊线工法被使用。如图5所示,焊线工法是将LED元件的电极(第1导电型电极104a及第2导电型电极102a)面朝上(Face-up),使用焊线(WB:Wire Bonding)301a、301b对该LED元件与基板进行电接合,使用固晶材302对该LED元件与基板进行粘合。
[0066] 然而,象这种用焊线进行电连接的方法,因为有来自电极(第1导电型电极104a及第2导电型电极102a)的焊线的物理断裂、剥落的险,要求更高更可靠的技术。此外,固晶材302的固化过程因为使用烘箱固化,所以需要很长的生产时间。
[0067] 作为不使用焊线的工法,如图6所示,有将LED元件的电极(第1导电型电极104a及第2导电型电极102a)面朝向基板一侧(面朝下、倒装芯片),使用以膏为代表的导电膏303(303a、303b)对该LED元件与基板进行电连接的方法。
[0068] 但是,因为导电膏303(303a、303b)的粘合弱,需用密封树脂304进行加固。此外,密封树脂304的固化过程因为使用烘箱固化,所以需要很长的生产时间。
[0069] 作为不使用导电膏的工法,如图7所示,有将LED元件的电极面朝向基板一侧(面朝下、倒装芯片),使用在绝缘粘合剂305中分散有导电性粒子306的各向异性导电粘合剂对该LED元件与基板进行电连接及粘合的方法。因为各向异性导电粘合剂的粘合过程短,所以生产效率好。另外,各向异性导电粘合剂价格低廉,并且具有优异的透明性、粘合性、耐热性、机械强度、电气绝缘性等。
[0070] 此外,用于安装FC的LED元件已被开发。该FC安装用LED元件,因为通过钝化层105可较大地设计电极面积,所以可进行无干扰安装。另外,通过在发光层下设置反射膜可使取光效率得到提高。
[0071] 作为在基板上安装FC安装用LED元件的工法,如图8所示,可以使用金锡共晶接合。金锡共晶接合的工法是通过用金锡合金307形成芯片电极,然后在基板上涂布助焊剂、搭载芯片并加热,以使基板与电极共晶接合。但是,象这种焊接工法因为在加热中发生芯片移动及助焊剂没有被洗净而影响可靠性,所以产量不好。另外需要高度的安装技术。
[0072] 作为不使用金锡共晶的工法,如图9所示,有使用焊膏对LED元件与基板进行电连接的焊接工法。但是,象这种焊接工法因为该膏具有等向性的导电性,所以pn电极之间将发生短路导致产量不好。
[0073] 作为不使用焊膏的工法,如图10所示,有使用与图7相同的在绝缘粘合剂中分散有导电性粒子的ACF(Anisotropic conductive film)等各向异性导电粘合剂对LED元件与基板进行电连接及粘合的方法。使用各向异性导电粘合剂时,pn电极之间被填充有绝缘粘合剂。于是,因不易发生短路可提高产量。另外,由于粘合过程短,所以生产效率良好。
[0074] 然而,LED元件的活性层(交界处(junction))103除了光之外还产生大量的热量,若发光层温度(Tj=交界处温度)达到100℃以上,则LED的发光效率降低,LED的寿命变短。因此,需要一个能够有效地释放活性层103的热量的结构。
[0075] 在图5所示的WB安装中,由于活性层103处于LED元件的上方,产生的热量不能有效地传递至基板侧,所以散热性差。
[0076] 此外,若如图6、图8及图9所示安装倒装芯片,由于活性层103处于基板侧,则热量能有效地传递至基板侧。如图6及图9所示,在电极之间用导电膏303(303a、303b)接合时,虽可高效率地放热,但利用导电膏303(303a、303b)进行的连接如上所述连接可靠性差。另外,如图8所示,即使进行金锡共晶接合,也与上述连接相同、连接可靠性差。
[0077] 另外,如图7及图10所示,不使用导电膏303(303a、303b),而通过使用ACF及ACP(Anisotropic Conductive Paste)等各向异性导电粘合剂安装倒装芯片,可使活性层103配置于基板侧附近,有效地将热量传递至基板侧。另外,因为粘合力强,所以能够获得高连接可靠性。
[0078] <3.实施例>
[0079] 以下对本技术的实施例进行详细说明,但本技术不限于这些实施例。
[0080] <3.1关于导热性粒子的类型>
[0081] 在本实验中,制作配合有导热性粒子的各向异性导电粘合剂,并制作LED安装体,然后对导热性粒子的类型进行了探讨。
[0082] 按照以下的方法进行各向异性导电粘合剂的制作、各向异性导电粘合剂的固化物的热导率的测量、LED安装体的制作、LED安装体的散热性的评价、光学特性的评价及电气特性的评价。
[0083] [各向异性导电粘合剂的制作]
[0084] 在环氧固化系粘合剂(环氧树脂(产品名:CEL2021P、大赛璐(Daicel)化学股份公司制造)及酸酐(MeHHPA、产品名:MH700、以新日本理化股份公司的制品为主要成分的粘合剂)中,配合10%(重量)的在树脂粒子的表面被覆有Au的平均粒径为5μm的导电性粒子(产品名:AUL705、积水化学工业公司制造)。在该树脂组成物中配合导热性粒子,制成具有导热性的各向异性导电粘合剂。
[0085] [各向异性导电粘合剂的固化物的热导率的测量]
