序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 线电抗模及应用 CN201710383862.0 2013-08-26 CN107394771A 2017-11-24 S.拉姆齐; W.J.吉布森; F.贝尔; S.E.罗斯; Y.斯塔罗杜布特塞夫; D.M.霍普; D.W.温希普; E.L.博罗曼; J.A.克拉科夫斯基; J.L.泰勒; J.B.麦加特兰德; M.L.蒂默; T.H.利利奇; V.J.奥尔韦
发明总体涉及一种电抗模或DSR(30),其可以安装在电传输系统(400)的电力传输线(16)上。DSR(30)可以配置成处于旁路模式或处于注入模式(其中电抗被注入相应的线(16))。安装在电力线部(18)上的多个DSR(30)限定阵列(410),并且具有专用的控制器(440)。这种阵列(410)和控制器(440)可以安装在许多不同的电力线部(18)上。用于每个阵列(410)的控制器(440)可以与DSR服务器(420)通信,这反过来又可以与实用侧控制系统(430)通信。每个DSR(30)可以包含一个或多个特征,针对芯(50)的配置和组装、通信、模式配置控制、故障保护、EMI屏蔽、DSR(30)组装、以及DSR(30)安装。
2 长距离、多负荷节点线状供电系统的无功补偿方法 CN201610366684.6 2016-05-30 CN106026119A 2016-10-12 闫新; 闫观清; 孙国强; 杨纲举; 闫鹏; 崔浩朋; 秦卫贞; 胡会永
发明公开了一种距离、多负荷节点线状供电系统的无功补偿方法,一、在设计长距离、多负荷节点线状供电系统时,合理确定中心开关站、联络开关站的布置位置;联络开关站布置在位于相邻两中心开关站中间位置;二、计算各中心开关站与相邻的联络开关站之间的架空线路长度、电缆线路长度,并计算线路对地容性电流的电气中心位置,在电气中心位置设置断路器站;三、按照集中补偿与分散补偿相结合的原则进行无功功率补偿。本发明优点在于实现大幅改善功率因数偏低的现象,经济效益显著。
3 系统中的无功功率补偿系统 CN200980163069.3 2009-07-27 CN102714412B 2015-11-25 安德列斯·阿古多·阿拉克
提供一种用于补偿电功率系统(100)中无功功率要求的无功功率补偿系统(108)。无功功率补偿系统(108)包括静态同步补偿单元(202)、电流谐波消除单元(204)和补偿控制单元(206)。静态同步补偿单元(202)包括用于补偿电功率系统(100)中无功功率的多个静态同步补偿模(302)。电流谐波消除单元(204)包括用于消除在电功率系统(100)中产生的电流谐波的多个有源滤波器模块(502)。补偿控制单元(206)实现用于调节静态同步补偿模块(302)和有源滤波器模块(502)的操作的顺序控制机构。
4 一种输电线无功损耗的补偿方法及装置 CN201410658059.X 2014-11-13 CN104377713A 2015-02-25 刘国平; 刘育明; 黄淼; 宫林; 文一宇; 陈涛; 徐瑞林
发明提供一种输电线无功损耗的补偿方法,包括:计算输电线任意一端横截面电磁场强度;使用空间步进的频域有限差分算法,将输电线分割为若干横截面,并以任意一端横截面电磁场强度作为参考参数,推导输电线其他各个横截面的电磁场强度;根据输电线各横截面的电磁场强度,计算单位体积内的电场能变化率与磁场能变化率并分别进行积分,得到电场能量损耗和磁场能量损耗;以电场能量损耗与磁场能量损耗之和作为输电线的无功损耗,调节输出的无功补偿功率。本发明将输电线本身线路走向作为能量损耗计算计算因素,计算线路因弧垂而导致的无功功率变化,令最终的计算结果更加精确从而提高对输电线路无功补偿的准确度。
5 10KV架空线路无功补偿装置电压优化选点方法 CN201410698009.4 2014-11-27 CN104333019A 2015-02-04 江良福; 何帮树
发明公开了一种10KV架空线路无功补偿装置电压优化选点方法,包括以下步骤,a.根据线路负荷曲线与无功、有功采样的数据,取得最大负荷时的负荷率与功率因数;b.初步确定补偿容量范围;c.根据上述的负荷率、功率因数以及线路电气接线图,架空线的档距、线径计算与绘制出线路负荷与阻抗分布图,并统计出主线路或支路的无功量;d.计算出每个负荷点相对于原点或分支点的压降百分比;e.在允许的补偿范围内,根据线路压降、线路无功量的状况确定补偿点数量与容量,并进行验算;f.确定补偿点的位置。根据线路中的实际情况分析计算出补偿点的数量以及位置,能够最大化的提高对线路的补偿效率,同时,也能够做到避免过补偿以及欠补偿的情况。
6 系统中的无功功率补偿系统 CN200980163069.3 2009-07-27 CN102714412A 2012-10-03 安德列斯·阿古多·阿拉克
提供一种用于补偿电功率系统(100)中无功功率要求的无功功率补偿系统(108)。无功功率补偿系统(108)包括静态同步补偿单元(202)、电流谐波消除单元(204)和补偿控制单元(206)。静态同步补偿单元(202)包括用于补偿电功率系统(100)中无功功率的多个静态同步补偿模(302)。电流谐波消除单元(204)包括用于消除在电功率系统(100)中产生的电流谐波的多个有源滤波器模块(502)。补偿控制单元(206)实现用于调节静态同步补偿模块(302)和有源滤波器模块(502)的操作的顺序控制机构。
7 REACTIVE POWER OPTIMIZATION METHOD US15638648 2017-06-30 US20180041036A1 2018-02-08 Wenchuan WU; Boming ZHANG; Hongbin SUN; Chenhui LIN; Bin WANG; Qinglai GUO
A reactive power optimization method for integrated transmission and distribution networks related to a field of operation and control technology of an electric power system is provided. The reactive power optimization method includes: establishing a reactive power optimization model for a transmission and distribution network consisting of a transmission network and a plurality of distribution networks, in which the reactive power optimization model includes an objective function and a plurality of constraints; performing a second order cone relaxation on a non-convex constraint of a plurality of distribution network constraints of the plurality of constraints; and solving the reactive power optimization model by using a generalized Benders decomposition method so as to control each generator in the transmission network and each generator in the plurality of distribution networks.
