序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 混杂MOS光调制器 CN201280072086.8 2012-04-30 CN104969103A 2015-10-07 梁迪
混杂MOS光调制器。该光调制器包括光波导、包含第一材料并且在该光波导中形成的阴极、以及包含不同于第一材料的第二材料并且在该光波导中形成的阳极,该阳极邻接于阴极,在该阳极和该阴极之间限定电容器。
2 多级集成光子器件 CN200580005245.2 2005-04-14 CN100533880C 2009-08-26 A·A·贝法; M·R·格林; A·T·谢里默尔
激光器和电吸收调制器(EAM)通过蚀刻刻面过程被整体集成。晶片上的外延层包括用于激光器结构的第一层和用于EAM结构的第二层。激光器和EAM之间的强光耦合使用两个45度旋转反射镜实现,以便使光从激光器波导垂直路由到EAM波导。使用定向有度的蚀刻过程来形成两个有角度的刻面。
3 半导体调制器 CN200680006437.X 2006-03-08 CN101133355A 2008-02-27 都筑健; 菊池顺裕; 山田英一
提供一种具有n-i-n结构半导体调制器的特点、又能稳定工作,而且对电场的耐压性优良的半导体光调制器。其包括依次层叠n型InP包层(11)、具有电光效应的半导体芯层(13)、p-InAlAs层(15)、以及n型InP包层(16)而形成的波导结构。p-InAlAs层(15)的电子亲和小于n型InP包层(16)的电子亲和力。在如此构成的波导结构中,还可以分别在n型InP包层(11)和半导体芯层(13)之间设置未掺杂的InP包层(12),在半导体芯层(13)和p-InAlAs层(15)之间设置未掺杂的InP包层(14)。
4 具备波长转换功能的有机/无机混合光学放大器 CN201180050192.1 2011-08-16 CN103180968A 2013-06-26 班大燕; 吕正红; 陈俊
本文介绍了一种可将红外光转换为可见光的有机/无机混合放大器器件及其制造方法。该器件集成了一个无机异质结光电晶体管(HPT),一个具备光学反射镜和电荷注入电极两种功能的嵌入式金属电极镜和一个有机发光二极管(OLED)。集成的光学放大器能够放大入射光并产生比入射光信号更强的反射光。该发明的第二点,光学放大器能够检测到入射的红外电磁波,并将其转换成可见光波。该光学器件具有光功率放大和光子能量上转换两种功能。光学放大器器件中将基于InGaAs/InP的HPT结构作为光电探测器,金金属作为内置反光镜,外加一个顶部发光OLED。此外,还可以通过制备有机/无机混合光学放大器的焦平面获得新型光学上转换成像器件。上转换成像器件响应快,在实际应用(如夜视、主动监测、半导体晶圆检测和人眼安全红外成像)中可进行监管。更重要的一点,上转换成像设备特别适用于对超低强度红外环境进行检测。
5 显示装置、显示装置制造方法和电子设备 CN201210258533.0 2012-07-24 CN102929037A 2013-02-13 户田淳; 平山照峰
发明涉及显示装置、显示装置制造方法和电子设备。所述显示装置包括光源部和发光层,所述光源部与各像素对应地出射激发光,所述发光层包含量子点并且与各所述像素对应地出射发射光,所述量子点基于所述激发光生成波长比所述激发光的波长更长的所述发射光。所述电子设备设置有上述显示装置。所述显示装置制造方法包括如下步骤:形成上述光源部;并且利用量子点形成上述发光层,所述量子点被构造成基于所述激发光生成波长比所述激发光的波长更长的所述发射光。根据本发明,能够以简单的结构进行从所述激发光到所述发射光的波长转换。因此,能够促进光的利用效率的提高。
6 半导体调制器 CN201010573435.7 2006-03-08 CN102033333B 2012-09-05 都筑健; 菊池顺裕; 山田英一
提供一种具有n-i-n结构半导体调制器的特点、又能稳定工作,而且对电场的耐压性优良的半导体光调制器。其包括依次层叠n型InP包层(11)、具有电光效应的半导体芯层(13)、p-InAlAs层(15)、以及n型InP包层(16)而形成的波导结构。p-InAlAs层(15)的电子亲和小于n型InP包层(16)的电子亲和力。在如此构成的波导结构中,还可以分别在n型InP包层(11)和半导体芯层(13)之间设置未掺杂的InP包层(12),在半导体芯层(13)和p-InAlAs层(15)之间设置未掺杂的InP包层(14)。
7 半导体调制器 CN201010573435.7 2006-03-08 CN102033333A 2011-04-27 都筑健; 菊池顺裕; 山田英一
提供一种具有n-i-n结构半导体调制器的特点、又能稳定工作,而且对电场的耐压性优良的半导体光调制器。其包括依次层叠n型InP包层(11)、具有电光效应的半导体芯层(13)、p-InAlAs层(15)、以及n型InP包层(16)而形成的波导结构。p-InAlAs层(15)的电子亲和小于n型InP包层(16)的电子亲和力。在如此构成的波导结构中,还可以分别在n型InP包层(11)和半导体芯层(13)之间设置未掺杂的InP包层(12),在半导体芯层(13)和p-InAlAs层(15)之间设置未掺杂的InP包层(14)。
8 量子阱电吸收调制器 CN200610105465.9 2006-06-08 CN1909312B 2011-04-13 D·P·布尔; A·坦顿; M·R·T·谭
通过嵌入深的超薄的量子阱在量子阱有源区域中产生电吸收调制器的双阱结构。由位于常规量子阱中央的嵌入的深的超薄量子阱而引起的干扰降低了在周围更大的阱中的波函数的限制能态,并且通常使得空穴和电子波函数更限制在常规的量子阱的中央。由该电吸收调制器提供的消光比通常得到增加。
9 半导体调制器 CN200680006437.X 2006-03-08 CN101133355B 2011-02-02 都筑健; 菊池顺裕; 山田英一
