序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 纤维增强热塑性树脂成型体、成型材料、及其制造方法 CN200780012719.5 2007-02-19 CN101421340B 2012-03-28 村井彰儿; 本间雅登
发明提供一种纤维增强热塑性树脂成型体,其中,热塑性树脂中以高含有率含有单纤维状的纤维,该碳纤维的纤维长度长且被无规配置。另外,本发明提供一种成型材料,由单纤维状的碳纤维、和单纤维状的热塑性树脂纤维构成,以高含有率含有碳纤维,该碳纤维的纤维长度长且被无规配置。本发明还提供一种将上述成型材料压缩成型的纤维增强热塑性树脂成型体的制造方法。
2 用于聚合物电解燃料电池离析器的制造方法 CN02118619.7 2002-04-26 CN1434530A 2003-08-06 大西秀贵; 齐藤隆一
发明涉及一种用于聚合物电解燃料电池离析器的制造方法。目的在于提供一种方法,用于制作聚合物电解质燃料电池的离析器,该离析器应当有较低的电阻率、高热导系数和气密性以及高强度。本发明的制造方法中,烧结材料20含有涂敷于一种粉表面的酚树脂,金属板30是经双面电的金属板。把金属板30放入带有沟槽的模具M后,再将烧结材料20填充进金属板30的两面,之后将它们一起加热和烧结。由于酚醛树脂均匀地散布在烧结材料20中,因而,如此制作的燃料电池离析器10材质均匀,从而气密性能和强度都得以提高。此外,由于烧结后的离析器10的表面绝对不会产生化物,电阻率也就相当低。
3 高压气瓶制造方法 CN201280075845.6 2012-09-26 CN104641163A 2015-05-20 金基东; 权起勳; 李昌培
发明公开一种高压气瓶制造方法,公开的高压气瓶制造方法,包括:a)生产衬垫的步骤,利用衬垫吹塑机生产衬垫;b)涂覆粘着剂的步骤,在所述生产的衬垫的螺纹上涂覆粘着剂;c)结合衬套(bushing)的步骤,在所述衬垫螺纹结合衬套(bushing);d)自然固化步骤,将经过所述c)步骤的衬垫在常温下放置30分钟至2小时,以使所述粘着剂自然固化;e)衬垫加热步骤,将所述衬垫的外部表面通过等离子体进行热处理;f)结合传动轴的步骤,在所述衬垫结合传动轴;g)包覆步骤,将多个玻璃纤维条与树脂及固化剂混合之后,包覆所述衬垫的外部表面;h)干燥固化步骤,将经过所述包覆步骤的复合材料容器在70℃至90℃下干燥70至90分钟;i)冷却步骤,为了使得经过所述干燥固化步骤的所述复合材料容器的表面温度下降至35℃以下,将所述复合材料容器在常温下放置15至40分钟;j)分离传动轴步骤,从所述复合材料容器分离所述传动轴;k)组装步骤,在设置于所述复合材料容器的所述衬套上组装阀门;及l)检查步骤,检查包括所述复合材料容器的高压气瓶的状态。
4 燃料电池隔板及其制造方法 CN200810169548.3 2008-09-28 CN101567433B 2013-09-18 金世勋; 李成浩; 徐正焘; 安炳琪; 林泰源; 李大吉; 金成洙; 庾哈纳; 黄仁郁
发明提供一种由连续纤维复合物形成的燃料电池隔板、及其制造方法。在上述燃料电池隔板中,碳纤维基本被聚合物粘合剂包围。制造该燃料电池隔板的方法可以包括:第一步,提供半固化态的连续碳纤维复合物的原材料;将原材料形成为具有隔板的长度和形状:堆叠和粘附单个或多个根据隔板的长度切割的原材料;将堆叠成单层或多层的原材料安置于高温热压机进行加热和压制;以及从加热和压制的隔板上去除不必要的部分。
5 燃料电池用隔板及其制造方法 CN200780011524.9 2007-04-03 CN101411020A 2009-04-15 大多和一彦; 桥本哲; 池田信彦; 堀木健一
对以膨胀石墨为主原料的预成型体进行加压成型而制作的燃料电池用隔板,通过将其预成型体用抄造法来制作,使其具有优异的导电性和成型加工性,由此能够改善机械强度、可挠性、阻气性的各特性,能够提供适用于汽车用等的轻量、小型化的燃料电池用隔板。为此,用成型模具对形成为板状的预成形体(14)进行加压成型而制成的燃料电池用隔板中,预成型体(14)具有在一对第一薄板(14A)之间插装第二薄板(14B)而成的夹层结构,其中,所述第一薄板(14A)是通过对在膨胀石墨中添加纤维质填充材料而成的原料进行抄造而得到的薄板状体浸渍酚树脂而成,所述第二薄板(14B)是在石墨上涂布热固性树脂而成。
6 燃料电池隔板及其制造方法 CN200810169548.3 2008-09-28 CN101567433A 2009-10-28 金世勋; 李成浩; 徐正焘; 安炳琪; 林泰源; 李大吉; 金成洙; 庾哈纳; 黄仁郁
