POLYMERIC BIOMATERIALS DERIVED FROM PHENOLIC MONOMERS AND THEIR MEDICAL USES

申请号 EP13705325.2 申请日 2013-02-02 公开(公告)号 EP2809702B1 公开(公告)日 2017-12-20
申请人 Rutgers, The State University of New Jersey; 发明人 KOHN, Joachim, B.; BOLIKAL, Durgadas;
摘要
权利要求 A biocompatible polymer, comprising a recurring unit of formula:wherein:y1 is 0, 1, 2, 3, or 4;X1 is bromine (Br) or iodine (I); andR4a is selected from the group consisting of C1-C30 alkyl, C2-C30 alkenyl, C2-C30 alkynyl, C1-C30 heteroalkyl, C2-C30 heteroalkenyl, C2-C30 heteroalkynyl, C6-C30 aryl, C7-C30 alkylaryl, C8-C30 alkenylaryl, C8-C30 alkynylaryl, and C2-C30 heteroaryl.The biocompatible polymer of Claim 1, wherein R4a is C1-C30 alkyl.The biocompatible polymer of Claim 1, wherein R4a is C1-C6 alkyl.The biocompatible polymer of Claim 1, further comprising a tyrosol recurring unit, and characterized by formula:The biocompatible polymer of Claim 4, characterized by formula:The biocompatible polymer of any one of claims 1 to 5, further comprising a macromeric recurring unit.A polymer composition comprising a biocompatible polymer according to any of claims 1-6.A medical device comprising a biocompatible polymer according to any of claims 1-6.The medical device of claim 8, further comprising a biologically active compound.The medical device of claim 9, wherein the biologically active compound is selected from the group consisting of a chemotherapeutic agent, a non-steroidal anti-inflammatory, a steroidal anti-inflammatory, and a wound healing agent.The medical device of claim 8, wherein the medical device is a stent.
说明书全文

FIELD OF THE INVENTION

The present invention relates to novel biodegradable and/or bioresorbable polymers. These polymers, while not limited thereto, may be adapted for radio-opacity and are useful for medical device applications and controlled release therapeutic formulations.

BACKGROUND OF THE INVENTION

The rapidly evolving field of bioengineering has created a demand for a diverse library of different types of polymers offering a wide variety of choice of physical, mechanical, chemical and physiological properties. It is desirable that libraries of many different materials be available so that the specific polymer properties can be optimally matched with the requirements of the specific applications under development.

Examples of polymers suitable for various bioengineering applications include those described in U.S. Patient Nos. 5,099,060; 5,665,831; 5,916,998 and 6,475,477, along with the polymers described in U.S. Patient Publication Nos. 2006/0024266 and 2006/0034769. There are numerous applications in which it is considered desirable for an implanted medical device to maintain its integrity and performance characteristics for extended periods of time, even under demanding mechanical conditions such as repeated mechanical flexure. Although many types of bioresorbable and/or biodegradable polymers are known, in most of these polymers diphenolic monomers are prepared by linking two suitably protected tyrosine molecules or tyrosine analogs via an amide linkage. These amide linkages do not degrade hydrolytically under physiological conditions and therefore the monomers which have low solubility in water, dissolve very slowly. Further, due to hydrogen bonding of amide hydrogen the melt viscosity of the polymers derived from these monomers are very high, which makes thermal processing more difficult. In addition, bioresorbtion and/or biodegradation tend to alter mechanical properties in unpredictable ways that are not necessarily linearly related to each other.

DE 3523977 A1 discloses a process for the preparation of a polycarbonate by means of a solvent process in which the divalent phenol compound used is a bisphenol and a hydroxybenzenecarboxylic diester of a diol.

Thus, there is a need for biocompatible polymers having desirable bioresorbability and biodegradability as well as good processibility under thermal conditions. There remains a need for nontoxic polyarylates having a moderate rate of bioerosion, suitable for use as tissue-compatible materials for biomedical uses.

SUMMARY OF THE INVENTION

The present invention addresses the foregoing need by providing new monomers useful for the preparation or the desired biocompatible polymers and various types of such polymers useful for making the implantable medical devices.

The present disclosure broadly relates to diphenolic monomers and bioerodible polymers synthesized using such monomers. As disclosed herein the diphenolic monomers are derived from tyrosine and/or tyrosine analogs. In particular, in one preferred aspect the present disclosure relates to bioerodible polycarbonates and polyarylates derived from the naturally occurring 4-(2-hydroxylethyl)phenol (or "tyrosol") and phosgene and/or biocompatible dicarboxylic acids.

Described herein are biocompatible polymers comprising a repeating structural unit of Formula (I):

  • wherein L is -R1-A-R2-;
  • A is a linking group selected from:

    and

  • X1 and X2, at each occurrence, are independently halogen (F, Cl, Br, or I);
  • y1 and y2 have values independently selected from 0, 1, 2, 3 and 4;
  • R1 and R2 are each independently selected from straight-chain or branched, saturated or unsaturated, substituted or unsubstituted, alkylene, alkenylene, alkylarylenoxy, heteroalkylene and heteroalkenylene containing up to 12 carbon atoms, said alkylene, alkenylene, heteroalkylene and heteroalkenylene optionally containing a pendant Z group and optionally comprising one, two or three heteroatoms independently selected from O, NR2 and S;
  • R3 is selected from the group consisting of hydrogen, C1-C30 alkyl, C1-C30 heteroalkyl, C2-C30 alkenyl, C2-C30 alkynyl, C2-C30 heteroalkenyl, C2-C30 heteroalkynyl,
  • R4 is selected from the group consisting of a bond, C1-C30 alkyl, C2-C30 alkenyl, C2-C30 alkynyl, C1-C30 heteroalkyl, C2-C30 heteroalkenyl, C2-C30 heteroalkynyl, C6-C30 aryl, C7-C30 alkylaryl, C8-C30 alkenylaryl, C8-C30 alkynylaryl, and C3-C30 heteroaryl;
  • R4a is selected from the group consisting of C1-C30 alkyl, C2-C30 alkenyl, C2-C30 alkynyl, C1-C30 heteroalkyl, C2-C30 heteroalkenyl, C2-C30 heteroalkynyl, C6-C30 aryl, C7-C30 alkylaryl, C8-C30 alkenylaryl, C8-C30 alkynylaryl, and C2-C30 heteroaryl;
  • Z is -N(Rx)C(=O)R5, -N(Rx)COOR6, -COOR7 or -CONRxRy, wherein R5, R6, R7, Rx and Ry, at each occurrence, are independently selected from hydrogen, alkyl, aryl, alkylaryl, arylalkyl, heteroalkyl, and heteroalkylaryl group containing up to 30 carbon atoms, wherein the heteroalkyl group contains from 1 to 10 heteroatoms independently selected from O, N and S and the heteroalkylaryl group contains from 1 to 3 heteroatoms independently selected from O, N and S. In an embodiment, the heteroatom in the heteroalkyl and/or heteroalkylaryl group is N in the form of a NRz group, wherein Rz is selected from the group consisting of H, C1-C30 alkyl, and arylalkyl containing up to 30 carbon atoms.

Rx in the definition of A and L in formula (1) may be an alkyl group, e.g., a branched or unbranched C1-C6 alkyl. For example, in an embodiment, Rx in formula (I) is a methyl. R1 and R2 may be each independently -(CH2)m- and -(CH2)n-, respectively, where n and m are each independently integers in the range of one to 12. In one example, R1 is -(CH2)m- and R2 is -(CH2)n-, and n and m are each independently 1 or 2. In some examples R1 is -O-(CH2)m- or -O-C6H4-(CH2)m-, where the -C6H4- is optionally substituted phenol (e.g., optionally substituted with 1 or 2 halogens such as Br and/or 1) and n and m are each independently integers in the range of one to 12 (e.g., 1 or 2). Similarly, in some examples, R2 is independently -(CH2)n-O- or -(CH2)n-C6H4-O-, where the -C6H4- is independently optionally substituted phenyl (e.g., optionally substituted with 1 or 2 halogens such as Br and/or 1) and n and m are each independently integers in the range of one to 12 (e.g., 1 or 2).

X1 and X2 in formula (I) can be independently selected to be any halogen atom. In one example, X1 and X2 in formula (I) are each I. In one example, X1 and X2 in formula (1) are each Br. In some examples, X1 and X2 groups on the polymer comprising a recurring unit of formula (1) are iodine.

Those skilled in the art will appreciate that the presence of oxygen atoms on both ends of the repeating structural unit of Formula (I) does not imply end-to-end linkage of such repeating units to form oxygen-oxygen bonds. Instead, it will be appreciated that the polymer containing the repeating structural unit of Formula (1) can also contain one or more other repeating units. The present disclosure provides polymers containing the repeating structural unit of Formula (1) and further containing recurring units represented by A1. Polymere of the invention comprise the repeating structure of Formula (XIII):

wherein:

  • y1 is 0, 1, 2, 3, or 4;
  • X1 is bromine (Br) or iodine (I); and
  • R4a is selected from the group consisting of C1-C30 alkyl, C2-C30 alkenyl, C2-C30 alkynyl, C1-C30 heteroalkyl, C2-C30 heteroalkenyl, C2-C30 heteroalkynyl, C6-C30 aryl, C7-C30 alkylaryl, C8-C30 alkenylaryl, C8-C30 alkynylaryl, and C2-C30 heteroaryl.

Described herein are also diphenolic monomers having the following generic structure of Formula (III):

wherein L, X1 and X2, y1 and y2 are defined as above. Such monomers are useful for making polymers that comprise repeating structural units of Formula (I) as described in greater detail below.

Described herein are also diphenolic monomers derived from hydroxyalkylphenol having a generic structure of Formula (IV):

wherein R1 is defined as above R1 is preferably a C1-C12 alkylene, e.g., a C1-C4 alkylene. More preferably R1 is ethylene (-CH2-CH2-). Most preferably, the hydroxyalkylphenol is 4-(2-hydroxyethyl)phenol or 2-(4-hydroxyphenyl)ethanol (or "tyrosol") having the following structure:

which is a natural product present in olive oil and white wine and has been shown to have both antioxidant and cardio-protective properties. The phenol ring of tyrosol can be halogenated, and those skilled in the art will understand that teachings herein regarding tyrosol can be applied to such halogenated forms as well. Tyrosol can be converted into a diphenolic monomer, e.g., a diphenolic ester, in several ways. It can be esterified with desaminotyrosine (DAT) or N-protected tyrosine to form a diphenolic monomer with an ester linkage, It can also be esterified with 0.5 mole equivalents of dicarboxylic acids to provide a family of diphenolic diester monomers that can be introduced into polymers to control chain flexibility, as needed. Those skilled in the art will appreciate that use of ring halogenated compounds (e.g., halogenated tyrosol, halogenated DAT, etc.) results in the corresponding halogenated polymers.

Thus, disclosed is a new class of diphenolic monomers of the Formula (V):

wherein L1 is a bond, oxygen (-O-) or -R4-C(O)-O-, in and n are each independently integers in the range of one to 12, L4 is a blond, oxygen (-O-) or optionally substituted phenoxy (-C6H4-O-), and X1, X2, y1, y2 and R4 are as defined above. In one example, R4 is selected from saturated and unsaturated, substituted and unsubstituted, alkylene and alkylarylene groups containing up to 18 carbon atoms. In another example, m and n are each independently 1 or 2. For example, a monomer of the Formula (Va) is disclosed.

wherein L1, X1, X2, y1, and y2 are as defined above.

Such monomers can be made from optionally halogenated tyrosol as described in greater detail below.

Also disclosed is a class of diphenolic monomers of the Formula (VI):

wherein X1, X2, y1, y2 and Z are as defined above. For example, Z may be -N(RN)C(=O)R5 or -N(RN)COOR6, where R5, R6, and RN are as defined above. Such monomers can be made from optionally halogenated 2-(4-hydroxyphenyl)ethanol as described in greater detail below.

The diphenolic monomers described herein, e.g., of the Formulae (III), (V) and (VI), can be polymerized using phosgene to form polycarbonates or with dicarboxylic acids to obtain polyarylates. The diphenolic monomers can also be copolymerized with other diphenols (such as desaminotyrosyl tyrosine ethyl ester) and other di hydroxy compound such as poly(ethylene glycol), potycaproiacione-diol, poly(trimethylene carbonate), polylactide and/or polyglycolide. The polymers can be made radio-opaque by introducing halogen, in particular iodine and/or bromine atoms, on the phenol rings. Other optionally halogenated phenolic alcohols can be used in plaice of tyrosol, and other optionally halogenated aromatic carboxylic acids can be used in place of DAT.

