首页 / 国际专利分类库 / 物理 / 摄影术;电影术;电记录术;全息摄影术 / 全息摄影的工艺过程或设备 / 应用超声波、声波、次生波来取得全息图的全息摄影工艺或设备;用于从全息图获得光学图像的工艺过程或设备(G03H1/22 优先;使用全息摄 影方法来进行非破坏性的声学测试入G01N29/0663;使用声的震动的地震学入G01V1/00; 非全息摄影方法用于可视声波G10K15/00)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 ACOUSTICAL HOLOGRAPHY WITH MULTI-LEVEL SQUARE WAVE EXCITATION SIGNALS EP14755254.1 2014-08-05 EP3047265A1 2016-07-27 FALTER, Stephan; BARSHINGER, James Norman; LANGE, Dirk; FEYDO, Mark Howard; LAMMERICH, Werner
Systems and methods are disclosed herein in which multi-level square wave excitation signals are used instead of or in addition to fully-analog excitation signals to drive an array of transceiver elements to create a sound field. Use of multi-level square wave excitation signals produces acceptable transceiver output with reduced complexity, cost, and/or power consumption as compared with use of fully-analog excitation signals. In addition, use of such signals facilitates system implementation using application-specific integrated circuits (ASICs) and is not as restricted in voltage level and speed. At the same time, the benefits and applications of fully-analog excitation signals (e.g., acoustic holography, beam superposition, signal-to-noise ratio (SNR) improvements, suppression of parasitic modes, increased material penetration, potential for coded pulsing algorithms and suppression of side lobes in ultrasonic field) can still be achieved with multi-level square wave excitation signals.
102 Method and apparatus for fabricating a component EP14004333.2 2014-12-19 EP3034281A1 2016-06-22 Melde, Kai; Fischer, Peer

A method of fabricating a component (1) comprises the steps of providing precursor material in a working medium, creating acoustic forces and positioning the precursor material in the working medium under the effect of the acoustic forces, so that a material distribution is formed, which has a shape of the component to be fabricated, and subjecting at least one of the material distribution and the working medium to a fixation, so that the pre-cursor material of the material distribution or the working medium surrounding the material distribution is bound, wherein the step of creating the acoustic forces includes generating an acoustic interference pattern (5), and the material distribution (4) is formed by moving the precursor material (2) towards energy extrema of the acoustic interference pattern (5). Furthermore, an apparatus (100) for fabricating a component (1) is described.

103 Dispositif de localisation acoustique EP12152730.3 2012-01-26 EP2485062A3 2015-04-15 Beguet, Bernard; Lamotte, Lucille; Cariou, Charles

Dispositif de localisation de sources acoustiques et/ou de mesure de leurs intensités, destiné en particulier à être utilisé en milieu confiné. Le dispositif comporte au moins une antenne acoustique (4) comportant au moins une première série de microphones (7) délimitant un premier volume, et au moins une deuxième série de microphones (8) délimitant un volume contenant au moins substantiellement la première série de microphones (7).

