序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Self-aligning modulator method and associated apparatus US09859769 2001-05-17 US06608945B2 2003-08-19 Shrenik Deliwala
A self-aligned optical modulator that modulates an input optical signal in order to generate a modulated output optical signal includes an optical modulator device including a waveguide, a first modulating electrode, a second modulating electrode, and a two-dimensional electron (hole) gas (2DEG) proximate the first modulating electrode, the waveguide includes an input port wherein the input optical signal is introduced into the waveguide, an output port wherein the modulated output optical signal exits the waveguide, and a region of modulating propagation constant disposed along a first length of the waveguide and between the input port and the output port, wherein the input optical signal is guided by total internal reflection in the waveguide, and the waveguide is formed at least in part from an active semiconductor. The first modulating electrode is positioned proximate a first surface of the region of modulating propagation constant and electrically separated from an active semiconductor.
162 Fast optical wavelength shifter US10357609 2003-02-04 US20030142387A1 2003-07-31 Farhad Hakimi; Hosain Hakimi
A process shifts wavelengths of optical pulses. The process includes transmitting an incoming optical pulse through a nonlinear optical material, splitting the transmitted pulse into a plurality of mutually coherent optical pulses, and recombining the mutually coherent pulses with temporal delays. The recombined pulses produce a temporal interference pattern. The pattern has a peak whose wavelength is shifted with respect to the wavelength of the incoming optical pulse.
163 Interferometer and method of making same US10146322 2002-05-15 US20030059152A1 2003-03-27 Shrenik Delwala
An interferometer includes at least one optical waveguide, a first passive optical waveguide segment, and a second passive optical waveguide segment. The optical waveguide includes at least one gate oxide layer deposited on a semiconductor layer of a wafer and a polysilicon layer deposited on the gate oxide layer. The first passive optical waveguide segment includes a first portion of the polysilicon layer that projects a first region of static effective mode index within the optical waveguide. The second passive optical waveguide segment includes a second portion of the polysilicon layer that projects a second region of static effective mode index within the optical waveguide. A length of the first passive optical waveguide segment equals a length of the second passive optical waveguide segment. The first and second passive optical waveguide segments are coupled to each other and together form at least in part the optical waveguide. The first and second passive optical waveguide segments and the optical waveguide are each formed at least in part from the semiconductor layer.
164 Integrated optical/electronic circuits and associated methods of simultaneous generation thereof US10076920 2002-02-15 US20030054639A1 2003-03-20 Shrenik Deliwala
A method for forming a hybrid active electronic and optical circuit using a lithography mask. The hybrid active electronic and optical circuit comprising an active electronic device and at least one optical device on a Silicon-On-Insulator (SOI) wafer. The SOI wafer including an insulator layer and an upper silicon layer. The upper silicon layer including at least one component of the active electronic device and at least one component of the optical device. The method comprising projecting the lithography mask onto the SOI waver in order to simultaneously pattern the component of the active electronic device and the component of the optical device on the SOI wafer.
165 Method and apparatus for electro-optic delay generation of optical signals US10223848 2002-08-19 US20030048971A1 2003-03-13 Stanislav I. Ionov
An optical delay generator includes a waveguide made from electro-optically active material which contains a chirped distributed Bragg reflector. An electric field generated across the waveguide causes the index of refraction within the waveguide to change. A change in the index of refraction results in a change in the point at which light is reflected from the chirped distributed Bragg reflector within the waveguide, thus providing a controllable delay for optical pulses. Optical pulse position modulation is provided by using the optical delay generator to control the delay imparted on each pulse within a stream of equally-spaced optical pulses.