Biocompatible polymers that can be made using the monomers described herein include those comprising a recurring structural unit of the following Formula (VII), (VIIa), (VIII), and/or (VIIIa):

wherein L2 is a bond or R8-C(O)-, and m, n, L1, L4, X1, X2, y1, y2 and R8 are defined above. In one example, R4 (in the definition of L1) and R8 (in the definition of L2) above. In one example, R4 (in the definition of L1) and R8 (in the definition of L2) are each independently selected from saturated and unsaturated, substituted and unsubstituted, alkylene and alkylarylene groups containing up to 18 carbon atoms.

Those skilled in the art will appreciate that, depending on the manner and extent to which the aromatic rings are substituted, the polymers described herein can have various configurations. For example, the following Formulae (VIIIb), (VIIIc), (VIIId), and (VIIIe) illustrate various examples of a polymer containing recurring units of Formula (VIII) in which X1 and X2 are Br, y1 any y2 are 1, L1 is O and L2 is a bond:

It is surprisingly discovered that replacing the amide bond with an ester blond can provide a solution to one or both of the resorbability and processibility issues mentioned above. First, the ester bond cleaves hydrolytically to produce water-soluble fragments, thus increasing the resorption rate of the polymer. Second, reducing the level of amide hydrogens tends to lower the melt viscosity of the polymer, thus hallowing facile thermal fabrication.

In another aspects, the present invention provides a polymer composition comprising a biocompatible polymer of the present invention.

In another aspect, the present invention provides a medical device comprising a biocompatible polymer of the present invention. In a preferred embodiment, the medical device is a stent.

Also disclosed herein is a method for making a polymer that comprises a recurring unit of formula (I). In one exampe, the method of making the polymer comprises attaching an N-substituent during the synthesis of a corresponding monomer. In one example, the method of making the polymer comprises attaching an N-substituent during polymerization of a corresponding monomer. In one example the method of making the polymer comprises attaching an N-substituent after polymerization of a corresponding monomer. Methods of making a polymer comprising a recurring unit of the formula (I) are further discussed in detail below.

DETAILED DESCRIPTION OF THE INVENTION

To meet the need of versatile moldable biodegradable and biocompatible polymers made using relatively nontoxic monomeric starting materials, the present application describes a variety of such monomers and polymer prepared from these monomers.

The present invention provides a polymer that contains recurring units the following Formula (XIII):

wherein: y1 is 0, 1, 2, 3, or 4; X1 is bromine (Br) or iodine (I); and R4a is selected from the group consisting of C1-C30 alkyl, C2-C30 alkenyl, C2-C30 alkynyl, C1-C30 heteroalkyl, C2-C30 heteroalkenyl, C2-C30 heteroalkynyl, C6-C30 aryl, C7-C30 alkylaryl, C8-C30 alkenylaryl, C8-C30 alkynylaryl, and C2-C30 heteroaryl.

In an embodiment, the polymer is a copolymer that contains tyrosol recurring units and recurring units of the Formula (XIII). An example of a copolymer containing such recurring units is represented by the following Formulae (XIIIa) and XIIIb):

Those skilled in the art will appreciate that polymers containing the recurring units of Formulae (XIIIa) and (XIIIb) contain a tyrosol recurring unit and a recurring unit of Formula (XIII). Those skilled in the art will also appreciate that, for Formula (XIIIb), X1 is I, y1 is 2, and R4a is -(CH2)3-.

Those skilled in the art will also appreciate that the two recurring units in Formulae (XIIIa) and (XIIIb) can appear in a polymer molecule in a variety of possible arrangements. Using Formula (XIIIb) to illustrate, without intending to be bound by theory, depending on polymerization reaction conditions, the PrD-di I2DAT carbonate and tyrosol carbonate recurring units can be arranged in any order. That is, two adjacent units could include "PrD-diI2DAT - PrD-diI2DAT", "PrD-diI2DAT - tyrosol", or "tyrosol - tyrosol". Given the asymmetrical structure of tyrosol, it can be connected with a PrD-diI2DAT unit using either its "head" (i.e., "phenoxy" moiety) or "tail" (i.e., the "ethylenoxy" moiety). Any two adjacent units formed from tyrosol itself can be in any of the "head-head", "head-tail" and "tail-tail" arrangements. In particular, when the polymerization redaction is conducted in a manner as described in Example 2 where triphosgene is added to a mixture of PrD-dil2DAT and tyrosol, the poly(PrD-dil2DAT-co-tyrosol carbonate) product is composed of mainly polymer molecules having randomly-ordered PrD-diI2DAT and tyrosol recurring units connected through carbonate (-OC(O)O-) linkers. Unless specifically described otherwise, any recurring units designated as -[A]-[B]-, such as Formulae (XIIIa) and (XIIIb) above encompass all possible such arrangements as hereby explained.

Various polycarbonates and polyarylates of the present disclosure employ diphenol compound derived from tyrosol as a starting material. Example of tyrosol-derived diphenol monomer compound suitable for the formation of polycarbonates or polyarylates have the structure depicted by Formula (III) defined as above.

The polymer is expected to hydrolyze to release the original diphenol and diacid, thus forming nontoxic degradation products, provided that the monomeric starting materials are nontoxic. The toxicological concerns associated with polyarylates are met by using diphenols derived from tyrosol and phosgene or dicarboxylic acids that are either metabolites or highly biocompatible compounds.

Therefore, disclosed are molded articles prepared from the polymers of the present invention.

Based on the foregoing, in curtain embodiment of the biocompatible polymers described herein, A1 is a carbonyl group heaving a structure of

wherein the carbonyl group is derived from a phosgene starting materials This method is essentially the conventional method for polymerizing diols into polycarbonates. Suitable processes, associated catalysts and solvents are known in the art and are taught in, for example, Schnell, Chemistry and Physics of Polycarbonates, (Interscience, New York 1964). Other methods adoptable for use to prepare the poly-carbonate and other phosgene-derived polymers of the present invention are disposed in U.S. Patent Nos. 6,120,491 and 6,475,477. Polymers of the present invention comprise a recurring unit represented by Formula (XIII).

Halogenation of the aromatic rings may be accomplished as described in the examples below, and by conventional methods as detailed in U.S. Pat. No. 6,475,477. Preferred polymers are sufficiently halogenated to render the resulting polymers radiopaque, e.g., y1 and y2 in any of the formulas describes herein may independently be 0, 1, 2, 3 or 4. Halogenation of aromatic rings is preferred. In one example the sum of y1 and y2 is at least one. Various other groups within the polymer may also be halogenated.

It is surprisingly discovered that after replacement of the amide bond with ester bond, which would be expected to reduce inter-chain hydrogen bonding, in various embodiments the resulting polymer has a higher glass temperature and melting temperature. It is also unexpected that various polymers prepared from tyrosol-derived monomers are semi-crystalline and possess mechanical strength suitable for high strength applications.

Monomer and Polymer Syntheses

The polymer described herein (including, e.g, polymers comprising a recurring unit represented by Formula (I). Formula (Ia), Formula (Ib), Formula (Ic), Formula (Id), and Formula (XIII) may be synthesized by various conventional reactions known in the art

For example, the diphenolic monomer compound can be reacted with aliphatic or aromatic dicarboxylic acids in a carbodiimide-mediated direct polyesterification using DPTS as a catalyst to form aliphatic or aromatic polyarylates. Examples of dicarboxylic acids suitable for the polymerization to form polyarylates have the structure of Formula (XVII):

in which, for the aliphatic polyarylates, R14 is selected from saturated and unsaturated, substituted and unsubstituted alkyl or alkylaryl groups containing up to 18 carbon atoms, and preferably from 2 to 12 carbon atoms. For the aromatic polyarylates, R14 is selected from aryl groups containing up to 18 carbon atoms and preferably from 6 to 12 carbon atoms.

R14 is preferably selected so that the dicarboxylic acids employed as starting materials are either important naturally-occuring metabolites or highly biocompatible compounds. Examples of preferred aliphatic dicarboxylic acid starting materials are described elsewherein herein.

The polyarylates can also be prepared by the method disclosed by Higashi et al., J. Polym. Sci.: Polym. Chem. Ed., 21, 3233-9 (1983) using arylsulfonyl chloride as the condensing agent, by the process of Higashi et al., J. Polym. Sci.: Polym. Chem. Ed., 21, 3241-7 (1983) using diphenyl chlorophosphate as the condensing agent, by the process of Higashi et al., J. Polym. Sci.: Polym. Chem. Ed., 24, 97-102 (1986) using thionyl chloride with pyridine as the condensing agent, or by the process of Elias, et al., Makromol. Chem., 182, 681-6 (1981) using thionyl chloride with triethylamine. A preferred polyesterification procedure is the method disclosed by Moore et al., Macromol., 23, 65-70 (1990) utilizing carbodiimide coupling reagents as the condensing agents with the specially designed catalyst DPTS.

A particularly preferred polyesterification technique modifies the method of Moore to utilize an excess of the carbodiimide coupling reagent. This technique tends to produce aliphatic polyarylates having molecular weights greater than those obtained by Moore. Essentially any carbodiimide commonly used as a coupling reagent in peptide chemistry can be used as a condensing agent in the preferred polyesterification process. Such carbodiimides are well-known and disclosed in Bodanszky, Practice of Peptide Synthesis (Springer-Verlag, New York, 1984) and include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride, N-cyclohexyl-N'-(2'-morpholinoethyl)carbodiimide-metho-p-toluene sulfonate, N-benzyl-N'-3'- dimethylaminopropyl-carbodiimide hydrochloride, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide methiodide, N-ethylcarbodiimide hydrochloride, and the like. The preferred carbodiimides are dicyclohexyl carbodiimide and diisopropylcarbodiimide.

An esterification reaction mixture can generally be formed by contacting exactly equimolar quantities of the diphenol and the dicarboxylic acid in solvent for the diphenol and the dicarboxylic acid. Suitable solvents include methylene chloride, tetrahydrofuran, dimethylformamide, chloroform, carbon tetrachloride and N-methyl pyrrolidinone. It is not necessary to bring all reagents into complete solution prior to initiating the polyesterification reaction, although the polymerization of slightly soluble monomers such as desaminotyrosyltyrosine ethyl ester and succinic acid will typically yield higher molecular weight polymers when the amount of solvent is increases. The reaction mixture can also be heated gently to aid in the partial dissolution of the reactants.

The polyarylates can be worked up and isolated by known methods commonly employed in the field of synthetic polymers to produce a variety of useful articles with valuable physical and chemical properties, all derived from tissue compatible monomers. The useful articles can be shaped by conventional polymer-forming techniques such as extrusion, compression molding, injection molding, and the like. Molded articles prepared from the polyarylates are useful, inter alia, as degradable biomaterials for medical implant applications. Such applications include the use of the molded articles as vascular grafts and stents, bone plates, sutures, implantable sensors, barriers for surgical adhesion prevention, implantable drug delivery devices and other therapeutic aids and articles which decompose harmlessly within a known period of time.

Synthetic Schemes 1-4 illustrate the preparation of various types of phenolic monomers user for the making polymer containing recurring units of the Formula (I). One of ordinary skill in the art, guided by the disclosure herein, would understand that these synthetic schemes may be readily adapted to prepare phenolic monomers containing pendant side chains such as -N(Rx)C(=O)R5, -N(Rx)COOR6, -COOR7 and/or -CONRxRy, as defined above.

As would be understood by those skilled in the art, a redaction between tyrosol or analogue with phosgene or triphosgene, as illustrated is Scheme 3, would likely give a mixture of three types of dimers linked by a carbonate (-OC(O)O-) group (i.e., "head-head", '"tail-tail" and "head-tail") and/or the corresponding polymers, depending on the reaction conditions employed.

