序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 对失常成像器的非均匀性补偿方法 CN200580036562.0 2005-09-09 CN101065953B 2012-04-18 达林·S.·威廉姆斯; 爱德华·N.·基钦
发明提供简单和改进的FLIR到导弹的瞄准线相关。使用未被NUC的导弹视频(40)执行瞄准线相关(42),这允许同时执行瞄准线相关和NUC(46),从而减少捕获目标和发射导弹需要的时间。当前方法使用用于NUC的导弹制导头的运动,以在制导头运动时通过差分图像产生导弹图像中的空间梯度滤波。这补偿图像中的DC非均匀性。用基于追踪的场景运动构建的匹配移位和减法空间滤波器来处理FLIR图像(44)。重采样FLIR图像以匹配导弹图像分辨率,使用常规方法预处理和相关这两个图像。通过交叉参考成像器中不同像素观察的场景每个区的多个测量来提供改善的NUC(46)。这个方法基于如下简单但新颖的前提,即查看相同事物的每个阵列像素应当看到相同的事物。结果,NUC项适于成像器中(而非场景)的非均匀性。
2 用于获取有关运动目标的精确背景红外特征的方法和装置 CN200980115025.3 2009-02-02 CN102016488A 2011-04-13 罗伯特·A·谢泼德; 戴维·R·施里克特; 理查德·A·谢泼德; 肯达尔·E·古德曼
一种用于测量运动目标红外特征的方法,包括:利用跟踪器系统沿着从开始位置到结束位置的路径跟踪所述运动目标;沿着所述路径测量所述运动目标的红外辐射数据;将所述跟踪器系统重新定位到所述开始位置;回扫所述路径以测量背景的红外辐射数据;和通过比较所述运动目标的红外辐射数据与不存在所述运动目标时所述背景的红外辐射数据来确定所述运动目标的红外特征。
3 有集成的基于图像的追踪控制器定日镜 CN200880017806.4 2008-03-28 CN101680685B 2012-11-14 凯文·希克森; 丹·列兹尼克
公开了一种基于集成的成像仪(116)用于把入射太阳光引导到接收器(150)的系统(100)。该系统包括安装到反射器(112)的成像仪(116);耦合到成像仪的追踪控制器(226);以及连接到反射器和追踪控制器的一个或更多个致动器(114)。追踪控制器(226)被配置为接收和处理来自成像仪(116)的图像数据;基于图像数据,确定辐射源和目标相对于反射镜的法向量(N)的位置;以及用平分太阳和接收器(150)的角位置的轴,定反射器的方向。当成像仪的光轴与垂直于反射器的向量精确对准时,源和目标将被检测到为关于成像仪的视场的中心的对跖斑点(320,330),这可用来有效追踪太阳或类似物体。
4 有集成的基于图像的追踪控制器定日镜 CN200880017806.4 2008-03-28 CN101680685A 2010-03-24 凯文·希克森; 丹·列兹尼克
公开了一种基于集成的成像仪(116)用于把入射太阳光引导到接收器(150)的系统(100)。该系统包括安装到反射器(112)的成像仪(116);耦合到成像仪的追踪控制器(226);以及连接到反射器和追踪控制器的一个或更多个致动器(114)。追踪控制器(226)被配置为接收和处理来自成像仪(116)的图像数据;基于图像数据,确定辐射源和目标相对于反射镜的法向量(N)的位置;以及用平分太阳和接收器(150)的角位置的轴,定反射器的方向。当成像仪的光轴与垂直于反射器的向量精确对准时,源和目标将被检测到为关于成像仪的视场的中心的对跖斑点(320,330),这可用来有效追踪太阳或类似物体。
5 导弹制导头的FLIR到导弹瞄准线相关和非均匀补偿 CN200580036562.0 2005-09-09 CN101065953A 2007-10-31 达林·S.·威廉姆斯; 爱德华·N.·基钦
发明提供简单和改进的FLIR到导弹的瞄准线相关。使用未被NUC的导弹视频(40)执行瞄准线相关(42),这允许同时执行瞄准线相关和NUC(46),从而减少捕获目标和发射导弹需要的时间。当前方法使用用于NUC的导弹制导头的运动,以在制导头运动时通过差分图像产生导弹图像中的空间梯度滤波。这补偿图像中的DC非均匀性。用基于追踪的场景运动构建的匹配移位和减法空间滤波器来处理FLIR图像(44)。重采样FLIR图像以匹配导弹图像分辨率,使用常规方法预处理和相关这两个图像。通过交叉参考成像器中不同像素观察的场景每个区的多个测量来提供改善的NUC(46)。这个方法基于如下简单但新颖的前提,即查看相同事物的每个阵列像素应看到相同的事物。结果,NUC项适于成像器中(而非场景)的非均匀性。
6 Star sensor using spectroscope JP9317081 1981-06-17 JPS57207814A 1982-12-20 KITADE KENJI
PURPOSE:To exactly executing synchronization of a star in a short time, by dividing an optical signal into two through a condensing device, processing them by a signal processing part through a CCD, also spectrally analyzing them by a spectroscope, and processing them by the signal processing part through the CCD. CONSTITUTION:An optical signal from an artificial satellite is divided into two by a condensing device 1. One light beam is inputted to a photodetecting device 2 consisting of a CCD, is processed by a signal processing part 3, and a signal showing a position of a start is sent to a signal processing part 7. The other light beam is spectrally analyzed by a spectroscope 4, is detected by a CCD 5, its output is inputted to a signal processing part 6, and a spectrum signal of a start is sent to the signal processing part 7. By the signal processing part 7, synchronization of a star is executed exactly in a short time from both the input signals, and also an attitude control signal is outputted.
