序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 All-optical wavelength coded logic gates US965851 1997-11-07 US6151428A 2000-11-21 Kerry John Vahala; Roberto Paiella; Guido Hunziker
All-optical logic gates in which binary words are encoded using wavelength. A method and apparatus for processing information in this wavelength encoded format is provided. The processing may occur entirely in the optical domain. This approach is modular and enables construction of logic gates using custom wave guide chips that can be mass-produced in a manner similar to that of conventional electronic digital chips. Specific gates, such as AND, OR, EXOR, or NAND, may be "programmed" into a given chip during its fabrication to encode the desired truth table. The output states of the chip are determined by ultrafast mixing of binary encoded wavelengths in a semiconductor optical amplifier. The result is a new wavelength having a relationship to the input wavelengths determined entirely by the desired truth table. The possible clock-rates for these gates can be exceedingly high, such as several hundred Gigabits/second. The product of integer word length "N" and gate clock speed can exceed several Terabits/second and may be as high as the overall optical bandwidth of the system. Complicated multi-input functions may be constructed using this approach and dynamically programmable functions may be built in which either electrical or optical signals reconfigure a set of gates by reprogramming the inverter operations in the chips.
162 Nonlinear optical switch US947937 1997-10-09 US6049642A 2000-04-11 Shigeru Nakamura; Kazuhito Tajima
An optically controlled optical switch operating at a high speed and at a high efficiency can be realized with a simple construction. An optical signal exiting from a nonlinear optical waveguide is passed through an optical frequency filter and then guided into an optical output signal port. The optical frequency filter is a band-pass filter for passing only optical signal pulses having a center frequency of .omega.1. Where the center frequency .omega.0 of controlling light is set within the absorption region of the nonlinear optical waveguide, optical controlling pulses are absorbed, and carriers are excited. This results in a change in the refractive index. Consequently, the center frequency .omega.1 of only the optical signal pulses entered simultaneously with the optical controlling pulses is shifted to .omega.2. The optical frequency filter blocks optical signal pulses whose center frequency has been shifted to .omega.2. Thus, a gate-type optical switching action is accomplished.
163 Wavelength converter for binary optical signals US57512 1998-04-09 US6005708A 1999-12-21 Denis Leclerc; Leon Goldstein; Jean-Yves Emery; Beatrice Dagens; Christopher Janz; Michael Schilling; Klaus Wunstel
The invention relates to wavelength converters for optical signals, as used in telecommunications, in particular for routing signals. The invention relates in particular to a wavelength converter including an interferometer structure for delivering an output optical signal, in which converter first and second branches, including at least one first semiconductor optical amplifier, are coupled to input peripheral semiconductor optical amplifiers and/or to an output peripheral semiconductor optical amplifier, wherein the structure of the active waveguide of at least one peripheral amplifier is so designed that it has a ratio of active area to confinement factor greater than that of the active waveguide of said first amplifier.
164 Optical element US694246 1996-08-08 US5898720A 1999-04-27 Kazushige Yamamoto; Kouichi Ichimura; Nobuhiro Gemma
An optical element and a method capable of electromagnetically inducing transparency in a solid. The optical element includes a solid having a number N of sites characterized by at least three energy levels including a first level higher than a second and a third lower than the second, and an excitation device configured to irradiate the solid with a first light having a wavelength corresponding to the energy difference between the first and the second level, and a second light having a wavelength corresponding to the energy difference between the first and the third level. The solid satisfies .sigma..sub.23 .ltoreq..sigma..sub.12 and .sigma..sub.23 .ltoreq..sigma..sub.13 where .sigma..sub.12, .sigma..sub.13 and .sigma..sub.23 are respectively the standard deviations of the energy differences between the first and second level, between the first and third level, and between the second and third level.
165 Device for and method of modifying the spectral characteristics of optical signals US690068 1996-07-31 US5754334A 1998-05-19 Massimo Artiglia; Ernesto Ciaramella
The modification is accomplished on the basis of the solution known as spectral inversion (or optical phase conjugation). The device (1) comprises a medium, such as typically a dispersion shifted optical fiber (4), into which the signal to be modified is injected together with a pump signal at such a level as to induce modulation instability in the fiber (4). At the output of fiber (4) a spectrally inverted optical signal is available, which signal is translated in wavelength and is obtained with high conversion efficiency. Preferably, in order to avoid stimulated Brillouin scattering, the pump signal is subjected to spectrum broadening, for instance by means of a modulator (5).
166 Optimized non-linear effect tapered optical fiber and method of making same US577026 1995-12-22 US5710848A 1998-01-20 Patrick Dumais; Suzanne Lacroix; Francois Gonthier; Richard James Black; Jacques Bures
A tapered optical fiber component is provided that has an optical fiber with a cladded region. An optical core passes through the cladded region. The cladded region has a tapered extended first region drawn down in diameter to form an effective area region that has a predetermined effective area. The tapered extended first region is formed to adiabatically concentrate an optical signal for propagation through the effective area region of reduced diameter. The power density of the optical signal propagating through the effective area region is increased as an inverse function of the effective area.
167 Terahertz repetition rate optical computing systems, and communication systems and logic elements using cross-phase modulation based optical processors US382752 1989-07-21 US5150248A 1992-09-22 Robert R. Alfano; Ping-Pei Ho; Patrice Baldeck
Optical communication systems, optical computing systems and optical logic elements which rely on the phenomena of cross-phase modulation to alter and control, either or simultaneously, the spectral, temporal or/and spatial properties of ultrashort light pulses for processing information with high speed repetition rates. A weak beam of ultrashort light pulses is modulated by an intense beam of ultrashort light pulses by copropagating both beams through a non-linear medium such that cross-phase modulation effects are realized.