[0086] 用玻璃板将各向异性导电粘合剂夹住,使其在150℃、1小时的条件下固化,获得厚度为1mm的固化物。然后,使用激光闪光原理的测量装置(氙闪光分析仪LFA447、NETZSCH制造)测量固化物的热导率。
[0087] [LED安装体的制作]
[0088] 使用各向异性导电粘合剂将LED芯片(蓝色LED、Vf=3.2V(If=20mA))安装在Au电极基板上。将各向异性导电粘合剂涂布于Au电极基板后,对准安装LED芯片,且在200℃-20秒-1kg/chip的条件下进行加热压接。使用凹凸焊接机形成Au凸点后,进行平坦化处理以用作Au电极基板(环氧玻璃基板、导体空间=100μm、Ni/Au层=5.0μm/0.3μm、金凸点=15μm)。
[0089] [散热性的评价]
[0090] 使用瞬态热阻测量装置(CATS电子设计公司制造)测量LED安装体的热阻(℃/W)。测量条件为If=200mA(恒定电流控制)。
[0091] [光学特性的评价]
[0092] 使用积分球原理的全光束测量装置(LE-2100、大冢电子股份公司制造)测量LED安装体的全光束量(mlm)。测量条件为If=200mA(恒定电流控制)。
[0093] [电气特性的评价]
[0094] 作为初期Vf值,测量了If=20mA时的Vf值。另外,在85℃、85%RH的环境下,将LED安装体在If=20mA的条件下点灯500小时(高温高湿试验),测量了If=20mA时的Vf值。连接可靠性如下进行评价:比初期Vf值上升5%以上即作为“导电NG”,比初期Vf值下降5%以上即作为“绝缘NG”,其他作为“良”。此外,“NG”表示“不良”。
[0095] [实施例1]
[0096] 使用平均粒径(D50)为1μm的Ag粒子(热导率:428W/(m·K))作为导热性粒子。在上述树脂组成物中配合5%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.3W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为160℃/W,全光束量的测量结果为
320mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“良”。
[0097] [实施例2]
[0098] 使用平均粒径(D50)为1μm的Ag粒子(热导率:428W/(m·K))作为导热性粒子。在上述树脂组成物中配合20%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.4W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为130℃/W,全光束量的测量结果为300mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“良”。
[0099] [实施例3]
[0100] 使用平均粒径(D50)为1μm的Ag粒子(热导率:428W/(m·K))作为导热性粒子。在上述树脂组成物中配合40%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.5W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为120℃/W,全光束量的测量结果为280mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“良”。
[0101] [实施例4]
[0102] 使用在Ag粒子的表面被覆有厚100nm的SiO2的平均粒径(D50)为1μm的绝缘被覆粒子作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.5W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为115℃/W,全光束量的测量结果为280mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“良”。
[0103] [实施例5]
[0104] 使用平均粒径(D50)为1.5μm的Ag/Pd合金粒子(热导率:400W/(m·K))作为导热性粒子。在上述树脂组成物中配合5%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.4W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为135℃/W,全光束量的测量结果为300mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“良”。
[0105] [比较例1]
[0106] 制作不配合导热性粒子的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.2W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为200℃/W,全光束量的测量结果为330mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“良”。
[0107] [比较例2]