8 POWER LINE REACTANCE MODULE AND APPLICATIONS US14630829 2015-02-25 US20160036231A1 2016-02-04 Stewart Ramsay; Frances Bell
The disclosure is generally directed to reactance modules or DSRs (30) that may be mounted on a power transmission line (16) of a power transmission system (400). A DSR (30) may be configured in a bypass mode or in an injection mode (where reactance is injected into the corresponding line (16)). Multiple DSRs (30) installed on a power line section (18) define an array (410) and have a dedicated controller (440). Such an array (410) and controller (440) may be installed on a number of different power line sections (18). The controller (440) for each array (410) may communicate with a DSR server (420), which in turn may communicate with a utility-side control system (430). Each DSR (30) may incorporate one or more features directed to core (50) configurations and assembly, communications, modal configuration control, fault protection, EMI shielding, DSR (30) assembly, and DSR (30) installation.
9 Reactive power compensation in electrical power system US13384644 2009-07-27 US08847562B2 2014-09-30 Andres Agudo Araque
A reactive power compensation system for compensating reactive power requirements in an electrical power system. The reactive power compensation system includes a static synchronous compensation unit, a current harmonics elimination unit, and a compensation control unit. The static synchronous compensation unit includes a plurality of static synchronous compensation modules for compensating reactive power in the electrical power system. The current harmonics elimination unit includes a plurality of active filter modules for eliminating current harmonics generated in the electrical power system. The compensation control unit implements a sequential control mechanism for regulating the operation of the static synchronous compensation modules and the active filter modules.
10 Voltage or impedance-injection method using transformers with multiple secondary windings for dynamic power flow control US15069785 2016-03-14 US10008317B2 2018-06-26 Amrit Iyer; Debrup Das; David Munguia; Arthur Kelley; Haroon Inam; Joe Carrow; Ali Farahani
This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.
11 POWER COMPENSATION APPARATUS AND METHOD OF CONTROLLING THE SAME US15684808 2017-08-23 US20180083447A1 2018-03-22 Eun Jae LEE
A power compensation apparatus compensates for power of a power system to be allowed to transmit from at least one or more power sources to a load. The power compensation apparatus includes a first system connected to the power system to compensate for active power and reactive power of the power system, a second system connected to the first system to store power necessary for compensating for active power and reactive power, and a third system connected to the second system to generate the power to be stored in the second system.
12 Voltage or Impedance-Injection Method Using Transformers with Multiple Secondary Windings for Dynamic Power Flow Control US15069785 2016-03-14 US20170163245A1 2017-06-08 Amrit Iyer; Debrup Das; David Munguia; Arthur Kelley; Haroon Inam; Joe Carrow; Ali Farahani
This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.
13 Distributed Impedance Injection Module for Mitigation of the Ferranti Effect US15345065 2016-11-07 US20170160762A1 2017-06-08 Debrup Das; Haroon Inam
Disclosed is a method for reducing the variation in voltage, due to Ferranti effect, using the impedance injection capability of distributed impedance injection modules. The Ferranti effect is an increase in voltage occurring at the receiving end of a long transmission line in comparison to the voltage at the sending end. This effect is more pronounced on longer lies and underground lines when the high-voltage power lines are energized with a very low load, when there is a change from a high load to a very light load, or the load is disconnected from the high-voltage power lines of the power grid. This effect creates a problem for voltage control at the distribution end of the power grid.