发明提供一种由连续纤维复合物形成的燃料电池隔板、及其制造方法。在上述燃料电池隔板中,碳纤维基本被聚合物粘合剂包围。制造该燃料电池隔板的方法可以包括:第一步,提供半固化态的连续碳纤维复合物的原材料;将原材料形成为具有隔板的长度和形状;堆叠和粘附单个或多个根据隔板的长度切割的原材料;将堆叠成单层或多层的原材料安置于高温热压机进行加热和压制;以及从加热和压制的隔板上去除不必要的部分。
7 纤维增强热塑性树脂成型体、成型材料、及其制造方法 CN200780012719.5 2007-02-19 CN101421340A 2009-04-29 村井彰儿; 本间雅登
发明提供一种纤维增强热塑性树脂成型体,其中,热塑性树脂中以高含有率含有单纤维状的纤维,该碳纤维的纤维长度长且被无规配置。另外,本发明提供一种成型材料,由单纤维状的碳纤维、和单纤维状的热塑性树脂纤维构成,以高含有率含有碳纤维,该碳纤维的纤维长度长且被无规配置。本发明还提供一种将上述成型材料压缩成型的纤维增强热塑性树脂成型体的制造方法。
8 离合器摩擦片的生产方法、该方法得到的离合器摩擦片及配备这种摩擦片的离合器盘 CN02800674.7 2002-03-13 CN1459009A 2003-11-26 M·玛奇赛奥; G·伯尔; C·彼奥特
离合器摩擦片的制造方法:该方法是将含有聚酯树脂摩擦材料注入模具中,该材料还含有聚合催化剂、玻璃纤维、白垩、母、滑石、高岭土、热塑性填料和脱模剂。采用这种方法得到的离合器摩擦片与配备有这种摩擦片的离合器盘。
9 섬유 강화 열가소성 수지 성형체, 성형 재료, 및 그 제조 방법 KR1020087023017 2007-02-19 KR101409959B1 2014-06-19 무라이쇼지; 혼마마사토
단섬유 형상의 탄소 섬유가 열가소성 수지 중에 고함유율로 함유되어 그 섬유 길이가 길고, 또한 탄소 섬유가 랜덤으로 배치되어 이루어지는 섬유 강화 열가소성 수지 성형체를 제공한다. 단섬유 형상의 탄소 섬유와 단섬유 형상의 열가소성 수지 섬유로 이루어지고, 탄소 섬유가 고함유율로 함유되어 그 섬유 길이가 길며, 또한 탄소 섬유가 랜덤으로 배치된 성형 재료를 제공한다. 상기 성형 재료를 압축 성형하는 섬유 강화 열가소성 수지 성형제의 제조 방법을 제공한다. 섬유 강화 열가소성 수지 성형체, 성형 재료, 섬유 강화 열가소성 수지 성형체의 제조 방법
10 BINDER FOR MINERAL FIBRES EP07788471.6 2007-08-17 EP2051950A1 2009-04-29 GUDIK-SORENSEN, Mads
An aqueous binder composition for mineral fibres comprises a water-soluble binder component obtainable by reacting glycerol and at least one alkanolamine with at least one carboxylic anhydride in proportions such that the ratio of equivalents of amine groups plus hydroxy groups (NH+OH) to equivalents of carboxy groups (COOH) in the binder component is within the range of about 0.4 to 2.0, glycerol being used in an amount such that the equivalent ratio of glycerol OH groups to total equivalents of amine groups plus hydroxy groups (NH+OH) is 0.1 to 0.9, and, optionally, treating the reaction product with a base.
11 Binder for mineral fibres EP06017251.7 2006-08-18 EP1889819A1 2008-02-20 Mads, Gudik-Sorensen