7 Calibration Tracking System Using position and orientation of the object JP2012514022 2010-05-28 JP5512804B2 2014-06-04 ラーセン、エリック; マークス、リチャード、リー
8 An optical system having an adjustable shim JP2012527873 2010-06-10 JP2013503371A 2013-01-31 ウェザール、トマス・ジェイ.; テイラー、バイロン・ビー
An optical system includes actuators in a coupling between a detector, such as a focal plane array, and a frame (mount) that supports the detector. The actuators may be actuated piezoelectric shims that can have their thickness adjusted by applying a voltage to them. The adjustment of the thickness of the actuators (shims) may be used to control tilt and focus (axial position) of the detector relative to the frame (and other parts of the optical system). The optical system may be part of a flying vehicle, such as a spacecraft or aircraft, for instance a missile. The system may include a temperature sensor, and a control system that adjusts the thickness the actuated shims based on temperature, for example using a lookup table.
9 Correlation and non-uniformity compensation of flir and missile bore site of the missile seeker JP2007532386 2005-09-09 JP2008517488A 2008-05-22 ウィリアムス、ダリン・エス.; キッチン、エドワード・エヌ.
本発明はFLIRとミサイルビデオとのボアサイト相関を簡単で効率化する。 ボアサイト相関42は、NUCミサイルビデオ40により行われ、ボアサイト相関とNUCが同時に行われることを可能にし、目標を捕捉してミサイルを発射するのに必要な時間を減少させる。 この方法はNUCに対するミサイル探索装置の運動を使用して探索装置が運動するときの差画像によりミサイル画像中の空間的勾配濾波を生成する。 これは画像中のDC非均一性を補償する。 FLIR画像44は追跡される情景運動に基づいて構成された変位を整合させ空間的フィルタを減算することにより処理される。 FLIR画像44はミサイル画像解像度に整合するように再サンプルされ、2つの画像は通常ように予備処理され、相関される。 改良されたNUC46は映像装置で異なる画素により観察されるように情景の各区域の多数の測定を相互参照して行われる。 この方法は同じものを見る同じアレイの画素は同じものを見るという簡単で優れた前提に基づいている。 その結果NUCタームは情景ではなく画像装置中の非均一に適合される。
【選択図】 図1
10 光学試験装置 JP2014074465 2014-03-31 JP2015197331A 2015-11-09 佐藤 麻梨子; 古谷 正二郎; 三好 大地; 秦 幸人
【課題】より小型で扱いやすく、かつ、構成がより簡便で故障しにくい、赤外線シーカのための光学試験装置を提供する。
【解決手段】光学試験装置は、三次元ドームとしての目標模擬画像発生装置500と、複数の光源と、模擬目標制御装置430とを具備する。ここで、三次元ドームは、試験対象である画像取得装置(赤外線シーカ)11の視野を立体的に覆う。複数の光源は、三次元ドームの内側に分散して配置されている。模擬目標制御装置430は、複数の光源を制御する。光学試験装置は、所望の画像を三次元ドームの内側に発生させる。目標源の物理的な移動が不要となるので、光学試験装置の小型化と、その構成の簡略化が可能となる。
【選択図】図5A
11 Calibration Tracking System Using position and orientation of the object JP2012514022 2010-05-28 JP2012529111A 2012-11-15 マークス、リチャード、リー; ラーセン、エリック
To calibrate a tracking system, a computing device receives positional data of a tracked object from an optical sensor as the object is pointed approximately toward the optical sensor. The computing device computes a first angle of the object with respect to an optical axis of the optical sensor using the received positional data. The computing device receives inertial data corresponding to the object, wherein a second angle of the object with respect to a plane normal to gravity can be computed from the inertial data. The computing device determines a pitch of the optical sensor using the first angle and the second angle.