104 SCANNING NEAR FIELD ULTRASOUND HOLOGRAPHY EP05808603.4 2005-10-06 EP1952204A1 2008-08-06 SHEKHAWAT, Gajendra; DRAVID, Vinayak P.
A high spatial resolution phase-sensitive technique employs a scanning near field ultrasound holography methodology (47) for imaging elastic as well as viscoelastic variations across a sample surface. Scanning near field ultrasound holography (47) uses a near-field approach to measure time-resolved variations in ultrasonic oscillations at a sample surface (12). As such, it overcomes the spatial resolution limitations of conventional phase-resolved acoustic microscopy (i.e. holography) by eliminating the need for far-field acoustic lenses.
105 ACOUSTICALLY GENERATED IMAGES HAVING SELECTED COMPONENTS EP02770639.9 2002-10-17 EP1443848A2 2004-08-11 GARLICK, George, F.
An acoustically generated image includes only selected acoustical components. When an original acoustic signal interacts with an object, the resultant acoustic signal comprises a diffracted component and an undiffracted component. The acoustical images of the present invention are generated with either the diffracted component only or the undiffracted component only. In an alternative embodiment, the acoustically generated image may comprise selected frequency component(s) from the diffracted component of the acoustic signal.
106 PROCESS FOR NON-INVASIVELY DETERMINING THE DIMENSIONS OF A LESION EP00913529.4 2000-02-18 EP1158902A1 2001-12-05 FECHT, Barbara, A.; SHELBY, Ronald, L.; SHELBY, Jerod, O.
There is disclosed a method for non-invasively determining dimensions of a lesion within soft tissue, comprising: (a) ultrasonically imaging soft tissue in an apparatus having an acoustic transducer, an acoustic focussing system, a holographic imaging detector, and a means for visualizing the holographic image; (b) obtaining a holographic planar image of a lesion in a first plane having a thickness z and having a dimension across a wide area of the lesion of x and a length across the lesion of y wherein y is at an approximately 90 degree angle to x; (c) determining if the image of the lesion is contained in different planar images; (d) measuring the x and y dimensions of the lesion in the plane having the largest sum of x plus y dimensions; and (e) determining the 3-dimensional size with a means for z-axis measurement.
107 IMAGE SYNTHESIS USING TIME SEQUENTIAL HOLOGRAPHY EP93901171.4 1992-12-17 EP0617797B1 2001-07-18 TURPIN, Terry, M.
108 ULTRASONIC HOLOGRAPHIC IMAGING APPARATUS HAVING ZOOM FEATURE EP93900662.3 1992-11-20 EP0613557B1 1996-09-04 GARLICK, George, F.; NEELEY, Victor, I.
The preferred embodiment of this invention is illustrated in the figure 2 showing an ultrasonic holographic imaging apparatus (50) having a multiple lens system (52) that is capable of providing both zoom and focus capability. The system (52) includes lenses (54) and (56) that are independently mounted on lead screws (62) and (64) for movement relative to each other along an optical axis (57). The movement of the system is controlled by drive systems (66) and (68) that have encoders (72) and (74) for accurately positioning the lenses (54) and (56) relative to each other in response to signals from a microcontroller (76). The microcontroller (76) is operator controlled through control device (78) and (80) to provide both zoom capability and a focus capability.
109 IMAGE SYNTHESIS USING TIME SEQUENTIAL HOLOGRAPHY. EP93901171 1992-12-17 EP0617797A4 1994-12-14 TURPIN TERRY M
A system (4) for generating an image of an object, comprising a combination of a sensing feature (2) for measuring the spatial component parameters (amplitude, phase, etc.) of the object basis functions that satisfy a Bragg condition, together with an image synthesis feature (16, 18) for generating a reconstructed image of the object using the measured parameters of the basis functions. The image reconstruction feature may optically project spatial components (6) (spatial frequencies). The image reconstruction feature may optically record the spatial frequency domain sequentially, then perform a two dimensional Fourier transform by a variety of methods. The image reconstruction feature is not restricted to optical radiation, and may include projection imaging systems that use other forms of wavelike radiation. The image reconstruction feature does not require purely digital electronic methods for producing a two-dimensional image.
110 IMAGE SYNTHESIS USING TIME SEQUENTIAL HOLOGRAPHY EP93901171.0 1992-12-17 EP0617797A1 1994-10-05 TURPIN, Terry, M.
Système (4) permettant de générer une image d'un objet, comprenant un élément détecteur (2) servant à mesurer les paramètres de composantes spatiales (amplitute, phase, etc.) des fonctions de base de l'objet qui satisfont une condition de Bragg, combiné à un élément de synthèse d'image (16, 18) servant à générer une image reconstruite de l'objet à l'aide des paramètres mesurés des fonctions de base. L'élément de reconstruction d'image peut projeter de manière optique les composantes spatiales (6) (fréquences spatiales). Cet élément de reconstruction d'images peut également enregistrer optiquement et séquentiellement le domaine de fréquence spatiale, puis effectuer une transformation de Fourier bidimensionnelle selon différents procédés. L'élément de reconstruction d'image n'est pas limité au rayonnement optique, et peut comprendre des systèmes d'imagerie par projection qui utilisent d'autres formes de rayonnements analogues à des ondes. Cet élément ne requiert pas l'utilisation de procédés électroniques exclusivement numériques pour produire une image bidimensionnelle.
111 Procédé et dispositif d'holographie acoustique utilisant un faisceau ultrasonore limité dans l'espace EP84400851.6 1984-04-26 EP0124442B1 1990-02-07 de Vadder, Daniel; Saglio, Robert
112 Non-destructive testing system employing a liquid crystal detector cell EP83304107.2 1983-07-15 EP0101189B1 1987-09-16 Sandhu, Jaswinder Singh, Dr.
113 Procédé et dispositif d'holographie acoustique utilisant un faisceau ultrasonore limité dans l'espace EP84400851.6 1984-04-26 EP0124442A2 1984-11-07 de Vadder, Daniel; Saglio, Robert