An aqueous binder composition for mineral fibres comprises a water-soluble binder component obtainable by reacting glycerol and at least one alkanolamine with at least one carboxylic anhydride in proportions such that the ratio of equivalents of amine groups plus hydroxy groups (NH+OH) to equivalents of carboxy groups (COOH) in the binder component is within the range of about 0.4 to 2.0, glycerol being used in an amount such that the equivalent ratio of glycerol OH groups to total equivalents of amine groups plus hydroxy groups (NH+OH) is 0.1 to 0.9, and, optionally, treating the reaction product with a base.

12 MOLDED BODY EP06746525.2 2006-05-17 EP1757383A1 2007-02-28 OSAKI, Masayuki, c/o Kao Corporation

A molded article contains inorganic powder as a main component and further contains inorganic fiber, organic fiber, a thermosetting resin, and heat expandable particles, the heat expandable particles being present in an amount of 0.5% to 10% by mass based on the total mass of the inorganic powder, the inorganic fiber, the organic fiber, the thermosetting resin, and the heat expandable particles. The inorganic powder is preferably graphite. The inorganic fiber is preferably carbon fiber. The organic fiber is preferably pulp fiber. The thermosetting resin is preferably a phenol resin.

13 Method of manufacturing a separator for a polymer electrolyte fuel cell EP02014085.1 2002-07-01 EP1329967A2 2003-07-23 Ohnishi, Hideki; Saito, Ryuchi

A method of manufacturing a separator for a polymer electrolyte fuel cell in which the specific resistance is small, and the coefficient of thermal conductivity and the gas shielding property are high and have high strength. The sintering material comprises a phenol resin coated to the surface of a powder of carbon, and the plate is a metallic plate having plating on both surfaces. After the metallic plate is arranged in a mold provided with grooves, the sintering material is filled to both sides of the metallic plate, and then they are heated and sintered. The separator for a fuel cell becomes homogeneous, and, as a result, the gas shielding property rises with high strength, because phenol resin has been uniformly distributed in the sintering material. Moreover, because oxides are not generated on the surfaces of the separator by sintering, the specific resistance will be relatively small.

14 VERFAHREN ZUR HERSTELLUNG VON KERAMIKBREMSSCHEIBEN AUS BMC EP01969735.8 2001-09-19 EP1328737A1 2003-07-23 EHNERT, Gerd
The invention relates to a method for producing ceramic brake discs, comprising the following steps: a) producing a BMC compound (2) with a matrix consisting of phenol resin and with carbon reinforcement fibres, the length of the carbon fibres being between 6 mm and 50 mm; b) producing a green compact of the ceramic brake discs from the BMC compound (2) in a transfer moulding or injection compression moulding process, c) pyrolysing the green compact in order to produce a porous moulded body; and d) melt-infiltrating the porous moulded body with a melt, preferably a silicon melt, in order to produce a moulded body with reaction-bonded fibres.
15 Process for injection moulding a fiberous reinforced plastic material part with a preshaping step EP14307114.0 2014-12-19 EP3034265A1 2016-06-22 Menard, Magalie; Compagnon, Philippe; Moressee, Aurélien; Richard, Frédéric

This method for producing a plastic material part (10), comprises at least a reinforcing element (12) made of at least one fibrous insert (20) made of a composite material, using an injection mold (26) comprising a first part (28) and a second part (30) defining between them a molding cavity (38) having the shape of the plastic material part (10) to be produced, said method comprising the steps of:

- transporting and placing the reinforcing element (12) onto the first part (28) of the injection mold (26) using a manipulating tool (40),

- shaping the fibrous insert (20) into the reinforcing element (12),

- injecting a plastic material into the mold (26) such that the reinforcing element (12) is overmolded by the plastic material and the plastic material part (10) is produced,



wherein the manipulating tool (40) comprises at least one shaping area (42) having the shape of one side of the reinforcing element (12), the fibrous insert (20) being placed in said shaping area (42) during the transportation of the fibrous insert (20) to the first part (28) of the mold (26) and being shaped into the reinforcing element (12) by said shaping area (42) and said first part of the mold (28) when said insert (20) is transported or/and is placed onto the first part (28) of the injection mold (26).