In synthetic Schemes 1-4, X1, X2, y1, y2, R4 and R4a are as defined above. In various examples of the monomers and polymers described herein, R4 and R4a are each independently C1-C30 alkyl, e.g., C1-C6 alkyl, C1-C8 alkyl, C1-C10 alkyl, etc. Those skilled in the art will appreciate the extent to which variables (e.g., X1 and X2, and y1 and y2, respectively) may be used interchangeably in the various formulae and schemes provided herein when the depicted structures are symmetrical. Thus, X1 (and X2) may be a halogen, which at each occurrence independently may be selected from iodo, bromo, chloro, and fluoro. Preferably, the halogen is iodo or bromo. Halogenation may be performed by conventional reactions known in the art. For instance, iodination may be performed on aryl rings by treatment with KI, ICI, IF, benzyltrimethylammonium dichloroiodate, or I2 in the presence of copper salts. Similarly, bromination may be performed on aryl rings by treatment with bromine in the presence of a catalyst, such as iron. Other brominating reagents include HOBr and promo amides. The above synthetic schemes are simplified for illustration purpose.

Smarting materials described herein are available commercially, are known, or may be prepared by methods known in the art. Additionally, starting materials not described herein are available commercially, are known, or may be prepared by methods known in the art.

Starting materials may have the appropriate substituents to ultimately give desired products with the corresponding substituents. Alternatively, substituents may be added at any point of synthesis to ultimately give desired products with the corresponding substituents.

The synthetic schemes illustrated herein show methods that may be used to prepare the compounds of preferred embodiments. One skilled in the art will appreciate that a number of different synthetic reaction schemes may be used to synthesize the compounds of preferred embodiments. Further, one skilled in the art. will understand that a number of different solvents, coupling agents and reaction conditions may be used in the synthetic reactions to yield comparable results.

One skilled in the art will appreciate variations in the sequence and, further, will recognize variations in the appropriate reaction conditions from the analogous reactions shown or otherwise known which may be appropriately used in the processes above to make the compounds of preferred embodiments.

In the processes described herein for the preparation of the compounds of preferred embodiments, the requirements for protective groups are generally well recognized by one skilled in the art of organic chemistry, and accordingly the use of appropriate protecting groups is necessarily implied by the processes of the schemes herein, although such groups may not be expressly illustrated. Introduction and removal of such suitable protecting groups are well known m the art of organic chemistry; see for example, T. W. Greene, "Protective Groups in Organic Synthesis", Wiley (New York), 1999.

The products of the reactions described herein can be isolated by conventional means such as extraction, distillation, chromatography, and the like.

The salts of the compounds described herein can be prepared by reacting the appropriate base or acid with a stoichiometric equivalent of the compound.

A polymer of the present invention comprises poly(ether carbonate) with tyrosol-bioactive moiety. In an embodiment, the polymer comprises poly(tyrosine carbonate) pendant bioactive moiety groups. In some embodiments, the polymer comprises poly(ether carbonate) tyrosine-diol copolymer with a bioactive moiety in the backbone. In some embodiments, the polymer comprises poly(ether carbonate) tyrosine-diol copolymers with a pendant bioactive moiety.

In another aspect the present invention provides a medical device that comprises a polymer of the present invention. For example, an embodiment provides a stent that comprises a polymer of the present invention. These and other embodiments are described in greater detail below.

DEFINITIONS

The term "biodegradable," as used herein, refers to a property of polymer whose molecular weight goes down because of hydrolysis or enzymatic reactions under physiological conditions such that the polymer is transformed into lower molecular weight oligomers in a period not to exceed four (4) years.

The term "oligomer," as used herein, refers to a hydrolyzed product of a polymer, whose molecular weight is less than 10% of the original polymer.

The terms "alkyl", "alkylene" and similar terms have the usual meaning known to those skilled in the art and thus may be used to refer to straight or branched hydrocarbon chain fully saturated (no double or triple blonds) hydrocarbon group. Terminal alkyl groups, e.g., of the general formula -CH2H2n+3, may be referred to herein as "alkyl" groups, whereas linking alkyl groups, e.g., of the general formula -(CH2)n-, may be referred to herein as "alkylene" groups. The alkyl group may have 1 to 50 carbon atoms (whenever it appears herein, a numerical range such as "1 to 50" refers to each integer in the given range; e.g., "1 to 50 carbon atoms" means that the alkyl group may consist of carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 50 carbon atoms, although the present definition also covers the occurrence of the term "alkyl" where no numerical range is designated). The alkyl group may also be a medium size alkyl having 1 to 30 carbon atoms. The alkyl group could also be a lower alkyl heaving 1 to carbon atoms. The alkyl group of the compounds may be designated as "C1-C4 alkyl" or similar designations. By way of example only, "C1-C4 alkyl" indicates that there are one to four carbon atoms in the alkyl chain, i.e., the alkyl chain is selected from the group consisting of methyl, methyl, propyl, iso-propyl, n-bulyl, iso-butyl, sec-butyl, and t-butyl. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl, hexyl and the like.

The alkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is(are) one or more group(s) individually and independently selected from alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heteroaryl, heteroalicyclyl, aralkyl, heteroaralkyl, (heteroalicyclyl)alkyl, hydroxy, protected hydroxyl, alkoxy, aryloxy, acyl, ester, mercapto, alkylthio, arylthio, cyano, halogen, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, protected C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, nitro, silyl, sulfenyl, sulfinyl, sulfonyl, haloalkyl, haloalkoxy, trihalomethanesulfonyl, trihalomethanesulfonamido, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. Wherever a substituent is described as being "optionally substituted" that substitutent may be substituted with one of the above substituents.

An "alkylaryl" is an aryl group connected, as a substituent, via an alkylene group. The alkylene and aryl group of an aralkyl may be substituted or unsubstituted. Examples include but are not limited to benzyl, substituted benzyl, 2-phenylethyl, 3-phenylpropyl, and naphtylalkyl. In some cases, the alkylene group is a lower alkylene group. An alkylaryl group may be substituted or unstubstituted.

As noted above, alkyl groups may link together other groups, and in that context may be referred to as alkylene groups. Alkylene groups are thus biradical tethering groups, forming bonds to connect molecular fragments via their terminal carbon atoms. Examples include but are not limited to methylene (-CH2-), ethylene (-CH2CH2-), propylene (-CH2CH2CH2-), and butylene (-(CH2)4-) groups. An alkylene group may be substituted or unsubstituted.

The terms "alkenyl", "alkenylene" and similar terms have the usual meaning known to those skilled in the art and thus may be used to refer to an alkyl or alkylene group that contains in the straight or branched hydrocarbon chain combining one or more double bonds. As alkenyl group may be unsubstituted or substituted. When substituted, the substituent(s) may be selected from the same groups disclosed above with regard to alkyl, group substitution unless otherwise indicated.

An "amide" is a chemical moiety with formula -(R)n-C(O)NHR' or -(R)n-NHC(O)R', where R and R' are independently selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), and where n is 0 or 1. An amide may be an amino acid or a peptide molecule attached to a molecule of the present invention, thereby forming a prodrug. An "amide linkage" is an amide group (-C(O)NH-) that links two chemical moieties to one another.

Any amine, hydroxy, or carboxyl side chain on the compounds disclosed herein can be esterified or amidified. The procedures and specific groups to be used to achieve this end are known to those of skill in the art and can readily be found in reference sources such as Greene and Wuts, Protective Groups in Organic Syntheses, 3rd Ed., John Wiley & Sons, New York, N.Y., 1999.

As used herein, "aryl" refers to a carbocyclic (all carbon) ring or two or more fused rings (rings that share two adjacent carbon atoms) that have a fully delocalized pi-electron system. Examples of aryl groups include, but are not limited to, benzene, naphtalene and azulene. An aryl group may be substituted or unsubstituted. When substituted, hydrogen atoms are replaced by substituent group(s) that is(are) one or more group(s) independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heteroaryl, heteroalicyclyl, aralkyl, heteroaralkyl, (heteroalicyclyl)alkyl, hydroxy, protected hydroxyl, alkoxy, aryloxy, acyl, ester, mercapto, alkylthio, arylthio, cyano, halogen, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamide, C-carboxy, protected C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, nitro, silyl, sulfenyl, sulfinyl, sulfonyl, haloalkyl, haloalkoxy, trihalomethanesulfonyl, trihalo-methanesulfonamido, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. When substituted, substituents on an aryl group may form a non-aromatic ring fused to the aryl group, including a cycloalkyl, cycloalkenyl, cycloalkynyl, and heterocyclyl.

As used herein, "heteroalkyl" refers to an alkyl group where one or more carbon atoms has been replaced with a heteroatom, that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur.

The terms "heteroalkyl", "heteroalkylene," and similar terms have the usual meaning known to those skilled in the art and thus may be used to refer to an alkyl group or alkylene group as described herein in which one or more of the carbons atoms in the backbone of alkyl group or alkylene group has been replaced by a heteroatom such as nitrogen, sulfur and/or oxygen. Likewise, the term "heteroalkenylene" may be used to refer to an alkenyl, or alkenylene group in which one or more of the carbons atoms in the backbone of alkyl group or alkylene group has been replaced by a heteroatom such as nitrogen, sulfur and/or oxygen.

As used herein, "heteroaryl" refers to an aryl group where one or more carbon atoms has been replaced with a heteroatom, that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur.

For convenience and conciseness, sometimes the terms "alkyl", "alkenyl", "alkynyl", "aryl", "heteroaryl.", and "alkylaryl", or the like, may be used to refer to the corresponding linking groups when they serve to connect two moieties of a molecule, either monomeric or polymeric, which should be readily understood by those skilled in the art. That is, on such occasions, "alkyl" should be interpreted as "alkylene"; "alkenyl" should be interpreted as "alkenylene"; "aryl" should be interpreter as "arylene"; and so on.

A "heavy atoms" is an atom that, when attached to a polymer, renders the polymer easier to detect by an imagine technique as compared to a polymer that does not contain the heavy atom. Since many polymers contain relatively low atomic number atoms such as hydrogen, carbon, nitrogen, oxygen, silicon and sulfur, in most cases heavy atoms have an atomic number of 17 or greater. Preferred heavy atoms have an atomic number of 35 or greater, and include bromine, iodine, bismuth, gold, platinum tantalum, tungsten, and barium.

A "hydrocarbon" is an organic compound consisting entirety of hydrogen and carbon. Examples of hydrocarbon include unsubstituted alkyl groups, unsubstituted acryl groups, and unsubstituted alkylaryl groups. Any substitution to an alkyl group, aryl group, or alkylaryl group in a hydrocarbon would only comprise carbon and/or hydrogen atoms.

As used herein, the terms "macromer", "macromeric" and similar terms have the usual meaning known to those skillet in the art and thus may be used to refer to oligomeric and polymeric materials that are functionalized with send groups that are selected so that the macromers can be copolymerized with other macromers or monomers. A wide variety of macromers and methods for making them are known to those skilled in the art. Examples of suitable macromers include hydroxy endcapped polylactic acid macromers, hydroxy endcapped polyglycolic acid macromers, hydroxy endcapped poly(lactic acid-co-glycolic acid) macromers, hydroxy endcapped polycaprolaetone macromers, poly(alkylene diol) macromers, hydroxy end-clapped poly(alkylene oxide) macromers and hydroxy endcapped polydioxanone macromers.

As used herein, the terms "polymer", "polymeric" and similar terms have the usual meaning knows to those skilled in the art and thus may be used to refer to homopolymers, copolymers (e.g., random copolymer, alternating copolymer, block copolymer, graft copolymer) and mixtures thereof. The repenting structural units of polymer may also be referred to herein as recurring units.

As used herein, the term "molecular weight" has the usual meaning known to those skilled in the art and thus preference herein to a polymer having a particular molecular weight will be understood as a reference to a polymer molecular weight in units of Daltons. Various techniques knows to those skilled in the art, such as end group analysis (e.g., by 1H NMR) and high pressure size exclusion chromatography (HPSEC, also known as gel permeation chromatography, "GPC"), may be used to determine polymer molecular weights. In some cases the molecular weights of polymers are further described herein using the terms "number average" molecular weight (Mn) and/or "weight average" molecular weight (Mw), both of which terms are likewise expressed in units of Daltons and have the usual meaning known to those skilled in the art.

Unless otherwise indicated, when a substituent is deemed to be "optionally substituted," it is meant that the substitutent is a group that may be substituted with one or more group(s) individually and independently selected from alkyl, alkenyl, alkylyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxyl, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, nitro, silyl, trihalomethanesulfonyl, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. The protecting groups that may form the protective derivatives of the above substituents are known to those of skill in the art and may be found in references such as Greene and Wuts, above.