提供一种具有n-i-n结构半导体调制器的特点、又能稳定工作,而且对电场的耐压性优良的半导体光调制器。其包括依次层叠n型InP包层(11)、具有电光效应的半导体芯层(13)、p-InAlAs层(15)、以及n型InP包层(16)而形成的波导结构。p-InAlAs层(15)的电子亲和小于n型InP包层(16)的电子亲和力。在如此构成的波导结构中,还可以分别在n型InP包层(11)和半导体芯层(13)之间设置未掺杂的InP包层(12),在半导体芯层(13)和p-InAlAs层(15)之间设置未掺杂的InP包层(14)。
10 多级集成光子器件 CN200580005245.2 2005-04-14 CN101002369A 2007-07-18 A·A·贝法; M·R·格林; A·T·谢里默尔
激光器和电吸收调制器(EAM)通过蚀刻刻面过程被整体集成。晶片上的外延层包括用于激光器结构的第一层和用于EAM结构的第二层。激光器和EAM之间的强光耦合使用两个45度旋转反射镜实现,以便使光从激光器波导垂直路由到EAM波导。使用定向有度的蚀刻过程来形成两个有角度的刻面。
11 量子阱电吸收调制器 CN200610105465.9 2006-06-08 CN1909312A 2007-02-07 D·P·布尔; A·坦顿; M·R·T·谭
通过嵌入深的超薄的量子阱在量子阱有源区域中产生电吸收调制器的双阱结构。由位于常规量子阱中央的嵌入的深的超薄量子阱而引起的干扰降低了在周围更大的阱中的波函数的限制能态,并且通常使得空穴和电子波函数更限制在常规的量子阱的中央。由该电吸收调制器提供的消光比通常得到增加。
12 THIN FILM TRANSISTOR SUBSTRATE, AND DISPLAY PANEL AND DISPLAY DEVICE INCLUDING SAME US16069130 2016-11-09 US20190051672A1 2019-02-14 Sang Youl LEE; Chung Song KIM; Ji Hyung MOON; Sun Woo PARK; June O SONG
A thin film transistor substrate according to an embodiment includes: a substrate; and a thin film transistor disposed on the substrate, wherein the thin film transistor includes a channel layer including a nitride-based semiconductor layer, a source electrode electrically connected to a first region of the channel layer, a drain electrode electrically connected to a second region of the channel layer, a gate electrode disposed on the channel layer, and a depletion forming layer disposed between the channel layer and the gate electrode.
13 FAR FIELD SPATIAL MODULATION US15955102 2018-04-17 US20180307063A1 2018-10-25 Cristian Stagarescu
Embodiments of an optical modulator device are described. An example optical modulator includes a ridge laser configured to emit light, a ridge waveguide configured to transition between a transparent state and an absorbing state, and a waveguide tap formed between the ridge laser and the ridge waveguide. The waveguide tap is configured to optically couple a fraction of light generated in the ridge laser to the ridge waveguide. In the transparent state of the ridge waveguide, the ridge waveguide is configured to output the fraction of light for interference with light emitted from the ridge laser. In the absorbing state of the ridge waveguide, the ridge waveguide is configured to absorb the fraction of light. Depending upon whether the fraction of light is output from the ridge waveguide for interference, the output power of the laser seen at the far-field of the optical modulator can be modulated for data communications.