166 Hybrid active electronic and optical fabry perot cavity US10079310 2002-02-20 US20030040134A1 2003-02-27 Shrenik Deliwala
A method for forming a hybrid active electronic and optical circuit using a lithography mask. The hybrid active electronic and optical circuit comprising an active electronic device and at least one optical device on a Silicon-On-Insulator (SOI) wafer. The SOI wafer including an insulator layer and an upper silicon layer. The upper silicon layer including at least one component of the active electronic device and at least one component of the optical device. The method comprising projecting the lithography mask onto the SOI waver in order to simultaneously pattern the component of the active electronic device and the component of the optical device on the SOI wafer.
167 Polarization control apparatus and associated method US09859663 2001-05-17 US06526187B1 2003-02-25 Shrenik Deliwala
An optical polarization controller apparatus and associated method that controls a first temporal separation between a first polarization and a second polarization of an output optical signal, wherein a second temporal separation exists between a first polarization and a second polarization of an input optical signal. The optical polarization controller comprises a controller, a polarization separation device, and a delay element. The controller determines the first temporal separation. The controller compares the first temporal separation with the second temporal separation. The polarization separation device transmits the first polarization of the output optical signal along a first path and transmits the second polarization of the output optical signal along a second path. The delay element delays the first polarization of the output optical signal relative to the second polarization of the output optical signal whereby a duration of the first temporal separation becomes closer to a duration of the second temporal separation. The delay element further comprising a gate electrode and a voltage source. The gate electrode has a prescribed electrode shape positioned proximate the waveguide. The voltage source is connected to the gate electrode for applying voltage to the gate electrode, wherein the voltage causes the gate electrode to project into the waveguide the region of changeable propagation constant, said region of changeable propagation constant corresponding generally in shape to the prescribed electrode shape. The controller controls the propagation constant level of the region of changeable propagation constant by varying the voltage applied to the gate electrode wherein changing the propagation constant level of the region of changeable propagation constant changes a duration that the first polarization of the output optical signal is delayed within the region of changeable propagation constant.
168 Fast optical wavelength shifter US09547552 2000-04-12 US06515792B1 2003-02-04 Farhad Hakimi; Hosain Hakimi
A process shifts wavelengths of optical pulses. The process includes transmitting an incoming optical pulse through a nonlinear optical material, splitting the transmitted pulse into a plurality of mutually coherent optical pulses, and recombining the mutually coherent pulses with temporal delays. The recombined pulses produce a temporal interference pattern. The pattern has a peak whose wavelength is shifted with respect to the wavelength of the incoming optical pulse.
169 Optical waveguide circuit including multiple passive optical waveguide devices, and method of making same US10146350 2002-05-15 US20030003735A1 2003-01-02 Shrenik Deliwala
An optical waveguide device includes a first passive optical waveguide device and a second passive optical waveguide device. The first passive optical waveguide device is etched, at least in part, in a semiconductor layer of a wafer. The value and position of an effective mode index within the first passive optical waveguide device remains substantially unchanged over time. The second passive optical waveguide device is formed at least in part from a polysilicon layer deposited above an unetched portion of the semiconductor layer. The effective mode index of a region of static effective mode index within the optical waveguide is created by the polysilicon layer of the second passive optical waveguide device. The value and position of the effective mode index within the region of static effective mode index remains substantially unchanged over time. The optical waveguide forms at least a part of both the first passive optical waveguide device and the second passive optical waveguide device. The optical waveguide couples the first passive optical waveguide device and the second passive optical waveguide device, and the optical waveguide is formed at least in part using the semiconductor layer.
170 Electro-optical programmable true-time delay generator US09877976 2001-06-08 US20020186919A1 2002-12-12 David M. Pepper
A programmable electro-optically controlled optical delay device providing multiple optical outputs. The optical delay device provides multiple output ports where the optical propagation delay increases at each port. An incident optical beam is propagated within electro-optically active material within the device, so that the propagation delay at each output port may be varied according to an applied voltage. In an optical beam steering system, the present invention provides true-time delay for multiple optical beams, allowing the beams radiated by the beam steering system to be time-coincident. The present invention provides for one or two dimensional beam steering.