The terms "radiopaque", "radio-opaque", "radiopacity", "radio-opacity", "radiopacifying" and similar terms have the usual meaning known to those skilled in the art and thus may be used to refer to polymer composition that have been endeared easier to detect using medical imaging techniques (e.g., by X-ray and/or during fluoroscopy) being the incorporation or heavy atoms into the polymer composition. Such incorporation may be by mixing, e.g., by fixing an effective amount of a radiopacifying additive such as barium salt or complex, and/or by attachment of effective amount of heavy atoms to one or more of the polymers in the polymer composition.

In certain configurations, polymer compositions may be inherently radiopaque, The term "inherently radiopaque" is used herein to refer to a Polymer to which a sufficient number of heavy atoms are attached by covalent or ionic bonds to render the polymer radiopaque. This meaning is consistent with the understanding of those skilled in the art, see, e.g., U.S. Patent Publication No. 2006/0024266.

Whenever a group is described as being "optionally substituted" that group may be unsubstituted or substituted with one or more of the indicate substituents. Likewise, when a group is described as being "unsubstituted or substituted" if substituted, the substituent may be selected from one or more the indicated substituents.

Unless otherwise indicated, when a substituent is deemed to be "optionally substituted," or "substituted" it is meant that the substituent is a group that may be substituted with one or more group(s) individually and independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heteroaryl, heteroalicyclyl, aralkyl, heteroaralkyl, (heteroalicyclyl)alkyl, hydroxy, protected hydroxy, alkoxy, aryloxy, acyl, ester, mercapto, cyano, halogen, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, protected C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, nitro, silyl, sulfenyl, sulfinyl, sulfonyl, haloalkyl, haloalkoxy, trihalomethanesulfonyl, trihalomethanesulfonamido, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. Similarly, the term "optionally ring-halogenated" may be used to refer to a group that optionally contains one or more (e.g., one, two, three or four) halogen substituents on the aryl and/or heteroaryl ring. The protecting groups that may form the protective derivatives of the above substituents are known to those of skill in the art and may be found in references such as Greene and Wuts, Protective Groups in Organic Syntheses, 3nd Ed., John Wiley & Sons, New York, NY, 1999.

It is understood that, in any compound described herein having one or more chiral centers, if an absolute stereochemistry is not expressly indicated, then each center may independently be of R-configuration or S-configuration or a mixture thereof. Thus, the compound provided herein may be enantiomerically pure or be stereoisomeric mixtures. In addition it is understood that, in any compound having one or more double bond(s) generating geometrical isomers that can be defined as E or Z each double bond may independently be E or Z a mixture thereof. Likewise, all tautomeric forms are also intended to be included.

The following abbreviations are used to identify various iodinated compounds. TE stands for tyrosine ethyl ester, DAT stands for desaminotyrosine and DTE for desaminotyrosyl tyrosine ethyl ester. PTE stands for hydroxy-phenoxy-1-oxoethyl tyrosine ethyl ester. Ty stands for tyrosol. The polymer obtained by phosgenation of DTE is denoted as poly(DTE carbonate). An "I" before the abbreviation shows mono-iodination (e.g. ITE stands for mono-iodinated TE) and an I2 before the abbreviation shows di-iodination (e.g. I2DAT stands for di-iodinated DAT). In DTE, if the "I" is before D, it means the iodine is on DAT and if "I" is after D, it means the iodine is on the tyrosine ring (e.g. DI2TE stands for DTE with 2 iodine atoms on the tyrosine ring). The following diagram illustrates this nomenclature further.

General Structure of Iodinated DTE Monomer

  • IDTE: X1a= I, X1b =H, X2a = H, X2b = H,
  • I2DTE: X1a = I, X1b = I, X2a = H, X2b = H
  • DI2TE: X1a = H, X1b = H, X2a = I, X2b = I
  • IDITE: X1a = I, X1b = H, X2a = I, X2b = H

For PTE, PTH, IPTE, I2PTE, PI2TE, etc., the DAT CH2CH2 is replaced with OCH2.

As used herein, the abbreviations for any protective groups, amino acids and other compound are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUP Commission on Biochemical Nomenclature (See, Biochem. 11:942-944 (1972)).

The term "halogen atom," as used herein, means any one of the radio-stable atoms of column 7 of the Periodic Table of the Elements, e.g., fluorine, chlorine, bromine, or iodine, with bromine and iodine being preferred.

The term "ester" refers to a chemical witch formula -(R)n-COOR', where R and R' are independently selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bounded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), and where n is 0 or 1. An "ester linkage" is an ester group that links two chemical moieties to one another.

The terms "purified," "substantially purified," and "isolated" as used herein refer to compound disclosed herein being substantially free of other, dissimilar compounds with which the compound of the invention are normally associated in their natural state, so that the compound of the invention comprise at least 0.5%, 1%, 5%, 10%, or 20%, and most preferably at least 50% or 75% of the mass, by weight, of a given simple.

It is understood that the polymers described herein may be used in accordance with preferred aspects of the invention as a homogeneous polymer, as a copolymer, and/or as a polymer blend. Accordingly, for example, reference herein top a polymer of the Formula (1) is understood to be a preference to a polymer that comprises a recurring unit of the Formula (I), which may be a homopolymer, copolymer or blend.

Although the inventors do not wish to be bound by or to any particular theory of operation, the inventors believe that the beneficial combination of properties associated with the medical devices of the present invention are attributable, at least in part, to certain characteristics of the polymers of formula (Ia), from which the devices are made.

The bioresorbable, inherently radiopaque stents disclosed in accordance with preferred embodiments of the present invention may be used, for examples, to temporarily treat a blood vessel as in traditional applications which generally include delivery through a catheter.

In some embodiments polymers prepared from sufficient amounts of the the monomeric starting materials described herein and having at least one bromine- or iodine-substituted aromatic ring are radio-opaque, such as the polymer prepared from radiopaque diphenol compounds prepared according to the disclosure of U.S. Patent No. 6,475,477, as well as he disclosure of co-pending and commonly-owned U.S. Patent Application Serial No. 10/592,202. The iodinated and brominated diphenol monomers of the present invention can also be employed as radio-opacifying, biocompatible non-toxic additives for other polymeric biomaterials.

Bromine and iodine substituted aromatic monomers of the present invention can be prepared by well-known iodination and bromination techniques that can be readily employed by those of ordinary skill in the art in view of the guidance provided herein without undue experimentation. In some embodiments, the halogenated aromatic compound from which the halogenated aromatic monomers of the present invention are prepared typically undergo ortho-directed halogenation. The term, "ortho-directed", is used herein to designate orientation of the halogen atom(s) relative to the phenoxy alcohol group.

The polymers described herein include polymers prepared by polymerizing Formula III monomers having pendent free carboxylic acid groups. However, it is not possible to polymerize polymers having pendent free carboxylic acid groups from corresponding monomers with pendent free carboxylic acid groups without cross-redaction of the free carboxylic acid group with the co-monomer. Accordingly, polymers in accordance with the present invention heaving pendent free carboxylic acid groups are prepared from homopolymers and copolymers of benzyl and tert-butyl ester monomers of the present invention.

The benzyl ester homopolymers and copolymers may be converted to corresponding free carboxylic acid homopolymers and copolymer through the selective remove or the benzyl groups by the palladium catalyzed hydrogenolysis method disclosed by co-pending and commonly owned U.S. Patent No. 6,120,491.

The tert-butyl ester homopolymers and copolymers may be conversed to corresponding free carboxylic acid homopolymers and copolymers through the selective removal of the tert-butyl groups by the acidolyis method discloses by the above-referenced U.S. Patent Application Serial No. 10/592,202.

Alter polymerisation, appropriate work up of the polymers in accordance with preferred embodiments of the present invention may be achieved by any of a variety of known methods commonly employed in the field of synthetic polymers to produce a variety of useful articles with valuable physical and chemical properties, all derived from tissue compatible monomers. The useful articles can be shaped by conventional polymer-forming techniques such as extrusion, compression molding, injection molding, solvent casting, spin casting, wet skinning, combinations of two or more thereof, and the like. Shaped articles prepared from the polymers are useful inter alia, as degradable biomaterials for medical implant applications. Such applications include the use of shaped articles as vascular grafts and stents.

Polymers described herein also include polyethers, polyurethanes, poly(carbamates), poly(thiocarhonates), poly(carbonodithionates) and poly(thiocarbamates), which may be prepared from the diphenol compounds of the present invention in accordance with known methods.

Random or block copolymer of the polymers of the present invention with a poly(alkylene oxide) may be prepared according to the method disclosed in U.S. Pat. No. 5,658,995, the disclosure of which is also incorporated by reference. The poly(alkylene oxide) is preferably a poly(ethylene glycol) block/unit typically having a molecular weight of less than about 10,000 per unit. More typically, the poly(ethylene glycol) block/unit has a molecular weight less than about 4000 per unit. The molecular weight is preferably between about 1000 and about 2000 per unit.

The molar faction of poty(ethylene glycol) units in block copolymer may range from greater than zero to less than 1, and is typically greater than zero up to about 0.5, inclusive. More preferably, the molar fraction is less than about 0.25 and yet more preferably, less than about 0.1. In a more preferred variations, the molar fraction may vary from greater than about 0.001 to about 0.08, and most preferably, between about 0.025 and about 0.035.

Unless otherwise indicated, the molar fractions reported herein are based on the total molar amount of poly(alkylene glycol) and non-glycol units in the polymers

After polymerisation, appropriate work up of the polymers in accordance with preferred embodiments of the present invention may be achieved by any of a variety of known methods commonly employed in the field of synthetic polymers to produce a variety of useful articles with valuable physical and chemical properties, all derived from tissue compatible monomers. The useful articles can be shaped buy conventional polymer thermo-forming techniques such as extrusion and injection molding when the degradation temperature of the polymer is above the glass transition or crystalliz melt temperature, or conventional non-thermal technique can be used, such as compression moulding, infection molding, solvent casting, spain casting, wet spinning. Combinations of two or more methods can be used. Shaped articles prepared from the polymers are useful, inter alia, as degradable biomaterials for medical implant applications.

Those skilled in the art will recognize that by appropriate election of variable groups, embodiments of the compounds described above can be a hydroxyphenyl-alkanoic acid, such as desaminotyrosyl tyrosine (DAT), or a hydroxyphenylalkenoic acid. When the compounds of the formula HX3-D1-X4H is a diol, the two compounds may be reacted in an acid catalyzed Fischer esterification reaction, illustrated generality as follows:

Because this reaction is reversible, removing water from the reaction mixture shifts the equilibrium to the right. Water removal is usually accomplished by way of azeotropic distillation, however other techniques known in the art may be employed as well In instances where azeotropic distillation is desired, the solvent used for the redaction is preferably carefully chosen so that it forms an azeotropic mixture with water. Generally, solvents such as toluene, heptane, chloroform, tetrachloethylene are preferred.

The main advantage of this reaction is that primary and secondary alcohols form esters with carboxylic acids under acid catalysis, whereas the phenolic hydroxy groups are unreactive under these conditions. Thus the carboxylic acid groups of certain compounds, such as the 3-(4-hydroxyphenyl) propionic acid (DAT) and of 3-(3,5-diiodo-4-hydroxy-phenyl) propionic acid (I2DAT), can be reacted with primary or secondary alcohols while the phenolic groups remain intact. An example of the foregoing is is generally illustrated in Scheme 4 above, and also as follows in synthetic Scheme 5

In Scheme 5, X can be R4a as defined above. Polymer compositions as described herein also include polyethers, polyesters, poly-iminocarbonates, polyphosphoesters and polyphosphazines. Those skilled in the art can prepare these polymers using routine experimentation informed by the guidance provided herein. Polyesters, specifically poly(ester amides), may be prepared by the process disclosed by U-S, Patent 5,216,115, and particularly for the purpose of describing such processes. Polyimmocarbonates may be prepared by the process disclosed by U.S. Patent 4,980,449. Polyethers may be prepared by the process disclosed by U.S. Patent 6,602,497.