Procédé et dispositif d'holographie acoustique utilisant un faisceau ultrasonore limité dans l'espace.

La zone (29) à contrôler, contenant un défaut (28), est insonifiée au moyen d'un émetteur (22) d'ultrasons à faisceau limité dans l'espace qui est déplacé pas à pas, les signaux provenant des zones (17) successivement insonifiées sont détectés par plusieurs récepteurs (24), les phases et les amplitudes de ces signaux sont déterminées et la reconstitution de la zone à contrôler est effectuée. Elle comporte une image principale du défaut et des images parasites de celui-ci. Le nombre de récepteurs est choisi pour que la distance entre les images parasites et l'image principale soit supérieure à la largeur de la zone insonifiée par l'émetteur et la reconstitution est effectuée seulement dans les zones insonifiées ayant donné naissance à un signal, pour éliminer les images parasites. Application au contrôle non destructif de pièces mécaniques.

114 Système d'imagerie acoustique EP81400327.3 1981-03-03 EP0036794A1 1981-09-30 Tournois, Pierre

Système d'imagerie acoustique permettant d'obtenir des images en deux dimensions.

Le système comprend une antenne formée par M transducteurs émetteurs E1, E2, ... EM, fournissant des signaux codés séparables de même fréquence et une antenne de réception ayant au moins un alignement d'hydrophones H1, H2, ... HN. Les signaux tels que hi reçus chacun des hydrophones sont appliqués à des circuits de traitement tel que Dik, fournissant des signaux xik et yik qui sont multiplexés dans les circuits MX et MY dans un ordre déterminé mis sur porteuse et appliqués à un dispositif analogique de transformée de Fourier par filtres dispersifs à ondes acoustiques. Après détection le système fournit une ligne d'images.

Application à la visualisation du fond de la mer pour la détection de mines.

115 Digital type ultrasonic holography apparatus EP81300270.6 1981-01-21 EP0032848A1 1981-07-29 Takahashi, Fuminobu

A digital type ultrasonic holography apparatus includes a clock generator (13) for generating a clock pulse signal having a fixed period, a transducer (1) for transmitting spike-like ultrasonic pulses toward an object (6) in synchronism with trigger pulses derived through the frequency division of the clock pulse signal and receiving the reflected wave from the object, a waveform shaping circuit (18) for shaping the received wave into a digital pulse signal, a coincidence detecting circuit (29) for reducing the pulse width of the digital pulse signal to a magnitude shorter than the period of the clock pulse signal and judging whether or not the digital pulse of reduced width is present at the level-changing time of the clock pulse signal, thereby to generate a coincidence signal, a scanner (11) for scanning the transducer, and a device (12) for displaxing a hologram of the object in accordance with the value of the coincidence signal and the scanning of the transducer. The ratio of the interference fringe occupied portion of the displayed hologram to the remaining portion thereof is determined by the reduced pulse width of the digital pulse.