171 RF combiner based on cascaded optical phase modulation US09876017 2001-06-06 US20020186445A1 2002-12-12 James E. Leight; David L. Rollins; Richard A. Fields
An RF combiner (10) that combines a plurality of RF signals (12) in the optical domain. The combiner (10) includes a single optical source (14) that generates an optical beam (16). The optical beam (16) is directed through a series of optical modulators (20), such as optical phase modulators. Each modulator (20) is responsive to an RF signal (12) that is to be combined with the other RF signals (12). Each modulator (20) modulates the optical signal (16) with the RF signal (12) so that the modulations combine in an additive manner. A single optical phase demodulator (32) is used to demodulate the composite phase modulated optical beam (16) to generate the combined RF signal (34). Suitable delay devices (50) can be used between the optical modulators (20), or the RF signals can be matched so that the RF signals combine in phase.
172 Method and apparatus for electro-optic delay generation of optical signals US09545632 2000-04-07 US06466703B1 2002-10-15 Stanislav I. Ionov
An optical delay generator includes a waveguide made from electro-optically active material which contains a chirped distributed Bragg reflector. An electric field generated across the waveguide causes the index of refraction within the waveguide to change. A change in the index of refraction results in a change in the point at which light is reflected from the chirped distributed Bragg reflector within the waveguide, thus providing a controllable delay for optical pulses. Optical pulse position modulation is provided by using the optical delay generator to control the delay imparted on each pulse within a stream of equally-spaced optical pulses.
173 Addressable, semiconductor adaptable Bragg gratings (ASABG) US09252497 1999-02-18 US06208773B1 2001-03-27 Michael G. Wickham; Eric L. Upton
A Bragg grating device (10) is provided including a semiconductive optical waveguide (12) with a Bragg grating structure (14) formed along its length. A first plurality of electrodes (16) are disposed on a first surface (18) of the optical waveguide (12) and individually communicate with select members of the Bragg grating structure (14). A second plurality of electrodes (20) are disposed on a second surface (22) of the optical waveguide (12) and individually communicate with select members of the Bragg grating structure (14) such that individual electrodes of the second plurality of electrodes (20) are electrically coupled to individual electrodes of the first plurality of electrodes (16) via the Bragg grating structure (14). As such, a plurality of addressable portions (30) of the Bragg grating device (6) are defined. A plurality of electrical leads (32) are electrically coupled between individual electrodes of the second plurality of electrodes (20) and a power source (38) such that a refractive index of each portion (30) along the Bragg grating structure (14) may be selectively varied along the length of the optical waveguide (12). As a further feature of the present invention, a controller (36) is disposed between the plurality of electrical leads (32) and the power source (38) for varying a magnitude and distribution of current among the individual portions (30) of the Bragg grating structure (14) to effectuate different optical applications.
174 Ladder-structured photonic variable delay device US835352 1997-04-07 US5796510A 1998-08-18 X. Steve Yao
An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the "ladder" experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
175 Fast liquid crystal switching unit US130819 1993-10-04 US5568286A 1996-10-22 Nabeel A. Riza
A fast-speed optical switching unit includes a polarization rotation unit having plurality of liquid crystal cells disposed on a common substrate and optically coupled together in series so as to impart a selected linear polarization orientation to an incident light beam. The polarization rotation unit is optically coupled to beam-directing optics such that, dependent on the polarization orientation of the light beam passing from the polarization unit, the light beam is directed onto a predetermined path. The multiple liquid crystal cells driven by a selected control voltage so as to operate in the fast speed regime, thus collectively effecting a faster change in polarization orientation of a light beam passing therethrough than is obtainable with a single liquid crystal cell.