[0108] 使用平均粒径(D50)为1μm的Ag粒子(热导率:428W/(m·K))作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.55W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为110℃/W,全光束量的测量结果为250mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“绝缘NG”。
[0109] [比较例3]
[0110] 使用平均粒径(D50)为1.2μm的AlN粒子(热导率:190W/(m·K))作为导热性粒子。在上述树脂组成物中配合55%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为1.0W/(m·K)。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为170℃/W,全光束量的测量结果为250mlm,连接可靠性的评价结果为初期是“良”、高温高湿试验后是“导电NG”。
[0111] 表1 表示实施例1~5、及比较例1~3的评价结果。
[0112] [表1]
[0113]
[0114] 如比较例1,当不添加导热性粒子时,各向异性导电粘合剂的固化物的热导率为0.2W/(m·K),LED安装体的热阻为200℃/W,不能获得优异的散热性。
[0115] 另外,如比较例2,当配合50%(体积)的Ag粒子时,各向异性导电粘合剂的固化物的热导率为0.55W/(m·K),LED安装体的热阻为110℃/W,获得了比比较例1优异的散热性。但是,因为Ag粒子的配合量多,在对LED安装体进行高温高湿试验后Vf值比初期Vf值下降了
5%以上。
[0116] 此外,如比较例3,当配合55%(体积)的AlN粒子时,各向异性导电粘合剂的固化物的热导率为1.0W/(m·K),然而因AlN的热导率低,LED安装体的热阻为170℃/W。另外,因为AlN粒子的配合量多、且AlN的电气绝缘性高,在对LED安装体进行高温高湿试验后Vf值比初期Vf值上升了5%以上。
[0117] 另一方面,如实施例1~3,当配合5%(体积)~40%(体积)的Ag粒子时,各向异性导电粘合剂的固化物的热导率为0.3W/(m·K)~0.5W/(m·K),LED安装体的热阻为120℃/W~160℃/W,获得了比比较例1优异的散热性。另外,在对LED安装体进行高温高湿试验后,也能获得高的连接可靠性。
[0118] 另外,如实施例4,当使用在Ag粒子的表面被覆有SiO2的绝缘被覆粒子时,即使配合50%(体积),在对LED安装体进行高温高湿试验后,也能获得高的连接可靠性。另外,各向异性导电粘合剂的固化物的热导率为0.5W/(m·K),LED安装体的热阻为115℃/W,获得了比比较例1优异的散热性。
[0119] 另外,如实施例5,当配合20%(体积)的Ag/Pd合金粒子时,各向异性导电粘合剂的固化物的热导率为0.4W/(m·K),LED安装体的热阻为135℃/W,获得了比比较例1优异的散热性。另外,在对LED安装体进行高温高湿试验后,也能获得高的连接可靠性。
[0120] <3.2关于绝缘被覆粒子的绝缘层的厚度>
[0121] 在本实验中,制作配合有将在金属粒子的表面形成有绝缘层的绝缘被覆粒子作为导电性粒子的各向异性导电粘合剂(ACP)、制作LED安装体,对绝缘被覆粒子的绝缘层的厚度进行了探讨。
[0122] 按照与上述<3.1关于导热性粒子的类型>相同的方法进行各向异性导电粘合剂的制作、LED安装体的制作、各向异性导电粘合剂的固化物的热导率的测量、LED安装体的散热性的评价、及光学特性的评价。另外,按照以下的方法进行绝缘被覆粒子的制作、及ACP固化物的耐电压的测量。
[0123] [绝缘被覆粒子的制作]
[0124] 将以苯乙烯为主要成分的树脂粉末(粘合剂层,粒径为0.2μm)与Ag的金属粉末(粒径为1μm)混合后,通过利用物理力使粉末彼此碰撞成膜的成膜装置(细川密克朗(Hosokawa Micron)制Mecanofujoh),获得在Ag的金属粉末的表面形成有约厚100nm的白色绝缘层的金属。
[0125] [ACP固化物的耐电压的测量]
[0126] 在呈梳叶状图案的配线基板上,涂布厚度为100nm的ACP固化物。将梳叶的两极的电压被施加到500V,有0.5mA电流流过时的电压作为耐电压。对配线间的空间为25μm时的耐电压、及配线间的空间为100μm时的耐电压进行测量。
[0127] [实施例6]
[0128] 使用在Ag粒子的表面被覆有厚20nm的苯乙烯树脂的平均粒径(D50)为1μm的绝缘被覆粒子作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.5W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为150V,当配线间的空间为
100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为130℃/W,全光束量的测量结果为300mlm。
[0129] [实施例7]