MEDICAL USES

Various examples of the polymer compositions described herein, preferably derived from tissue compatible monomers, may be used to produce a variety of useful articles with valuable physical and chemical properties. The useful articles can be shaped by conventional polymer thermo-forming technique such as extrusion and injection folding when the degradation temperature of the polymer is above the glass transition or crystalline melt temperature(s), or conventional non-thermal technique can be used, such as compression molding, injection molding, solvent casting, spin casting, wet spinning. Combinations of two or more methods can be used. Shaped articles prepared from the polymers are useful, inter alia, as biocompatible, biodegradable and/or bioresorbable biomaterials for medical implant applications.

In one embodiment, the medical device is a stent. It is contemplated that a stent may comprise many different types of forms. For instance, the sent may be an expandable stent. In another embodiment the stent may be configured to have the form of a sheet stent, a braided stent, a self-expanding stent, a woven stent, a deformable stent, or a slide-and-lock sent. Stent fabrication processes may further include two-dimensional methods of fabrication such as cutting extruded sheets of polymer, via laser cutting, etch-ing, mechanical cutting, or other methods, and assembling the resulting cut portions into stents, or similar methods of three-dimensional fabrication of devices from solid forms.

In certain other embodiments, the polymer are formed into coatings on the surface of an implantable device, particularly a stent, made either of a polymer as described herein or another material, such as metal. Such coatings may be formed on stents via techniques such as dipping, spray coating, combinations thereof, and the like. Further, stents may be comprised of at least one fiber material, curable material, laminated material and/or woven material. The medial device may also be a stent graft or a device used in embolotherapy.

The highly beneficial combination of properties associated with preferred embodiment of the polymers described herein means these polymers are well-suited for use in producing a variety of resorbable medical devices besides stents, especially implantable medical devices that are preferably radiopaque, biocompatible, and have various times of bioresorption. For example the polymers are suitable for use in resorbable implantable devices with and without therapeutic agents, device components and/or coatings with and without therapeutic agents for use in other medical systems, for instance, the musculoskeletal or orthopedic system (e.g., tendons, ligaments, bone, cartilage skeletal, smooth muscles); the nervous system (e.g., spinal cord, brain, eyes, inner ear); the respiratory system (e.g., nasal cavity and sinuses, trachea, larynx, lungs); the reproductive system (e.g., male or female reproductive); the urinary system (e.g., kidneys, bladder, urethra, ureter); the digestive system (e.g., oral cavity, teeth, salivary glands, pharynx, esophagus, stomach, small intestine, colon), exocrine functions (biliary tract, gall bladder, liver, appendix, recto-anal capital); the endocrine system (e.g., pancreas/islets, pituitary, parathyroid, thyroid, adrenal and pineal body), the hematopoietic system (e.g., blood and bone marrow, lymph nodes, spleen, thymus, lymphatic vessels); and, the integumentary system (e.g., skin, hair, nails, sweat glands, sebaceous glands).

The polymers described herein can thus be used to fabricate wound closure devices, hernia repair meshes, gastric lap bands, drug delivery implants, envelopes for the implantation of cardiac devices, devices for other cardiovascular applications, noon-cardiovascular stents such as biliary stents, esophageal stents, vaginal stents, lung-trachea/bronchus stents, and the like.

In addition, the resorbable polymers are suitable for use in producing implantable, radiopaque discs, plugs, and other devices used to track regions of tissue removal, for example, in the removal of cancerous tissue and organ removal, as well as, staples and clips suitable for use in wound closure, attaching tissue to bone and/or cartilage, stopping bleeding (homeostasis), tubal ligation, surgical adhesion prevention, and the like. Applicants have also recognized that preferred embodiments of the polymers described herein are well-suited for use in producing a variety of coatings for medical devices, especially implantable medical devices.

Further, in some preferred embodiments, the present polymers may be advantageously used in making various resorbable orthopedic devices including, for example, radiopaque biodegradable screws (interference screws), radiopaque biodegradable suture anchors, and the like for use in applications including the correction, prevention, reconstruction, and repair of the anterior cruciate ligament (ACL), the rotator cuff/rotator cup, and other skeletal deformities.

Other devices that can be advantageously formed from preferred embodiments of the polymers described herein, include devices for use in tissue engineering. Examples of suitable resorbable devices include tissue engineering scaffolds and grafts (such as vascular grafts, grafts or implants used in nerve regeneration). The resorbable polymers may also be used to form a variety of devices effective for use in closing internal wound. For example biodegradable resorbable sutures, clips, staples, barbed or mesh sutures, implantable organ support, and the like, for use in various surgery, cosmetic applications, and cardiac wound closures can be formed.

Various devices useful in dental applications may advantageously be formed according to embodiments of the described herein. For example devices for guided tissue degeneration, alveolar ridge replacement for denture wearers, and devices for the regeneration of maxilla-facial bones may benefit from being radiopaque so that the surgeon or dentist can ascertain the placement and continuous function of such implants by sample X-ray imaging.

Preferred embodiments of the polymers described herein are also useful in the production of bioresorbable, inherently radiopaque polymeric embolotherapy products for the temporary and therapeutic restriction or blocking of blood supply to threat tumors and vascular malformations, e.g., uterine fibroids, tumors (i.e., chemoembolization), hemorrhage (e.g., during trauma with bleeding) and arteriovenous malformations, fistulas and aneurysms delivered by means of catheter or syringe. Details of embolotherapy products and methods of fabrication in which the polymers described herein may be employed are disclosed in U.S. Patent Publication No. 20050106119 A1. Embolotherapy treatment methods are by their very nature local rather than systemic and the products are preferably fabricated from the radio-opaque polymers described herein, to permit fluoroscopic monitoring of delivery and treatment.

The polymers described herein are further useful in the production of a wide variety of therapeutic agent delivery devices. Such devices may be adapted for use with a variety of therapeutics including, for example, pharmaceuticals (i.e., drugs) and/or biological agents as previously defined and including biomolecules, genetic material, and processed biologic materials, and the like. Any number of transport systems capable of delivering therapeutics to the body can be made, including devices for therapeutics delivery in the treatment of cancer, intravascular problems, dental problems, obesity, infection, and the like.

A medial device that comprises a polymeric materials may include one or more additional components, e.g., a plasticizer, a filler, a crystallization nucleating agent, a preservative, a stabilizer, a photoactivation agent, etc., defending on the intended application. For example, in an embodiment, a medical device comprises an effective amount of at least one therapeutic agent and/or a magnetic resonance enhancing agent. Non-limiting examples of preferred therapeutic agents include a chemotherapeutic agent, a non-steroidal anti-inflammatory, a steroidal anti-inflammatory, and a wound healing agent. Therapeutic agents may be co-administered with the polymeric material. In a preferred embodiment, at least a portion of the therapeutic agent is contained within the polymeric material, In another embodiment, at least a portion of the therapeutic agent is contained within a coating on the surface of the medical device.

Non-limiting examples of preferred chemotherapeutic agent include taxanes, tax-inines, taxols, paclitaxel, dioxorubicin, cis-platin, adriamycin and bleomycin, Non-limiting examples of preferred non-steroidal anti-inflammatory compounds include aspirin, dexa-methasone, ibuprofen, naproxen, and Cox-2 inhibitors (e.g., Rofexcoxib, Celecoxib and Valdecoxib). Non-limiting examples of preferred steroidal anti-inflammatory compounds include dexamethasone, beclomethasone, hydrocortisone, and prednisone. Mixtures comprising one or more therapeutic agent may be used. Non-limiting examples of preferred magnetic resonance enhancing agents include gadolinium salts such as gadolinium carbonate, gadolinium oxide, gadolinium chlorine, and mixtures thereof.

The amounts of additional components present in the medical device are preferably selected to be effective for the intended application. For example, a therapeutic agent is preferably present in the medical device in an amount that is effective to achieve the desired therapeutic effect in the patient to whom the medical device is administered or implanted. Such amount may be determined by routine experimentation. In certain embodiments, the desired therapeutic effect is a biological response. In an embodiment, the therapeutic agent in the medical device is selected to promote at least one biological response, preferably a biological response selected from the group consisting of thrombosis, cell, attachment, cell proliferation, attraction of inflammatory cells, deposition of matrix proteins, inhibition of thrombosis, inhibition of cell attachment, inhibition of cell proliferation, inhibition of inflammatory cells, and inhibition of deposition of matrix proteins. The amount of magnetic resonance enhancing agent in a medical devices is preferably an amount that is effective to facilitate radiologic imaging, and may be determined by routine experimentation.

The term "pharmaceutical agent", as used herein, encompasses a substance intended for mitigation, treatment, or prevention of disease that stimulates a specific physiologic (metabolic) response. The term "biological agent", as used herein, encompasses any substance that possesses structural and/or functional activity in a biological system, including without limitation, organ, tissue or cell based derivatives, cells, viruses, vectors, nucleic acids (animal, plant, microbial, and viral) that are natural and recombinant and synthetic in origin and or any sequence and size, antibodies, polynucleotides, oligonucleotides, cDNA's, oncogenes, proteins, peptides, amino acids, lipoproteins, glycoproteins, lipids, carbohydrates, polysaccharides, lipids, liposomes, or other cellular components or organelles for instance receptors and ligands. Further, the term "biological agent", as used herein, includes virus, serum, toxin, antitoxic, vaccine, blood, blood component or derivative, allergenic product, or analogous product, or arsphenamine or its derivatives (or any trivalent organic arsenic compound) applicable to the prevention, treatment, or cure of diseases or injuries of man (per Section 351(a) of the Public Health Service Act (42 U.S.C, 262(a)). Further the term "biological agent" may include 1) "biomolecule", as used herein, encompassing a biologically active peptide, protein, carbohydrate, vitamin, lipid, or nucleic acid produced by and purified from naturally occurring or recombinant organism, antibodies, tissues or cell lines or synthetic analogy of such molecules; 2) "genetic material" as used herein, encompassing nucleic acid (either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), genetic element, gene, factor, allele, operon, structural gene, regulator gene, operator gene, gene complement, genome, genetic code, codon, anticodon, messenger RNA (mRNA), transfer RNA (tRNA), ribosomal extrachromosomal genetic element, plasmagene. plasmid, transposon, gene mutation, gene sequence, exon, intron, and, 3) "processed biologics", as used herein, such as cells, tissues or organs that have undergone manipulation. The thera-peutic agent may also include vitamin or mineral substances or other natural elements.

For devices placed in the vascular system, e.g., a stent, the amount of the therapeutic agent is preferable sufficient to inhibit restenosis or thrombosis or to affect some other state of the stented tissue, for instance, heal a vulnerable plaque, and/or present rupture or stimulate endothelialization. The agent(s) may be selected from the group consisting of antiproliferative agent, anti-inflammatory, anti-matrix metalloproteinase, and lipid lowering, cholesterol modifying, anti-thrombotic and antiplatelet agent, in accordance with preferred embodiments of the present invention, In some preferred embodiment of the stent, the therapeutic agent is contained within the stent as the agent is blended with the polymer or admixed by other means known to those skilled in the art. In other preferred embodiments of the stent, the therapeutic agent is delivered from a polymers coating on the stent surface. In another preferred variation the therapeutic agent is delivered by means of no polymers coating. In other preferred embodiments of the stent, the therapeutic agent is delivered from at least one region or one surface of the stent. The therapeutic may be chemically bonded to the polymer or carrier used for delivery of the therapeutic of at least one portion of the stent and/ or the therapeutic may be chemically bonded to the polymer that comprises at least one portion of the stent body. In one preferred embodiment, more than one therapeutic agent may be delivered.

In certain embodiments, any of the forementioned devices described herein can be adapted for use as a therapeutic delivery device (in addition to any other functionality thereof). Controlled therapeutic delivery systems may be prepared, in which a therapeutic agent, such as a biologically or pharmaceutically active and/or passive agent, is physically embedded or dispersed within a polymeric matrix or physically admixed with a polymers described herein. Controller therapeutic agent delivery systems may also be prepared by direct application of the therapeutic agent to the surface of an implantable medical device such as a bioresorbable stent device (comprised of at least one of the polymers described herein) without the use or these polymers as a coating, or by use of other polymers or substances for the coating.

Therapeutic agent delivery compounds may also be formed by physically blending the therapeutic agent to be delivered with the polymers described herein using conven-tional techniques well-known to those of ordinary skill in the art. For this therapeutic agent delivery embodiment, it is not essential that the polymer have pendent groups for covalent attachment of the therapeutic agent.