176 Time delay beam formation US45062 1993-04-12 US5390046A 1995-02-14 Leslie H. Gesell; Terry M. Turpin
Optical systems are disclosed which are capable of generating and rapidly changing time delays of electrical signals for true time delay beam formation and beam steering and for signal processing applications. The systems utilize an interferometer configuration. A first optical modulator in a first leg of the interferometer is used to modulate coherent light with the signal to be delayed. In a second leg of the interferometer, a second optical modulator provides beam steering to a prism stack, which produces a set of plane reference waves having a range of orientations required to generate a desired range of time delays. Preferably the optical modulators are acousto optic Bragg cells. Alternatively, a stack of lens pairs or diffractive optical elements or a holographic optic element may be used in place of the prism stack. The modulated optical signal from the first leg interferes on an array of photodiodes with the reference waves from the second leg. The resulting electrical signals out of the photodiodes are delayed replicas of the signals driving the optical modulator in the first leg.
177 Optical devices incorporating slow wave structures US989778 1992-12-14 US5311605A 1994-05-10 William J. Stewart
An optical device comprising a length of optical waveguide (1) having incorporated therein an extended sequence of coupled single resonator structures (9) so as to form an optical slow wave structure. The sequence of resonator structures is suitably formed by a Bragg diffraction grating pattern (7) extending along the waveguide.
178 Continuously variable delay lines US889498 1992-05-27 US5247388A 1993-09-21 Christopher S. Anderson; Michael C. Zari; Robert J. Berinato
An acousto-optic apparatus is described that varies the time delay of electrical signals over a continuum of delays. In the preferred embodiment, a light source, which can be either coherent or incoherent, emits an optical beam that is focused into an acousto-optic cell. An input electrical signal is used to drive the acousto-optic cell which, in turn, modulates the focused optical beam. Portions of the input optical beam are modulated and diffracted at angles proportional to the frequencies and phases contained in the input electrical signal. By appropriately choosing the cone of angles at which the light is focused into the acousto-optic cell, the diffracted optical beam can be made to overlap with portions of the undiffracted, unmodulated optical beam. All of the light exiting the acousto-optic cell is then collected onto a device for detection. Optical photomixing of the diffracted beam and the undiffracted beam is performed in order to derive the input electrical signal with a time delay. The approach to generating a continuously variable delay maintains a true time delay of the input electrical signal on its electrical carrier frequency, and does not suffer the limitations imposed by only time delaying the modulation envelope of the input electrical signal. Since all optical beams travel exactly the same physical path, the present invention is robust to mechanical or thermal variations unlike inferior acousto-optic approaches for implementing time delay.
179 Microwave adaptive transversal filter employing variable photonic delay lines US862097 1992-04-02 US5220163A 1993-06-15 Edward N. Toughlian; Henry Zmuda
By applying a spatial frequency dependent phase compensation in an optical heterodyning system, a variable rf delay line can be synthesized. The system is able to generate continuously variable phased microwave signals over a prescribed frequency band. A primary application of these variable delay lines is in the area of phased array antenna systems. Because the phototonic delay line synthesizes true time delay, it can be used as part of wide bandwidth system to achieve 100% fractional bandwidth without beam squint. The system lends itself to an optically integrated implementation using a 2-D deformable mirror device to achieve very high packing density which is very useful for an adaptive transversal filter.
180 ALL-OPTICAL, CONTINUOUSLY TUNABLE, PULSE DELAY GENERATOR USING WAVELENGTH CONVERSION AND DISPERSION PCT/US2006009703 2006-03-17 WO2006102074A2 2006-09-28 GAETA ALEXANDER; SHARPING JAY E; XU CHRIS
A technique for generating variable pulse delays uses one or more nonlinear-optical processes such as cross-phase modulation, cross-gain modulation, self-phase modulation, four-wave mixing or parametric mixing, combined with group-velocity dispersion. The delay is controllable by changing the wavelength and/or power of a control laser. The delay is generated by introducing a controllable wavelength shift to a pulse of light, propagating the pulse through a material or an optical component that generates a wavelength dependent time delay, and wavelength shifting again to return the pulse to its original wavelength.
QQ群二维码
意见反馈