14 Hybrid optical modulator US13861564 2013-04-12 US09568750B2 2017-02-14 John Y. Spann; Derek Van Orden; Amit Mizrahi; Timothy Creazzo; Elton Marchena; Robert J. Stone; Stephen B. Krasulick
An optical modulator includes an input port, a first waveguide region comprising silicon and optically coupled to the input port, and a waveguide splitter optically coupled to the first waveguide region and having a first output and a second output. The optical modulator also includes a first phase adjustment section optically coupled to the first output and comprising a first III-V diode and a second phase adjustment section optically coupled to the second output and comprising a second III-V diode. The optical modulator further includes a waveguide coupler optically coupled to the first phase adjustment section and the second phase adjustment section, a second waveguide region comprising silicon and optically coupled to the waveguide coupler, and an output port optically coupled to the second waveguide region.
15 OPTICAL DEVICE AND MANUFACTURING METHOD THEREFOR US14748321 2015-06-24 US20150316719A1 2015-11-05 Shigeru Nakagawa; Seiji Takeda
An optical device includes an SOI substrate, the embedded insulating layer having a thickness of 200 nanometers (nm) or less; an optical waveguide comprising a Group III-V compound semiconductor material formed on top of the SOI substrate; and an optical leakage preventing layer formed inside the SOI substrate on a bottom side of the optical waveguide to prevent leakage of light from inside the optical waveguide towards the SOI substrate.
16 Implantation before epitaxial growth for photonic integrated circuits US13030094 2011-02-17 US08900896B1 2014-12-02 Yakov Royter; Rajesh D. Rajavel; Stanislav I. Ionov
Fabrication of a photonic integrated circuit (PIC) including active elements such as a semiconductor optical amplifier (SOA) and passive elements such as a floating rib waveguide. Selective area doping through ion implantation or thermal diffusion before semiconductor epitaxial growth is used in order to define the contact and lateral current transport layers for each active device, while leaving areas corresponding to the passive devices undoped. InP wafers are used as the substrate which may be selectively doped with silicon.
17 Etch-selective bonding layer for hybrid photonic devices US13461634 2012-05-01 US08774582B1 2014-07-08 Matthew Jacob-Mitos; Gregory Alan Fish; Alexander W. Fang
“Hybrid photonic devices” describe devices wherein the optical portion—i.e., the optical mode, comprises both the silicon and III-V semiconductor regions, and thus the refractive index of the semiconductor materials and the refractive index of the bonding layer region directly effects the optical function of the device. Prior art devices utilize an optically compliant layer that is the same material as the III-V substrate; however, during the final sub-process of the bonding process, the substrates must be removed by acids. These acids can etch into the bonding layer, causing imperfections to propagate at the interface of the bonded material, adversely affecting the optical mode shape and propagation loss of the device.Embodiments of the invention utilize a semiconductor etch-selective bonding layer that is not affected by the final stages of the bonding process (e.g., substrate removal), and thus protects the bonding interface layer from being affected.
18 Semiconductor optical modulator and method for manufacturing the same US13311837 2011-12-06 US08618638B2 2013-12-31 Yoshihiro Yoneda; Kenji Koyama; Hirohiko Kobayashi
A process to manufacture a semiconductor optical modulator is disclosed, in which the process easily forms a metal film including AuZn for the p-ohmic metal even a contact hole has an enhanced aspect ration. The process forms a mesa including semiconductor layers first, then, buries the mesa by a resin layer sandwiched by insulating films. The resin layer provides an opening reaching the top of the mesa, into which the p-ohmic metal is formed. Another metal film including Ti is formed on the upper insulating film along the opening.
19 Waveguide-type semiconductor optical modulator and method for manufacturing the same US12736127 2009-01-21 US08300991B2 2012-10-30 Tomoaki Kato
Provided is a traveling-wave type semiconductor optical phase modulator capable of high speed and low voltage operation by improving an n-SI-i-n-type layered structure. A first exemplary aspect of the present invention is a waveguide-type semiconductor optical modulator including: a semiconductor substrate (101); a first n-type cladding layer (103) and a second n-type cladding layer (108) formed on the semiconductor substrate (101); an undoped optical waveguide core layer (104) and an electron trapping layer (107) formed between the first n-type cladding layer (103) and the second n-type cladding layer (108); and a hole supplying layer (106) formed between the undoped optical waveguide core layer (104) and the electron trapping layer (107).
20 SEMICONDUCTOR OPTICAL MODULATOR AND METHOD FOR MANUFACTURING THE SAME US13311837 2011-12-06 US20120148184A1 2012-06-14 Yoshihiro Yoneda; Kenji Koyama; Hirohiko Kobayashi
A process to manufacture a semiconductor optical modulator is disclosed, in which the process easily forms a metal film including AuZn for the p-ohmic metal even a contact hole has an enhanced aspect ration. The process forms a mesa including semiconductor layers first, then, buries the mesa by a resin layer sandwiched by insulating films. The resin layer provides an opening reaching the top of the mesa, into which the p-ohmic metal is formed. Another metal film including Ti is formed on the upper insulating film along the opening.
QQ群二维码
意见反馈