12 Optical localizing apparatus and localizing method therefor JP2009170674 2009-07-22 JP2011027447A 2011-02-10 CHEN YU-HSIANG; CHENG AN-SHUN
PROBLEM TO BE SOLVED: To provide an optical localizing apparatus that is easily set and easily used, and to provide a localizing method for the same. SOLUTION: The optical localizing apparatus localizes the coordinate position of a measurement target device 6 in first-axis, second-axis, and third-axis directions in a space, and includes a main frame 2 and a calibration device 4. On the main frame 2, first and second optical sensing units 8, 10, and a processing unit 14 are provided. In the optical localizing method, the first and second optical sensing units 8, 10 are separated by a first distance therebetween, and the first and second optical sensing units 8, 10 each sense the calibration device 4; the processing unit 14 performs a calibration step; the first and second optical sensing units 8, 10 each sense the measurement target device 6; and the processing unit 14 performs a localizing step. Through these steps, the optical localizing apparatus calculates the coordinate of the measurement target device 6 based on the principle of parallax after calibration through the calibration device 4 using the first and second optical sensing units 8, 10 separated by the fixed distance therebetween, and localizes the measurement target device 6. COPYRIGHT: (C)2011,JPO&INPIT
13 Method and device for calibrating deviation from preferred position of reception beam in terminal JP2000133440 2000-05-02 JP2000357995A 2000-12-26 NEUBERT JAKOB; ADOLPH PETER A; BAISTER GUY
PROBLEM TO BE SOLVED: To realize a method for calibrating deviations from a preferred position of reception beam in a terminal. SOLUTION: The reception beam arrives at the receiving sensor of the terminal and a pickup beam arrives at the pickup sensor of the terminal. The detection range of the latter is wider than that of the former. A part of a transmission beam radiated to the terminal of an opposite side by the terminal is guided onto a reflecting surface as an incident beam and is reflected as an output beam. A part of the output beam is respectively guided to both sensors. Measurement is at least nearly simultaneously executed in both sensors. The measured results are compared for deciding the deviation from the preferred position of the reception beam.
14 다중 이동물체 추적/감시 시스템 KR1020000022818 2000-04-28 KR1020010000107A 2001-01-05 김회율; 신현수; 이찬수
PURPOSE: A tracking/monitoring system of multiple moving object is provided to realize a real time monitoring system. CONSTITUTION: A tracking/monitoring system of multiple moving object comprises a wide area monitoring device(10) and a local area monitoring device(20). The wide area monitoring device(10) registers and tracks moving objects within a monitoring range from a fixed point and consists of a camera, an image input part, an image corrector, a motion detector, a moving object extractor and a moving object tracker. The local area monitoring device(20) tracks and monitors a moving object until the object go out of the monitoring range and consists of a camera, an image input part, an image corrector, a motion detector, a moving object extractor, a moving object tracker and a camera motion corrector.