116 METHOD AND SYSTEM FOR SIMULATION OF FORCES USING HOLOGRAPHIC OBJECTS US15662759 2017-07-28 US20190033780A1 2019-01-31 Harish Bharti; Abhay K. Patra; Sarbajit K. Rakshit
The disclosure is directed to simulating forces using holographic objects. A method according to embodiments includes: generating an invisible holographic object, the invisible holographic object providing a haptic effect; displaying a visible holographic object; aligning the visible holographic object and the invisible holographic object to provide a visible and touchable combined holographic object, the combined holographic object providing the haptic effect; applying a force to the combined holographic object, the applied force causing a displacement of the combined holographic object and including an amplitude and direction; and adjusting the haptic effect of the combined holographic object to generate an adjusted haptic effect representative of an effect of the applied force on the combined holographic object.
117 Ultrasonic holography imaging system and method US13750582 2013-01-25 US10025272B2 2018-07-17 Stephan Falter; Dieter Lingenberg
An ultrasonic holography imaging system and method are provided. The ultrasonic holography imaging system includes an ultrasonic transducer array coupled to an analog processing section. The analog processing section is coupled to a digital processing section. The digital processing section generates digital signals to be converted by the analog processing section into analog signals that are transmitted to individual transceiver elements within the ultrasonic transducer array to cause separate ones of the individual transceiver elements to emit ultrasonic waveforms that are differentiated from each other by one or more parameters, including amplitude, frequency, and phase or modulation thereof.
118 ADDITIVE MANUFACTURING METHOD AND APPARATUS FOR FABRICATING A COMPONENT USING ACOUSTIC FORCES TO POSITION PRECURSOR MATERIAL US15536345 2015-12-18 US20170348907A1 2017-12-07 Kai MELDE; Peer FISCHER
A method of fabricating a component (1) comprises the steps of providing precursor material in a working medium, creating acoustic forces and positioning the precursor material in the working medium under the effect of the acoustic forces, so that a material distribution is formed, which has a shape of the component to be fabricated, and subjecting at least one of the material distribution and the working medium to a fixation, so that the precursor material of the material distribution or the working medium surrounding the material distribution is bound, wherein the step of creating the acoustic forces includes generating an acoustic interference pattern (5), and the material distribution (4) is formed by moving the precursor material (2) towards energy extrema of the acoustic interference pattern (5). Furthermore, an apparatus (100) for fabricating a component (1) is described.
119 Portable acoustic holography systems for therapeutic ultrasound sources and associated devices and methods US13894333 2013-05-14 US09588491B2 2017-03-07 Oleg A. Sapozhnikov; Michael R. Bailey; Peter J. Kaczkowski; Vera A. Khokhlova; Wayne Kreider
The present technology relates generally to portable acoustic holography systems for therapeutic ultrasound sources, and associated devices and methods. In some embodiments, a method of characterizing an ultrasound source by acoustic holography includes the use of a transducer geometry characteristic, a transducer operation characteristic, and a holography system measurement characteristic. A control computer can be instructed to determine holography measurement parameters. Based on the holography measurement parameters, the method can include scanning a target surface to obtain a hologram. Waveform measurements at a plurality of points on the target surface can be captured. Finally, the method can include processing the measurements to reconstruct at least one characteristic of the ultrasound source.
120 METHOD AND DEVICE FOR ENCODING THREE-DIMENSIONAL SCENES WHICH INCLUDE TRANSPARENT OBJECTS IN A HOLOGRAPHIC SYSTEM US15241327 2016-08-19 US20170038728A1 2017-02-09 Enrico ZSCHAU; Nils PFEIFER
Method for computing the code for the reconstruction of three-dimensional scenes which include objects which partly absorb light or sound. The method can be implemented in a computing unit. In order to reconstruct a three-dimensional scene as realistic as possible, the diffraction patterns are computed separately at their point of origin considering the instances of absorption in the scene. The method can be used for the representation of three-dimensional scenes in a holographic display or volumetric display. Further, it can be carried out to achieve a reconstruction of sound fields in an array of sound sources.
QQ群二维码
意见反馈