16 METHOD FOR MANUFACTURING GAS CYLINDERS EP12884434.7 2012-09-26 EP2896869A1 2015-07-22 KIM, Ki Dong; KWON, Gi Hun; LEE, Chang Bae

Disclosed is a method for manufacturing gas cylinders. The disclosed method for manufacturing gas cylinders comprises: a) a step of producing a liner using a liner blower machine; b) a step of applying an adhesive to the threads of the produced liner; c) a step of coupling a bushing to the threads of the liner; d) a step of leaving the liner having undergone step c) for 30 minutes to 2 hours at room temperature so as to naturally harden the adhesive; e) a liner-flaming step of heat-treating the outer surface of the liner with plasma; f) a step of coupling a shaft to the liner; g) a winding step of mixing multiple fiberglass strands with a resin and a hardening agent, and wrapping the mixture around the outer surface of the liner; h) a dry-hardening step of drying the cylinder made of the composite material and having undergone the winding step for 70 to 90 minutes at a temperature of 70°C to 90°C; i) a cooling step of leaving the cylinder made of the composite material for 15 to 40 minutes at room temperature so as to lower the surface temperature of the cylinder having undergone the dry-hardening step to a level of 35°C or lower; j) a step of separating the shaft from the cylinder made of the composite material; k) a step of assembling a valve to the bushing installed in the cylinder made of the composite material; and l) a step of checking the state of the gas cylinder including the cylinder made of the composite material.

17 MOLDED BODY EP06746525.2 2006-05-17 EP1757383B1 2013-02-27 OSAKI, Masayuki, c/o Kao Corporation
18 SEPARATOR FOR FUEL CELL AND PROCESS FOR PRODUCING THE SAME EP07737016.1 2007-04-03 EP2017912A1 2009-01-21 OTAWA, Kazuhiko; HASHIMOTO, Akira; IKEDA, Nobuhiko; HORIKI, Kenichi

In order to attain excellent electrical conductivity and molding processability, a fuel cell separator to be produced by performing press molding on a preform in which expanded graphite is used as the main raw material is improved so that the preform is produced by a papermaking method, whereby the characteristics of the mechanical strength, the flexibility, and the gas impermeability are improved, and a light and compact configuration that is preferred in the automobile use or the like can be realized. In a fuel cell separator which is to be produced by performing press molding on a preform 14 that is formed into a plate-like shape, with a molding die, therefore, the preform 14 is configured into a sandwich structure where a second sheet 14B in which a phenol resin is applied to graphite is interposed between a pair of first sheets 14A made by impregnating a sheet-like member with a phenol resin, the sheet-like member being obtained by a papermaking process using a raw material in which a fibrous filler is added to expanded graphite.

19 VERFAHREN ZUR HERSTELLUNG VON KERAMIKBREMSSCHEIBEN AUS BMC EP01969735.8 2001-09-19 EP1328737B1 2007-04-11 EHNERT, Gerd
The invention relates to a method for producing ceramic brake discs, comprising the following steps: a) producing a BMC compound (2) with a matrix consisting of phenol resin and with carbon reinforcement fibres, the length of the carbon fibres being between 6 mm and 50 mm; b) producing a green compact of the ceramic brake discs from the BMC compound (2) in a transfer moulding or injection compression moulding process, c) pyrolysing the green compact in order to produce a porous moulded body; and d) melt-infiltrating the porous moulded body with a melt, preferably a silicon melt, in order to produce a moulded body with reaction-bonded fibres.
20 A VEHICLE WHEEL AND A METHOD OF FABRICATING SAME EP92915648.0 1992-07-16 EP0594737A1 1994-05-04 HARDING, Mark
Procédé de fabrication d'une roue de véhicule conçue particulièrement, bien que non exclusivement, pour des voitures de course et comprenant les étapes suivantes: réalisation à partir d'un modèle profilé d'au moins deux parties de moule en matériau de fibre de carbone, représentant les profils intérieur et extérieur de la roue à fabriquer; moulage sur lesdites parties de moule des profils (31, 32) intérieur et extérieur de la roue et disposition desdites parties dans un moule oscillant comportant un noyau (38) central structurel, la roue terminée étant entourée par un enveloppement (36) de jante en matériau de fibre de carbone possédant des sièges de talons de pneu contigus aux extrémités intérieure et extérieure de ladite roue. La roue terminée possède une stabilité structurelle considérable mais son poids est minimisé, afin d'augmenter les performances.
QQ群二维码
意见反馈