15 HELIOSTAT WITH INTEGRATED IMAGE-BASED TRACKING CONTROLLER EP08727201 2008-03-28 EP2145137A4 2013-11-27 HICKERSON KEVIN; REZNIK DAN
A system (100) for directing incident sun light to a receiver (150) based on an integral imager (116) is disclosed. The system includes an imager (116) mounted to a reflector (112); a tracking controller (226) coupled to the imager; and one or more actuators (114) connected to the reflector and tracking controller. The tracking controller (226) is configured to receive and process image data from the imager (116); determine angular positions of a radiation source and target relative to the mirror normal vector (N) based on the image data; and orient the reflector with the axis bisecting the angular positions of the sun and receiver (150). When the optical axis of the imager is precisely aligned with the vector normal to the reflector, the source and target will be detected as antipodal spots (320, 330) with respect to the center of the imager's field of view, which may be used to effectively track the sun or like object.
16 FLIR-to-missile boresight correlation and non-uniformity compensation of the missile seeker EP08075630.7 2005-09-09 EP1983485B1 2013-05-22 Williams, Darin S.; Kitchen, Edward N.
17 OPTICAL SYSTEM WITH ADJUSTABLE SHIMS EP10790800.6 2010-06-10 EP2476019A1 2012-07-18 WETHERELL, Thomas J.; TAYLOR, Byron B
An optical system includes actuators in a coupling between a detector, such as a focal plane array, and a frame (mount) that supports the detector. The actuators may be actuated piezoelectric shims that can have their thickness adjusted by applying a voltage to them. The adjustment of the thickness of the actuators (shims) may be used to control tilt and focus (axial position) of the detector relative to the frame (and other parts of the optical system). The optical system may be part of a flying vehicle, such as a spacecraft or aircraft, for instance a missile. The system may include a temperature sensor, and a control system that adjusts the thickness the actuated shims based on temperature, for example using a lookup table.
18 METHOD AND APPARATUS FOR ACQUIRING ACCURATE BACKGROUND INFRARED SIGNATURE DATA ON MOVING TARGETS EP09739293.0 2009-02-02 EP2281171A1 2011-02-09 SHEPHERD, Robert, A.; SCHLICHTE, David, R.; SHEPHERD, Richard, A.; GOODMAN, Kendall, E.
A method for measuring an infrared signature of a moving target includes: tracking the moving target with a tracking system along a path from a start position to an end position, measuring infrared radiation data of the moving target along the path, repositioning the tracking system to the start position, retracing the path to measure the infrared radiation data of the background, and determining the infrared signature of the moving target by comparing the infrared radiation data of the moving object with the infrared radiation data of the background without the moving object.
19 ON-BOARD LIGHT SOURCE BASED GAIN CORRECTION FOR SEMI-ACTIVE LASER SEEKERS EP06760137 2006-05-18 EP1883786A4 2010-06-02 SCHORR DAVID; ALEXANDER WILLIAM C
The invention provides a method and apparatus for correcting for gain changes in detectors in a guided vehicle. In one version of the invention, an on board light source is used to generate a reference set of detector gains, which are stored in computer memory. The on board light source is then pulsed at subsequent times and the signals generated by the detectors are compared to the reference set of detector gains to determine whether any gains have changed.
20 HELIOSTAT WITH INTEGRATED IMAGE-BASED TRACKING CONTROLLER EP08727201.9 2008-03-28 EP2145137A1 2010-01-20 HICKERSON, Kevin; REZNIK, Dan
A system (100) for directing incident sun light to a receiver (150) based on an integral imager (116) is disclosed. The system includes an imager (116) mounted to a reflector (112); a tracking controller (226) coupled to the imager; and one or more actuators (114) connected to the reflector and tracking controller. The tracking controller (226) is configured to receive and process image data from the imager (116); determine angular positions of a radiation source and target relative to the mirror normal vector (N) based on the image data; and orient the reflector with the axis bisecting the angular positions of the sun and receiver (150). When the optical axis of the imager is precisely aligned with the vector normal to the reflector, the source and target will be detected as antipodal spots (320, 330) with respect to the center of the imager's field of view, which may be used to effectively track the sun or like object.
QQ群二维码
意见反馈