[0130] 使用在Ag粒子的表面被覆有厚100nm的苯乙烯树脂的平均粒径(D50)为1μm的绝缘被覆粒子作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.4W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为210V,当配线间的空间为
100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为120℃/W,全光束量的测量结果为280mlm。
[0131] [实施例8]
[0132] 使用在Ag粒子的表面被覆有厚800nm的苯乙烯树脂的平均粒径(D50)为1μm的绝缘被覆粒子作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.5W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为450V,当配线间的空间为
100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为115℃/W,全光束量的测量结果为280mlm。
[0133] [实施例9]
[0134] 使用在Ag粒子的表面被覆有厚100nm的SiO2的平均粒径(D50)为1μm的绝缘被覆粒子作为导热性粒子。与实施例4相同,在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.5W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为230V,当配线间的空间为100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为115℃/W,全光束量的测量结果为280mlm。
[0135] [实施例10]
[0136] 使用在Ag/Pd合金粒子的表面被覆有厚100nm的苯乙烯树脂的平均粒径(D50)为1.5μm的绝缘被覆粒子作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.4W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为210V,当配线间的空间为100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为135℃/W,全光束量的测量结果为280mlm。
[0137] [比较例4]
[0138] 制作不配合导热性粒子的各向异性导电粘合剂。与比较例1相同,该各向异性导电粘合剂的固化物的热导率的测量结果为0.2W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为200V,当配线间的空间为100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为200℃/W,全光束量的测量结果为330mlm。
[0139] [比较例5]
[0140] 使用平均粒径(D50)为1μm的Ag粒子(热导率:428W/(m·K))作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。与比较例2相同,该各向异性导电粘合剂的固化物的热导率的测量结果为0.55W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为100V,当配线间的空间为100μm时的耐电压的试验结果为200V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为110℃/W,全光束量的测量结果为250mlm。
[0141] [比较例6]
[0142] 使用在Ag粒子的表面被覆有厚1100nm的苯乙烯树脂的平均粒径(D50)为1μm的绝缘被覆粒子作为导热性粒子。在上述树脂组成物中配合50%(体积)的该导热性粒子,制成具有导热性的各向异性导电粘合剂。该各向异性导电粘合剂的固化物的热导率的测量结果为0.4W/(m·K),当配线间的空间为25μm时的耐电压的试验结果为300V,当配线间的空间为100μm时的耐电压的试验结果超过500V。另外,使用该各向异性导电粘合剂制成的LED安装体的热阻的测量结果为190℃/W,全光束量的测量结果为300mlm。
[0143] 表2表示实施例6~10、及比较例4~6的评价结果。
[0144] [表2]
[0145]
[0146] 如比较例4,当不添加导热性粒子时,与比较例1相同,各向异性导电粘合剂的固化物的热导率为0.2W/(m·K),LED安装体的热阻为200℃/W,不能获得优异的散热性。关于耐电压,各向异性导电粘合剂的固化物的配线间的空间为25μm时为200V,配线间的空间为100μm时超过500V,获得了稳定的绝缘性。
[0147] 另外,如比较例5,当配合50%(体积)的Ag粒子时,与比较例2相同,各向异性导电粘合剂的固化物的热导率为0.55W/(m·K),LED安装体的热阻为110℃/W,获得了比比较例1优异的散热性。但是,因为Ag粒子的配合量多,各向异性导电粘合剂的固化物的配线间的空间为25μm时的耐电压为100V,配线间的空间为100μm时的耐电压为200V,没有获得稳定的绝缘性。