14 Switching apparatus and method for varying an impedance of a phase line of a segment of an electrical power line US11628028 2005-06-03 US07639460B2 2009-12-29 Pierre Couture; Jacques Leduc
The switching apparatus and the method are for varying the impedance of a phase line of a segment of an electrical power line. The phase line includes n conductors electrically insulated from each other and short-circuited together at two ends of the segment. The apparatus comprises at least one first vacuum interrupter connected in series with at least one of the conductors; at least one first controllable motor for selectively opening and closing the at least one first vacuum interrupter; a detector for detecting a parameter representative of current operating conditions of the phase line; and a controller for controlling the at least one first controllable motor according to the parameter detected by the detector.
15 Switching Apparatus And Method For Varying An Impedance Of A Phase Line Of A Segment Of An Electrical Power Line US11628028 2005-06-03 US20080061632A1 2008-03-13 Pierre Couture; Jacques Leduc
The switching apparatus and the method are for varying the impedance of a phase line of a segment of an electrical power line. The phase line includes n conductors electrically insulated from each other and short-circuited together at two ends of the segment. The apparatus comprises at least one first vacuum interrupter connected in series with at least one of the conductors; at least one first controllable motor for selectively opening and closing the at least one first vacuum interrupter; a detector for detecting a parameter representative of current operating conditions of the phase line; and a controller for controlling the at least one first controllable motor according to the parameter detected by the detector.
16 動的送電定格判定装置および関連方法 JP2017558402 2016-05-17 JP2018518134A 2018-07-05 ハ,ヘンスゥ; ナ,デン
線導体の動的最大電流定格を判定することによって電力線導体に印加される電流の制御を提供するよう構成された動的送電定格判定装置は、少なくとも2つの時間的に離間されたサンプル時間で取られた1組の測定電圧および電流位相ベクトルであって、電力線導体の第1の端部で電力線導体によって搬送される電力の各相に対する電圧位相ベクトルと、電力線導体の第2の端部で電力線導体によって搬送される電力の各相に対する電圧位相ベクトルと、電力線導体の第1の端部で電力線導体によって搬送される電力の各相に対する電流位相ベクトルと、電力線導体の第2の端部で電力線導体によって搬送される電力の各相に対する電流位相ベクトルと、を備える、電圧および電流位相ベクトルに基づいて、前記電圧および電流位相ベクトルのセットを所定の電力線モデルに適用して、リアルタイム導体温度の推定値を判定すること、リアルタイム導体温度の前記推定値を所定の熱モデルに適用して、電力線導体が時間とともに到達する定常状態温度の予測値を判定すること、および、少なくとも定常状態温度の前記予測値、電力線導体電流、および最大温度制限値に基づいて動的最大電流定格を計算すること、によって、動的最大電流定格を判定するよう構成される。
【選択図】図3
17 補償装置及びその制御方法 JP2017147643 2017-07-31 JP2018050448A 2018-03-29 イ ウン チェ
【課題】 従来のSTATCOM(STATic synchronous COMpensator)は、電系統の有効電力を持続的に供給することができないので、電力系統の安定した運用に寄与できない問題がある。
【解決手段】 電力補償装置は、少なくとも一つ以上の電力生成源から生成された電力が負荷に送電されるように備えられた電力系統に電力を補償する。詳しくは、電力補償装置は、電力系統に接続され、電力系統に有効電力及び無効電力を補償する第1システムと、第1システムと接続され、有効電力及び無効電力の補償に必要な電力を貯蔵する第2システムと、第2システムと接続され、第2システムに貯蔵するための電力を生成する第3システムとを含む。
【選択図】 図3
18 Voltage or Impedance-Injection Method Using Transformers with Multiple Secondary Windings for Dynamic Power Flow Control US15981616 2018-05-16 US20180261373A1 2018-09-13 Amrit Iyer; Debrup Das; David Munguia; Arthur Kelley; Haroon Inam; Joe Carrow; Ali Farahani
This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.
19 Power compensation apparatus and method of controlling the same US15684808 2017-08-23 US09979194B2 2018-05-22 Eun Jae Lee
A power compensation apparatus compensates for power of a power system to be allowed to transmit from at least one or more power sources to a load. The power compensation apparatus includes a first system connected to the power system to compensate for active power and reactive power of the power system, a second system connected to the first system to store power necessary for compensating for active power and reactive power, and a third system connected to the second system to generate the power to be stored in the second system.
20 DYNAMIC LINE RATING DETERMINATION APPARATUS AND ASSOCIATED METHOD US15574854 2016-05-17 US20180131189A1 2018-05-10 Hengxu Ha; Deng NA
A dynamic line rating determination apparatus configured to control the current applied to a power line conductor by determining a dynamic maximum current rating for said power line conductor, based on measured voltage and current phase vectors taken at two temporally spaced sample times, the phase vectors including a voltage and current phase vector for each phase of electrical power carried by the power line conductor at a first and second end of the power line conductor; and determining the dynamic maximum current rating by; applying the phase vectors to a power line model to estimate the conductor temperature, applying the estimate to a thermal model to predict a steady state temperature that the power line conductor will reach, and calculate the dynamic maximum current rating based on the prediction of the steady state temperature, a power line conductor current, and a maximum temperature limitation value.
QQ群二维码
意见反馈