The polymer composition described herein containing therapeutic agents, regardless of whether they are in the form of polymer conjugates or physical admixtures of polymers and therapeutic agent, are suitably for applications where localized delivery is desired, as well as in situations where a systemic delivery is desired. The polymer conjugate and physical admixtures may be implanted in the body of a patient in need thereof, by procedures that are essentially conventional and well-known to those of ordinary skill in the art.

The polyarylates can also be formed into drug delivery implants that degrade to release pharmacologically or biologically active agents within a predictable controlled release time. Such controlled drug delivery systems can be prepared by incorporating the active agents intro the polymer chains as pendant side chains or by cross linking the pendant side chains to form a polymeric matrix into which the active agents are physically embedded or dispersed. Controlled drug delivery system implants can also be formed by physically admixing the polyarylates with a biologically or pharmacologically active agent. The foregoing procedures are essentially conventional and well-known to those of ordinary skill in the art.

For controlled drug delivery systems in which a biologically or pharmacologically active agent is physically embedded or dispersed into a polymeric matrix or physically admixed with a polyarylate, suitable biologically or pharmacologically active agents include in principle any active agent that has to be repeatedly administered over prolonged periods of time.

An advantage of using the radiopaque, bioresorbable polymers described herein in therapeutic agent delivery application is the ease of monitoring release of a therapeutic agent and the presence or the implantable therapeutic delivery system. Because the radiopacity of the polymeric matrix is due to covalently attached halogen substituents, the level of radiopacity is directly related to the residual amount of the degrading therapeutic agent delivery matrix still present at the implant site at any given time after implantation. In referred embodiment the rate of therapeutic release from the degrading therapeutic delivery system will be corrected with the rate of polymer resorption. In such preferred embodiments, the straight-forward, quantitative measurement of the residual degree of radio-opacity will provide the attending physician with a way to monitor the level of therapeutic release from the implanted therapeutic delivery system.

The following non-limiting examples set forth herein below illustrate certain aspects of the invention. All parts and percentages are by mole percent unless otherwise noted and all temperature are in degrees Celsius unless otherwise indicated. All solvents were HPLC grade and all other reagents were of analytical grade and used as received, unless otherwise indicated,

EXAMPLES

All the reagents were purchased in pure form and were used as received. Solvents were of "HPLC" or "ACS reagent" grade.

Generally, the diphenolic monomers were prepared by Fisher-esterification of tyrosol with phenolic acids such as desaminotyrosine, 3,5-diiododesaminotyrosine or dicarboxylic acids (0,5 equivalents) by with catalytic amount of 4-toulenesulfonic acid in chloroform or 1,2-dichloroethane as the solvent. A modified Dean Stark trap was used to remove the water formed. The diphenoiic monomers in the pure form or as appropriate mixtures were polymerized to the corresponding polycarbonates using triphosgene. The polymers were compression molded into films, The films were tested for mechanical properties and they generally showed high modulus, tensile strength and elongation at break. Further details are provided below.

Reference Example 1. Synthesis of 4-hydroxyphenethyl 3-(4-hydroxyphenyl)propanoate (DTy)

Into a 500 mL round bottomed flask fitted with an overhead stirrer, and a modified Dean-stark trap for solvents heavier than water were added 10 g (72 mmol) of tyrosol, 13 g (78 mmol) of desaminotyrosine (DAT), 0.65 g (3.4 mmol) of 4-toluenesulfonic acid monohydrate, and 200 mL of 1,2-dichloroethane (DCE). A water-cooled reflux condenser was placed on top of the modified Dean-stark trap and the contents of the flask were heated to reflux while being stirred. The reaction was continued until approximately 1.4 mL of water collected in the modified Dean-stark trap above the DCE and the water collection essentially stopped (about 4 hours of reflux). The reaction mixture was cooled to room temperature when the crude product precipitated as off-white crystalline solid, which was dissolved in 100 mL of ethyl acetate and washed twice with 100 m portion of 5% sodium bicarbonate solution. After drying over magnesium sulfate the organic layer was concentrated and precipitated with hexane. The resulting white crystalline solid was collected by filtration and dried in a vacuum oven at 25 °C. The product was characterized by elemental analyses, HPLC, and 1H NMR.

Using a similar procedure, 4-hydroxyphenethyl 4-hydroxyphenyl acetate (HPTy, compound of Formula (V) where L1 = L4= bond, m = 2, n = 1, y1 = y2 = 0) was prepared by substituting 4-hydroxyphenyl acetic acid for desaminotyrosine. The product was characterized by HPLC and 1H NMR.

Using a similar procedure, 4-hydroxyphenethyl 2-(4-hydroxyphenoxy) acetate (compound of Formula (V) where L' = bond, L4= -O-, m = 2, n = 1, y1 = y2 = 0) is prepared by substituting 2-(4-hydroxyphenoxy)acetic acid for desaminotyrosine. Similar result are obtained,

Using similar procedures, a monomer having the structure below (compound of Formula (VI) where Z = -NH-C(O)-CH3, X1 = 1, y1 = 2, y2 = 0) is prepared by reacting N-acetyltyrosine with diiodotyrosol using a solvent or mixture of solvents in which the N-acetyl tyrosine is more soluble than in 1,2-dichloroethane. Similar results are obtained.

Using similar procedures, a monomer having the structure below (compound of Formula (VI) where Z = -NH-C(O)-CH3, y1 = y2 = 0) is prepared by reacting N-acetyltyrosine with tyrosol using a solvent or mixture of solvents in which N-acetyl tyrosine is more soluble than in 1,2-dichloroethane. Similar results are obtained.

Reference Example 2, Synthesis of 4-hydroxyphenethyl 3-(4-hydroxy-3,5-diiodophenyl)-propanoate (I2DTy)

Into a 500 my round bottomed flask fitted with an overhead stirrer, and a modified Dean-stark trap for solvent heavier than water were added 34.5 g (0.250 mol) of tyrosol, 102 g (0.244 sol) of 3-(4-hydroxy-3,5-diiodophenyl)propanoic acid (I2DAT), 4.76 g (0.025 mol) of 4-toluenesulfonic acid monohydrate, and 500 mL of DCE. A water-cooled reflux condenser was placed on top of the modified Dean-star trap and the contents of the flask were heated to reflux while being stirred. The reaction was continued until approximately 4,8 mL of water collected in the modified Dean-stark trap above the DCE and the water collection essentially stopped. The reaction mixture was allowed to cool to room temperature when the crude product precipitated as off-white crystals which was dried and then dissolved in 350 mL of tetrahydrofuran (thf). To this solution was added while stirring 1 L of 5% aqueous sodium bicarbonate solution stirred for 10 m and then allowed stand when the layers separated. The top layer was removed and discarded. The bottom layer was washed with two 500 mL portions of 5% aqueous sodium bicarbonate solution. I2DTy precipitated as white crystalline solid. This was isolated by filtration and washed with 3 X 50 mL of deionized water. The product was dried under vacuum at 40 °C for 24 h and characterized by elemental analysis, HPLC, and 1H NMR.

Using similar procedures, 4-hydroxyphenethyl 2-(4-hydroxy-3,5-diiodophenyl)acetate (I2HPTy) was prepared by substituting 2-(4-hydroxy-3-5-diiodophenyl)acetic acid for I2DAT, and characterized by hplc and 1H NMR.

4-hydroxyphenethyl 2-(4-hydroxy-3,5-diiodopbenyl)acetate

Using similar procedures, 4-hydroxy-3,5-diiodophenethyl 3-(4-hydroxy-3,5-diiodophenyl)propionate is prepared by substituting 4-(2-hydroxyethyl)-2,6-diiodophenol for tyrosol.

4-hydroxy-3,5-diiodophenethyl 3-(4-hydroxy-3,5-diiodophenyl)propionate

Reference Example 3. Syntheses of dityrosyl succinate

Into a 500 mL round bottomed flask fitted with an overhead stirrer, and a modified Dean-stark trap for solvents heavier than water were added 25,0 g (0.181 mol) of tyrosol, 9.56 g (0.088 mol) of succinic acid, 3.44 g (18.1 mmol.) of 4-toluenesulfonic acid monohydrate, and 200 mL of DCE. A water-cooled reflux condenser was attached to the top of the modified Dean-stark trap and the contents of the flask were heated to reflux while bering stirred. The reaction was continued until approximately 3.2 mL of water collected in the modified Dean-stark trap above the DCE and the water collection essentially stopped. The reaction mixture was allowed to cool to room temperature while stirring was continued. The product that precipitated was isolated by filtration and washed with 2 X 50 mL of DCE. 1H NMR showed residual PTSA and tyrosol. For purification the solid was stirred with 150 mL of aqueous 5% NaHCO3 for 3 h using overhead stirrer. The product was isolated by filtration and washed with 3 X 50 mL of DI water and then dried in the vacuum oven for 24 h at 50 °C. The product was dried under vacuum at 40 °C for 24 h and characterized by elemental analysis, HPLC, and 1H NMR spectroscopy.

Reference Example 4. Synthesis of dityrosyl Oxalate

Into a 500 mL round bottomed flask filted with an overhead stirrer, and a modified Dean-stark trap for solvents heavier than water were added 25.0 g (0.181 mol) of tyrosol, 8.00 g (0.088 mol) of Oxalic acid, 3.44 g (18,1 mmol) of 4-toluenesulfonic acid monohydrate, and 200 mL of 1.2-DCE. A water-cooled reflux condenser was attached to the top of the modified Dean-stark trap and the contents of the flask were heated to reflux while being stirred. The reaction was continued until approximately 3.2 mL of water collected in the modified Dean-stark trap above the DCE and the water collection essentially stopped. The reaction mixture was allowed to cool to room temperature while stirring was continued. The product that precipitated was isolated by filtration and washed with 2 X 50 mL of DCE. For purification the solid was stirred with 150 mL of aqueous 5% NaHCO3 for 3 h using overhead stirrer. The product was isolated by filtration and washed with 3 X 50 mL of DI water and then dried in the vacuum oven for 24 h at 50 °C. The product was dried under vacuum at 40 °C for 24 h and characterized by elemental analysis, HPLC, and 1H NMR spectroscopy.

Reference Example 5. Polymerization of DTy and HPTy using triphosgene

In a 500 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 8.0 g (0.035 mol) of DTy, 9.5 g (0.12 mol) of pyridine, 70 mL of dichloromethane (DCM) and stirred for 15 min to get a clear solution. Triphosgene (3.6 g, 0.036 mol) was dissolved in 15 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, 100 mL of water was added to the reaction mixture and stirred for 5 min. After showing the layers to separate, the top aqueous layer was removed and discarded. The washing as above was repeated with two additional 100 mL portions of DI water. The reaction mixture was then precipitated with 120 mL of IPA. The resulting gel was ground twice with 150 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 80 °C for 24 h The polymer had a HPSEC polystyrene equivalent molecular weight of 160 Kda (THF as mobile phase). The polymer was semi-crystalline with a Tg of 51 °C and a Tm of 181 °C. On compression molding at 220 °C it gave films which were transparent on rapid cooling and translucent when cooled slowly. The tensile modulus, tensile stress at yield, and elongation at break were respectively 210 ksi, 5 ksi and 500%. Using similar procedures, HPTy (obtained in accordance with Reference Example 1) was polymerized to obtain poiy(HPTy carbonate) with an HPSEC polystyrene equivalent Mw of 140 Kda and a Tg of 55 °C.

Reference Example 6. Polymerization of I2DYy and I2HPTy, using triphosgene

In a 500 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a controlled liquid addition device were placed 25 g (0.046 mol) of I2DTy, 14.3 g (0.181 mol) of pyridine, 200 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (5.1 g, 0.052 mol of phosgene) was dissolved in 20 mL of DCM and the solution was to the reaction flask over 2-3 hours. After the addition was complete, 250 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 250 mL portions of DI water. The reaction mixture was then precipitated with 350 mL of IPA. The resulting gel was ground twice with 200 mL portions of IPA in a 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 80 °C for 24 h. The polymer had a HPSEC polystyrene equivalent molecular weight of 176 Kda (THF as mobile phase) and glass transition temperature (Tg) of 112 °C. Compression molding at 205 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield, and elongation at break respectively of 230 ksi, 9.2 ksi and 220%. Using similar procedures, I2HPTy (obtained in accordance with Reference Example 2) was polymerized to obtain poly(I2HPTy carbonate).