[0148] 另外,如比较例6,当使用在Ag粒子的表面被覆有厚1100nm的苯乙烯树脂的绝缘被覆粒子时,各向异性导电粘合剂的固化物的热导率为0.4W/(m·K)。但是,LED安装体的热阻为190℃/W,仅获得略低于比较例4的值。这可能是因为苯乙烯树脂的绝缘层厚,热传导受到抑制。关于耐电压,各向异性导电粘合剂的固化物的配线间的空间为25μm时为300V,配线间的空间为100μm时超过500V,获得了稳定的绝缘性。
[0149] 另一方面,如实施例6~8,当苯乙烯树脂的绝缘层的厚度为20nm~800nm时,各向异性导电粘合剂的固化物的热导率为0.4W/(m·K)~0.5W/(m·K),LED安装体的热阻为115℃/W~130℃/W,获得了比比较例1优异的散热性。另外,各向异性导电粘合剂的固化物的配线间的空间为25μm时的耐电压为210V~450V,配线间的空间为100μm时的耐电压超过500V,获得了稳定的绝缘性。
[0150] 另外,如实施例9,当使用在Ag粒子的表面被覆有SiO2的绝缘被覆粒子时,与实施例4相同,各向异性导电粘合剂的固化物的热导率为0.5W/(m·K),LED安装体的热阻为115℃/W,获得了比比较例1优异的散热性。另外,各向异性导电粘合剂的固化物的配线间的空间为25μm时的耐电压为230V,配线间的空间为100μm时的耐电压超过500V,获得了稳定的绝缘性。
[0151] 另外,如实施例10,当使用在Ag/Pd合金粒子的表面被覆有苯乙烯树脂的绝缘被覆粒子时,各向异性导电粘合剂的固化物的热导率为0.4W/(m·K),LED安装体的热阻为135℃/W,获得了比比较例1优异的散热性。另外,各向异性导电粘合剂的固化物的配线间的空间为25μm时的耐电压为210V,配线间的空间为100μm时的耐电压超过500V,获得了稳定的绝缘性。
[0152] 另外,本技术也可以采用以下构成。
[0153] (1)
[0154] 各向异性导电粘合剂包含:导电性粒子、导热性粒子、及使所述导电性粒子和所述导热性粒子分散的粘合剂成分,所述导电性粒子含有树脂粒子和在所述树脂粒子的表面上形成的导电性金属层;所述导热性粒子是平均粒径小于所述导电性粒子的金属粒子,或是含有金属粒子和在该金属粒子的表面上形成的绝缘层且平均粒径小于所述导电性粒子的绝缘被覆粒子。
[0155] (2)
[0156] (1)中所述的各向异性导电粘合剂,其中,所述金属粒子具有约200W/(m·K)以上的热导率,所述绝缘被覆粒子的所述金属粒子具有约200W/(m·K)以上的热导率。
[0157] (3)
[0158] (1)或(2)中所述的各向异性导电粘合剂,其中,所述金属粒子含有Ag或以Ag为主要成分的合金,所述绝缘被覆粒子的所述金属粒子含有Ag或以Ag为主要成分的合金。
[0159] (4)
[0160] (1)至(3)中的任一项所述的各向异性导电粘合剂,其中,所述金属粒子的含有量约为5%(体积)~40%(体积)。
[0161] (5)
[0162] (1)至(3)中的任一项所述的各向异性导电粘合剂,其中,所述绝缘层的厚度约为20nm~1000nm。
[0163] (6)
[0164] (1)至(3)中的任一项所述的各向异性导电粘合剂,其中,所述绝缘层含有树脂或无机材料。
[0165] (7)
[0166] (6)中所述的各向异性导电粘合剂,其中,所述绝缘被覆粒子的含有量约为5%(体积)~50%(体积)。
[0167] (8)
[0168] (1)至(7)中的任一项所述的各向异性导电粘合剂,其中,所述导热性粒子的平均粒径约为所述导电性粒子的平均粒径的5%~80%。
[0169] (9)
[0170] (1)至(8)中的任一项所述的各向异性导电粘合剂,其中,所述导热性粒子是白色或灰色的非彩色。
[0171] (10)
[0172] 连接结构体具备:第1电子部件的端子、第2电子部件的端子、导电性粒子及导热性粒子,所述导电性粒子含有树脂粒子和在所述树脂粒子的表面上形成的导电性金属层,且配置在所述第1电子部件的端子与所述第2电子部件的端子之间使所述第1电子部件的端子与所述第2电子部件的端子电连接;所述导热性粒子是平均粒径小于所述导电性粒子的金属粒子,或是含有金属粒子和在该金属粒子的表面上形成的绝缘层且平均粒径小于所述导电性粒子的绝缘被覆粒子,且配置并保持在所述第1电子部件的端子与所述第2电子部件的端子之间。
[0173] (11)
[0174] (10)中所述的连接结构体,其中,所述第1电子部件是LED元件,所述第2电子部件是基板。
[0175] (12)
[0176] (10)中所述的连接结构体,其中,所述导热性粒子是白色或灰色的非彩色。
[0177] 本公开含有涉及在2012年9月24日在日本专利局提交的日本优先权专利申请JP2012-210223中公开的主旨,其全部内容包括在此,以供参考。
[0178] 本领域的技术人员应该理解,只要它们在附加的权利要求或它的等同物的范围内,则可根据设计要求和其他因素出现各种修饰、组合、子组合和可替换项。
QQ群二维码
意见反馈