168 データ作成装置、光制御装置、データ作成方法、及びデータ作成プログラム JP2016169297 2016-08-31 JP2018036486A 2018-03-08 渡辺 向陽; 高橋 考二; 井上 卓
【課題】時間強度波形を構成する光の波長成分(周波数成分)を制御することを可能とする。
【解決手段】強度スペクトル関数及び位相スペクトル関数を含む周波数領域の第1波形関数に対してフーリエ変換を行い、時間強度波形関数及び時間位相波形関数を含む時間領域の第2波形関数を生成する。第2波形関数に対し、所望の波形に基づく時間強度波形関数の置き換えを行う。所望の波長帯域に従って予め生成されたターゲットスペクトログラムに第2波形関数のスペクトログラムが近づくように、第2波形関数を修正する。修正後の第2波形関数に対して逆フーリエ変換を行い、周波数領域の第3波形関数を生成する。第3波形関数の強度スペクトル関数又は位相スペクトル関数に基づいてデータを生成する。
【選択図】図8
169 再構成可能な光ネットワーク JP2017046353 2017-03-10 JP2017143533A 2017-08-17 ベルナスコーニ,ピエトロ; ドン,ポー; ニールソン,デービッド,ティー.; チェン,ヨン−カイ
【課題】ネットワークのサイズおよび速度が高度成長化するにつれて、そのような高度成長化から取り残されないためには、より高い性能を提供する新たな光スイッチ・ファブリックが必要とされる。
【解決手段】例えば再構成可能な電気的光学的ネットワークであり、第1の入導波管と第1の出力導波管とを含むシステムが提供される。
【選択図】図1
170 再構成可能な光ネットワーク JP2015520376 2013-06-25 JP2015526965A 2015-09-10 ベルナスコーニ,ピエトロ; ドン,ポー; ニールソン,デービッド,ティー.; チェン,ヨン−カイ
例えば再構成可能な電気的光学的ネットワークであるシステムであって、入導波管と出力導波管とを含む。入力導波管は、第1の変調された入力波長チャネルを含む第1の入力光信号を受け取るように構成されている。出力導波管は、変調されていない出力波長チャネルを含む搬送波信号を受け取るように構成されている。入力マイクロキャビティ共振器は、変調された入力波長チャネルから、変調された電気制御信号を導くように構成されている。第1の出力マイクロキャビティ共振器は、制御信号に応答して、出力波長チャネルを変調するように構成されている。
171 信号処理装置および光通信システム JP2011118232 2011-05-26 JP5751015B2 2015-07-22 渡辺 茂樹
172 Optical signal processing device JP2011511224 2009-04-28 JP5234178B2 2013-07-10 茂樹 渡辺
173 Optical signal processing device, and optical communication system JP2011118232 2011-05-26 JP2012249014A 2012-12-13 WATANABE SHIGEKI
PROBLEM TO BE SOLVED: To make it possible to acquire signals multiplexed into carrier light while suppressing influence on the carrier light.SOLUTION: Carrier light Epropagates in a non-linear optical medium 1. A multiplexer 3 multiplexes output control light Efor generating idler light Eof the carrier light Einto the carrier light E. A demultiplexer 4 demultiplexes the idler light Efrom the carrier light E. A receiver acquires signals multiplexed into the carrier light Efrom the idler light Edemultiplexed by the demultiplexer 4.
174 Optical signal amplifying device JP2006519225 2004-07-12 JP4977283B2 2012-07-18 佳伸 前田
175 Wavelength division multiplexing transmission method using a wavelength converter JP2000303512 2000-10-03 JP4875237B2 2012-02-15 周 並木; 聖 仁村; 功紀 佐藤; 修 麻生
176 Optical fiber type wavelength conversion method JP25349999 1999-09-07 JP4550187B2 2010-09-22 周 並木; 修 麻生
177 Optical modulator and an optical signal generator JP2008024274 2008-02-04 JP4458169B2 2010-04-28 仁 村井; 慎 荒平
178 All-optical switch JP2005513270 2004-08-12 JP4442565B2 2010-03-31 滋 中村
179 Optical signal transfer method, optical signal relay device, and the optical signal storage device JP2009256584 2009-11-09 JP2010044413A 2010-02-25 MAEDA YOSHINOBU
<P>PROBLEM TO BE SOLVED: To provide an optical signal amplifying three-terminal device capable of directly performing an optical signal amplification process by using a control input light. <P>SOLUTION: When in an optical signal amplifying triode 10, light of a second wavelength λ<SB>2</SB>, selected from among light from a first optical amplifier 26, into which a first input light L<SB>1</SB>of a first wavelength λ<SB>1</SB>and a second input light L<SB>2</SB>of second wavelength λ<SB>2</SB>have been input, and a third input light (control light) L<SB>3</SB>of a third wavelength λ<SB>3</SB>are input into a second optical amplifier 34, an output light L<SB>4</SB>of the third wavelength λ<SB>3</SB>, selected from among the light output from the second optical amplifier 34, is light that is modulated in response to the intensity variation of one or both of the first input light L<SB>1</SB>of the first wavelength λ<SB>1</SB>and the third input light L<SB>3</SB>of the third wavelength λ<SB>3</SB>and is an amplified signal, with which the signal gain with respect to the third input light (control light) L<SB>3</SB>of the third wavelength λ<SB>3</SB>is of a magnitude of 2 or more. The optical signal amplifying triode 10, which can directly perform an optical signal amplification process using control input light, can thus be provided. <P>COPYRIGHT: (C)2010,JPO&INPIT
180 Wavelength conversion device and method JP2003312473 2003-09-04 JP4158655B2 2008-10-01 正士 宇佐見; 公佐 西村
QQ群二维码
意见反馈