Reference Example 7. Preparation of Poly(I2DTy-co-10weight% PEG2K carbonate)

In a 250 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 9.0 g (0.017 mol) of I2DTy, 1.01 g of PEG2000, 5.4 g (0.068 mol) of pyridine, and 65 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (2.0 g, 0.020 mol of phosgene) was dissolved in 10 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, 100 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 100 mL portions of DI water. The reaction mixture was them precipitated with 100 mL of IPA. The resulting gel was aground twice with 150 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 50 °C. The polymers had a HPSEC polystyrene equivalent molecular weight of 250 Kda (THF as mobile phase) and glass transition temperature (Tg) of 64 °C and gave a clear film on compression molding at 205 °C. The tensile stress at yield, the tensile modulus and elongation at break respectively were 7.1 ksi, 235 ksi and 350%.

Reference Example 8. Reparation of Poly(I2DTy-co-5 weight% PEG2K carbonate)

In a 250 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 10 g (0,019 mol) of I2DTy, 0.535 g of PEG2000, 5.9 mL (0.073 mol) of pyridine, and 62 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (2.1 g, 0.021 mol of phosgene) was dissolved in 10 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, 100 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 100 mL portions of DI water. The reaction mixture was then precipitated with 100 mL of IPA The resulting gel was aground twice with 150 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum migration and dried in a vacuum oven at 50 °C. The polymers had a HPSEC polystyrene equivalent molecular weight of 200 Kda (THF was mobile phase) and glass transition temperature (Tg) of 84 °C. Compression molding at 205 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield, and elongation at break respectively of 232 ksi, 8.2 ksi and 70%.

Reference Example 9. Preparation of Poly(I2DTy-co-10weight% PTMC5K carbonate)

In a 250 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 9.0 g (0.017 mol) of I2DTy, 1.00 g of polytrimethylene carbonate) of Mn 5000 (PTMC5K), 5.5 ml (0,068 mol) of pyridine, and 65 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (1.9 g, 0.019 mol of phosgene) was dissolved is 10 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, 100 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 100 mL portions of DI water. The reaction mixture was then precipitated with 100 mL of IPA, The resulting gel was ground twice with 150 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 50°C. The polymer had a HPSEC polystyrene equivalent molecular weight of 250 Kda (THF as mobile phase) and glass transition temperature (Tg) of 101 °C. Compression moulding at 205 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield, and elongation at break respectively of 201 ksi, 7.4 ksi and 120%.

Reference Example 10. Preparation of Poly(I2DTy-co-5 weight% PTMC5K carbonate)

In a 250 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 10 g (0.019 mol) of I2DTy, 0.53 g of PTMC5K, 5.9 ml (0.073 mol) of pyridine, and 65 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (2.1 g, 0.021 mol of phosgene) was dissolved in 10 mL ofDCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, 100 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 100 mL. portions of DI water. The reaction mixture was then precipitated with 100 mL of IPA. The resulting gel was ground twice with 150 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 50 °C. The polymer had a HPSEC polystyrene equivalent molecular weight of 225 Kda (THF as mobile phase) and glass transition temperature (Tg) of 106 °C. Compression molding at 205 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield, and elongation at break respectively of 266 ksi, 8.4 ksi and 185%.

Example 1. Synthesis of di-ester of 13-propanediol with I2DAT (PrD-di I2DAT)

Into a 500 mL round-bottomed flask equipped with an overhead stirrer, a Dean-Stark trap and a thermometer were added 3.04 g (0,040 mol) of 1,3-propanediol, 33.8 g (0.081 mol) of 3,5-diiododesaminotyrosyl tyrosine ethyl ester (I2DAT), 0,76 g (4.0 mmol) of p-toluenesulfonic acid, and 200 mL of 1,2-dichloroethane, The flask was heated using a heating mantle, while stirring with the overhead stirrer so that 1,2-dichloroethane and water distilled over into the Dean-Stark trap. The heating continued until the water collection stopped (about 1.45 mL of water was collected). The reaction mixture was allowed to cool to 50 °C and then evaporated to dryness. To the residue 175 mL of acetonitrile was added and stirred at room temperature for 4 h. The crystalline solid that separated was isolated by filtration and washed with acetonitrile. The Off-white crude product was collected and dried.

The crude PrD-di I2DAT obtained above (98% pure by HPLC) was stirred with 175 mL of acetonitrile for 4 h using a overhead stirrer at 200 rpm. The product precipitated as almost colorless powder, which showed a purity of ca 98-99% by HPLC. For further purification the product was dissolved in acetonitrile (10 mL/g) and stirred with Norit (10 mg of Norit /g of product). The hot solution was filtered to remove Norit and then cooled in ice-water bath for recrystallization when colorless powder was obtained (purity >99.5% by HPLC). The product was dried in vacuum oven at 40 °C. The product had a melting point of 88 °C (by DSC) and the elemental analysis and 1H NMR spectrum were in agreement with the structure. Further purification can be achieved by column chromatography on silica gel.

Example 2. Preparation of Poly(PrD-di I2DAT-co-10 weight% tyrosol carbonate)

In a 1 L 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 25 g (0.029 mol) of PrD-di I2DAT, 2.78 g (0.020 mol) of tyrosol, 15.4 ml (0.19 mol) of pyridine, and 170 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (5.4 g, 0.055 mol of phosgene) was dissolved in 20 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the 200 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 200 mL portions of DI water. The reaction mixture was then precipitated with 300 my of IPA. The resulting gel was ground twice with 200 mL portions of IPA in 1L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum over at 80 °C. The Polymer had a HPSEC polystyrene equivalent molecular weight of 200 Kda (THF as mobile phase) and glass transition temperature (Tg) of 90 °C. 1H NMR spectrum of the polymer was in agreement with the structure. Compression molding at 205 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield (σ), and elongation at break respectively of 260 ksi, 9.7 ksi and 220%. Using similar procedures copolymers with 5%, and 15% tyrosol were prepared as follows:

% tyrosol

Tg, °C

σ, ksi

Modulus, ksi

Elongation, %

5

104

9.8

254

41

15

90

9.5

244

164

As will be understood by a person of ordinary skill in the art, since triphogene is added slowly into the mixture of the reactants PrD-di I2DAT and tyrosol, the poly(PrD-di I2DAT-co-tyrosol carbonate) product is composed of mainly polymer molecules having randomly-ordered PrD-di I2DAT and tyrosol units connected through carbonate (-OC(O)O-) linkers. That is, two adjacent units could include PrD-di I2DAT and PrD-di I2DAT, PrD-di I2DAT and tyrosol, or tyrosol and tyrosol. Given the unsymmetrical structure of tyrosol it can be connected with a PrD-di I2DAT unit using either "head" (i.e., "phenoxy" moiety) or "tail" (i.e., the "ethylenoxy" moiety). Any two adjacent units formed from tyrosol itself can be in any of the "head-head", "head-tail" or "tail-tail" arrangements. In this Example, without intending to be bound by theory, since the PrD-di I2DAT was used in molar excess, the polymer molecules likely do not contain a large amount of long strings of "tyresol-carbonate-tyrsol" units linked to each other. On the other hand, if there is a large excess of tyrosol relative to the PrD-di I2DAT in the reaction mixture, tyrosol may have more opportunity to link with each other to give relatively long strings of such linkages.

Example 3. Poly(tyrosol carbonate)

In a 500 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 10 g (0.073 mol) of tyrosol, 24 ml (0.298 mol) of pyridine, 200 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (7.7 g, 0.078 mol of phosgene) was dissolved in 25 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, 250 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 250 mL portions of DI water. The reaction mixture was then precipita-ted with 300 mL of IPA. The resulting gel was ground twice with 200 mL portions of IPA in 1L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum even at 60 °C. The polymer had a HPSEC polystyrene equivalent molecular weight of 126 Kda (THF as mobile phase) and glass transition temperature (Tg) of 58 °C. Compression molding at 195 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield, and elongation at break respectively of 191 ksi, 5 ksi and 450%.

Example 4. Low molecular weight Poly(tyrosol carbonate)

In a 250 mL 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 10 g (0.073 mol) of tyrosol, 22 ml (0.277 mol) of pyridine, 60 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (7.0 g, 0.071 mol of phosgene) was dissolved in 25 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the 100 mL of 0.2 M aqueous HCl was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with three additional 100 mL portions of 0.2 M aqueous HCl. The reaction mixture was then dried over anhydrous magnesium sulfate and then precipitated with 100 mL of hexane. The resulting viscous oil was stirred with 200 mL of fresh hexane until the product solidified into a white solid. The product was transferred to a glass dish dried in a vacuum oven at 60 °C. The polymer had a HPSEC polystyrene equivalent Mw of 7500 da and Mn of 5700 da (THF as mobile phase) and glass transition temperature (Tg) of 48 °C. A number of oligomers and polymers ranging in Mw from 750 da to 40,000 da were prepared using this method.

Example 5. Preparation of multi-block Poly(PrD-di I2DAT -co-10 weight% tyrosol carbonate)

In a 1 L 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 25 g (0.029 mol) of PrD-di I2DAT, 2.78 g (0.49 mmol) of oligo(tyrosol carbonate) with Mn of 5700 da, 15.4 ml (0.19 mol) of pyridine, and 170 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (3.3 g. 0.055 0.034 mol of phosgene) was dissolved in 20 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the reaction mixture was stirred for 15 min. To the viscous reaction mixture 200 mL of water was added and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 200 mL portions of Di water. The reaction mixture was then precipitated with 300 mL of IPA. The resulting gel was ground twice with 200 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 80 °C. The polymer had a HPSEC polystyrene equivalent molecular weight of 200 Kda (THF as mobile phase) and glass transition temperature (Tg) of 90 °C. 1H NMR spectrum of the polymer was in agreement with the structure. The 1H NMR spectrum of this polymer was 2 significantly different from the random copolymer obtained as in example 2, indicative of the blockiness of the tyrosol recurring units.

Example 6. Preparation of Poly(PrD-di I2DAT-co-10 weight% DTy carbonate)

In a 1 L 3-necked round-bottomed, flask equipped with a mechanical stirrer, and a liquid addition device were placed 25 g (0.029 mol) of PrD-di I2DAT, 2.78 g (0.010 mol) of DTy, 15.4 ml (0.19 mol) of pyridine, and 170 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (4.3 g, 0.044 mol of phosgene) was dissolved in 20mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the 200 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 200 mL portions of DI water. The reaction mixture was then precipitated with 300 mL of IPA. The resulting gel was ground twice with 200 mL portions of IPA in 1 L laboratory blender. The product was isolated by vacuum filtration and dried in a vacuum oven at 80°C. The polymer had a HPSEC polystyrene equivalent molecular weight of 200 Kda (THF as mobile phase) and glass transition temperature (Tg) of 95 °C. 1H NMR spectrum of the polymers was in agreement with the structure. Compression molding at 205 °C gave a uniform transparent film which gave tensile modulus, ultimate tensile stress, and elongation at break respectively of 280 ksi, 10 ksi and 200%.

Reference Example 11. Preparation of Tyrosol or Analog-based Alternating Polycarbonates

Alternating polymers having regular sequences of tail-tail, head-head, and/or head-tail configurations are disclosed. These polymers are distinctly different from random polymers having no specific order of tail-tail, head-head, and/or head-tail configurations. Specifically, polycarbonates derived from tyrosol, have three types of carbonate bounds: aromatic-aromatic (also referred to as head-head), mixed aromatic-aliphatic (also referred to as head-tail), and aliphatic-aliphatic (also referred to as tail-tail) as shown below:

Polymers having a random sequence of H-H, H-T. or T-T backbone linkages can have distinctly different properties from those having a regular sequence of backbone linkages.

To create alternating polymers with a regular, alternating sequence of H-H and T-T bonds, the monomer was reacted with itself to form a dimer. Then, the dimer was subjected to a polymerisation reaction. In this example, aliphatic dityrosol carbonate and aliphatic tyrosol chloroformate were used as monomers for polycarbonate synthesis. Aliphatic dityrosol carbonate introduces an enzymatic cleavage site due to the flexibility and steric accessibility of the aliphatic carbonate bond. The reaction steps are outlined below.

(A) Synthesis of tyrosol chloroformate

Tyrosol was placed in a three-necked flask equipped with an overhead stirrer under inert atmosphere. Anhydrous tetrahydrofuran was added from a syringe and a solution was obtained while the mixture was stirred. The solution was constantly cooled with an ice/water bath. Triphosgene was dissolved in anhydrous tetrahydrofuran and added drop-wise to the reaction vessel. Aliphatic tyrosol chloroformate was obtained over the course of one hour. Most of the solvent was evaporated to prepare for the work-up. Methylene chloride was added to dissolve the residue and excess tyrosol was filtered off. The solution was cooled in an ice/water bath. Cooled deionized water was added to remove most of the HCl built up during the reaction. The two layers were separated and the organic phase was dried over magnesium sulfate. The solvent was evaporated, and after drying under vacuum aliphatic tyrosol chloroformate was obtained as an oil.

(B) Synthesis of aliphatic dilyrosol carbonate

Aliphatic tyrosol chloroformate (A) and tyrosol were dissolved in anhydrous tetrahydrofuran under nitrogen atmosphere and cooled with an ice/water bath. One equivalent of pyridine was added drop-wise using a syringe pump over the course of twelve hours. Then the solvent was evaporated, and the residue dissolved in Methylene chloride. The organic phase was washed 4 times with dilute HCl, 4 times with 5% (w/v) aqueous bicarbonate and twice with brine. The organic layer was dried over magnesium sulfate. After drying dityrosol carbonate was obtained as a white solid.

(C) Synthesis of poly(tyrosol carbonate) with alternating carbonate bond sequence

Aliphatic dityrosol carbonate is dissolved in Methylene chloride under nitrogen atmosphere. Triphosgene is dissolved in methylene chloride and added drop-wise to the reaction mixture. After the triphosgene addition, pyridine is added drop-wise to the reaction mixture over the course of several hours. Poly(tyrosol carbonate) with alternating carbonate bond sequence is obtained by standard a workup procedure.

(D) Synthesis of polytyrosol with controlled carbonate bond sequence

Dityrosol carbonate (x equivalents) and tyrosol carbonate (y equivalents) are dissolved in anhydrous tetrahydrofurane and cooled in dry ice/isopropanol bath. Pyridine is added drop-wise over the course of several hours in step 1. Then triphosgene dissolved in anhydrous tetrahydrofuran is added drop-wise into the reaction mixture. The poly(tyrosol carbonate) with controlled composition of carbonate bonds is obtained through a standard work-up procedure.

Reference Example 12 Preparation of poly(PrDI2DAT-co-9%tyrosol-co-1%PEG1K carbonate)

In a 1 L 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 45 g (51 mmol) of PrD-di I2DAT, 4.5 g (33 mol) of tyrosol, 0.5 g (0.50 mmol) of PEG 1000, 25 g (320 mmol) of pyridine, and 305 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (8.6 g, 87 mmol of phosgene) was dissolved in 32 mL of DCM and the solution was introduced into the redaction flask over 2-3 hours. After the addition was complete, the reaction mixtures was quenched with a mixture of 135 mL of THF and 15 mL of water. 350 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 350 mL portions of DI water. The reaction mixture was then precipitated with 500 mL of acetone. The resulting gel was stirred with 500 mL of IPA when the gel broke up into fine particles. The particles were ground twice, isolated by filtration and dried in a vacuum oven at 80°C. The polymers had a Mw of 400 Kda and glass transition temperature (Tg) of 92 °C. 1H NMR spectrum of the polymer was in agreement with the structure. Compression molding at 190 °C gave a uniform transparent film which gave tensile modulus, tense stress at yield, and elongation at break of 240 ksi, 9,1 ksi, and 106% respectively.

Reference Example 13. Preparation of poly(I2DTy-co-10%tyrosol carbonate)

In a 1 L 3-necked round-bottomed, flask equipped with a mechanical stirrer, and a liquid addition device were placed 45 g (0.084 mol) of I2DTy, 5 g (0.036 mol) of tyrosol, 35.5 g (0.45 mol) of pyridine, and 300 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (12.3 g, 0.125 mol of phosgene) was dissolved in 32 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the reaction mixture was quenched with a mixture of 135 mL of THF and 15 mL of water. 350 mL of water was added to the redaction mixtures and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The wishing was repeated with two additional 350 mL portions of DI water. The reaction mixture was then precipitated with 600 mL of IPA. The resulting gel was aground twice in a 4 L high speed blender. The precipitate obtained was isolated by filtration and dried in a vacuum oven at 80°C. The polymer had a Mw of 318 Kda and a glass transition temperature (Tg) of 100 °C. 1H NMR spectrum of the polymer was in agreement with the structure. Compression molding at 190 °C gave a uniform transparent film. Using similar procedures a copolymer with 15% tyrosol was prepared. The properties of the polymers are set forth below:

% tyrosol

Tg, °C

σ, ksi

Modulus, ksi

Elongation, %

10

100

8.7

234

239

15

82

9.0

240

217

Reference Example 14. Preparation of PLLAdiol using ethylene glycol as initiator (EGPLLAD7K).

Into a 250 mL round bottomed flask were transferred 1.29 g (0.02 mol) of ethylene glycol, 1.44 tg (3.6 mmol) of Sn(II)octoate and 144.1 g (1.0 mol) of L-lactide. A large egg-shaped stir bar was introduced into the flask. The flask was maintained under a positive pressure of nitrogen and then immersed into an oil bath maintained at 110 °C and after heating for 1 h the lactide melted. The temperature was raised to 140 °C and heated with stirring for 4 h. The flask was then removed from the oil bath and allowed to cool to room temperature. To the flask 350 mL of DCM was added and stirred overnight to dissolve the polymer. The polymer solution was slowly added to 1 L of heptane with stirring. The polymer precipitated as white crystalline powder which was isolated by filtration. The precipitate was washed with 250 mL of acetonitrile to remove any unreacted lactide. The product was dried in a vacuum oven at 40 °C for 24 h. DSC showed a Tg of 47 °C and melting points at 134 °C (5 J/g) and 148 °C (15.5 J/g). PrDPLLAD7K was similarly prepared using 1,3-propanediol as the initiator instead of ethylene glycol.

Reference Example 15. Preparation of poly(PrD-di I2DAT-co-50%EGPLLAD7K carbonate).

In a 1 L 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 30 g (0.034 mol) of PrD-di I2DAT, 30 g (0.004 mol) of EGPLLAD7K, 11.4 g (0.145 mol) of pyridine, and 360 mL of chloroform and stirred for 15 min to get a clear solution (the solution was slightly cloudy). Triphosgene (3.96 g, 0.04 mol of phosgene) was dissolved in 12 mL of chloroform and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the reaction mixture was quenched with a mixture of 135 mL of THF and 15 mL of water. 350 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 350 mL portions of DI water. The reaction mixture was then precipitated with 700 mL of IPA. The resulting gel was ground with 550 mL twice in a 4 L blender. The product was isolated by filtration and dried in a vacuum oven at 80 °C. 1H NMR spectrum of the polymer was in agreement with the structure. Compression molding at 190 °C of the obtained 50% EGPLLAD polymers gave a uniform transparent film.

Using similar procedures, copolymers containing 20% and 65% EGPLLAD were also prepared. The physical properties of the three polymer samples are set forth below. Other polymers having different physical properties can be prepared by routine experimentation informed by the guidance provided herein, e.g., by appropriate selection of comonomer content, polymer molecular weight and film preparation procedures.

% EGPLLAD

Tg, °C

σ, ksi

Modulus, ksi

Elongation, %

20

60 and 110

9.4

262

6

50

Tg = 61

8.0

274

162

Tm = 150

65

Tg = 62

7.0

295

5

Tm = 146

Reference Example 16. Preparation of poly(I2DTy-co-50%EGPLLAD7K carbonate).

In a 1 L 3-necked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 25 g (0.046 mol) of I2DTy, 25 g (0.004 mol) of EGPLLAD, 14.8 g (0.19 mol) of pyridine, and 305 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (5.19 g, 0.053 mol of phosgene) was dissolved in 15 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the reaction mixture was quenched with a mixture of 135 mL of THF and 15 mL of water. 350 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 350 mL portions of DI water. The reaction mixture was then precipitated with 600 mL of IPA. The resulting gel was ground twice in a 4 L high speed blender. The precipitate obtained was isolated by filtration and dried in a vacuum oven at 80 °C. The polymer had a glass transition temperature (Tg) of 100 °C. 1H NMR spectrum of the polymer was in agreement with the structure. Compression molding at 190 °C gave a uniform transparent film. Copolymers containing 45% and 60% of EGPLLAD were also prepared using similar procedures and characterized. The properties of the polymers are listed in the table below. Using similar procedures copolymers containing I2DTE and polyglycolide-diols (PGAD) can be prepared by replacing PLLAD with PGAD in the above polymerization.

% EGPLLAD

Tg, °C

σ, ksi

Modulus, ksi

Elongation, %

45

62 and 106

8.2

275

17

50

62 and 106

8.0

247

106

60

60

7.9

257

188

Reference Example 17. Preparation of poly(I2DTy-co-50%DTy carbonate).

In a 1 L 3-nicked round-bottomed flask equipped with a mechanical stirrer, and a liquid addition device were placed 25 g (0.046 mol) of I2DTy, 25 g (0.087 mol) of DTy, 43 g (0.55 mol) of pyridine, and 305 mL of DCM and stirred for 15 min to get a clear solution. Triphosgene (14.2 g. 0.143 mol of phosgene) was dissolved in 43 mL of DCM and the solution was introduced into the reaction flask over 2-3 hours. After the addition was complete, the reaction mixture was quenched with a mixture of 135 mL of THF and 15 mL of water. 350 mL of water was added to the reaction mixture and stirred for 5 min. After allowing the layers to separate, the top aqueous layer was removed and discarded. The washing was repeated with two additional 350 mL portions of DI. water. The reaction mixture was then precipitated with 600 mL of IPA. The resulting gel was ground twice in a 4 L high speed blender. The precipitate obtained was isolated by filtration and dried in a vacuum over at 80 °C, The polymer had a glass transition temperature (Tg) of 68°C. Compression molding at 170 °C gave a uniform transparent film which gave tensile modulus, tensile stress at yield, and elongation at break respectively of 195 ksi, 4.3 ksi, and 473%. Using similar procedure poly(I2DTy-co-20%DTy carbonate was prepared.

Reference Example 18. Synthesis of (4-(2-hydroxyethyl) 2,6,-diiodophenol).

Iodination of tyrosol was carried out by adding 200 mL of KICl2 solution (2M) to 27.6 g (0.2 mol) of tyrosol in 140 mL of 95% a ethanol and stirring the resulting solution for 1 h. When treated with 400 mL of water, an oil separated which was stirred with 100 mL of 2% sodium thiosulfate solution for 2 h. The brown solid obtained was dissolved in ethanol and treated with charcoal and faltered. The purse diiodotyrosol (4-(2-hydroxyethyl) 2,6,-diiodophenol) was obtained in 65% yield and was characterised by hplc and NMR.

Reference Example 19. Synthesis of 4-hydroxyphenethyl3-(4-(4-hydroxyphenoxy)phenyl)-propanoate.

Into a 500 mL round bottomed flask fitted with an overhead stirrer, and a modified Dean-stark trap for solvents heavier than water are added 10 g (72 mmol) of tyrosol, 30 g (78 mmol) of desaminothyronine, 0.65 g (3.4 mmol) of 4-toluenesulfonic acid monohydrate, and 200 mL of 1.2-dichloroethane (DCE). A water-cooled reflux condenser is placed on top of the modified Dean-stark trap and the contents of the flask are heated to reflux while being stirred. The reaction is continued until approximately 1.4 mL of water collected in the modified Dean-stark trap above the DCE and the water collection essentially stops (about 4 hours of reflux). The reaction mixture is cooled to room temperature and the crude product is dissolved in 100 mL of ethyl acetate and washed twice with 100 mL portions of 5% sodium bicarbonate solution. After drying over magnesium sulfate the organic layer is concentrated and precipitated with hexane. The resulting white crystalline solid is collected by filtration and dried in a vacuum oven at 25 °C. The product is characterized by elemental analysis, hplc, and 1H NMR.

QQ群二维码
意见反馈