首页 / 国际专利分类库 / 物理 / 测量 / 测量电变量;测量磁变量 / 测量频率的装置;频谱分析装置(鉴频器入H03D;高频探针入 G01R1/06772)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 JPS5512989B2 - JP3182372 1972-03-31 JPS5512989B2 1980-04-05
182 JPS5416231B1 - JP6585972 1972-06-30 JPS5416231B1 1979-06-20
183 JPS5139557B1 - JP6841170 1970-08-06 JPS5139557B1 1976-10-28
184 Hakeininshikisochi JP13381074 1974-11-20 JPS5159491A 1976-05-24 TAKEUCHI YASUTO
1496837 Measuring frequency and period YOKOGAWA-HEWLETT-PACKARD Ltd 19 Nov 1975 [20 Nov 1974] 47695/75 Heading G1U A method of measuring the frequency or period of a signal (such as a fetal heart beat) which although substantially periodic is contaminated by various randomly occurring other signals, so that its shape varies in successive cycles thereby making the identification of a particular point within each cycle of the signal, and hence its period, difficult, the method being of the type in which in order to produce a train of pulses having the same frequency as that of the sensed signal, the sensed signal is cross-correlated with a reference signal and a pulse is produced upon the occurrence of each successive peak in the cross-correlation signal, is characterized in that the reference signal is periodically modified in accordance with the actual shape of the sensed signal, in such a way that the shape of the reference signal tends to follow the average shape of the sensed signal. Although the system described is entirely electrical the principle of the crosscorrelation method is understood most easily from the optical analogy. Firstly the method assumes that the shape that the sensed signal would have in the absence of contamination is known, and this ideal shape is taken as the reference signal. Both the sensed signal and the reference signal have to be thought of as being drawn on glass slides and made into masks by leaving the areas below the signals transparent and making the areas above the signals opaque. The reference signal mask need only be of one cycle in length, but the sensed signal mask must be thought of as extending indefinitely. The reference mask is then held stationary, the sensed mask is slid uniformly along it, and light is directed through the two masks. As the signal mask is moved the amount of light emerging (which corresponds to the crosscorrelation function of the two signals) varies from a low level, when the reference signal and sensed signal register least well with each other, to a maximum level when the two signals register best with each other. Clearly perfect registration is only possible if the sensed signal is not contaminated, but in practice quite a lot of contamination can be present in the sensed signal without changing the position in time of the successive peaks in the total amount of light passing through the two masks. The occurrence of these peaks is detected, and an output pulse train is produced from which the frequency or period of the sensed signal can be obtained. Hitherto, however, the requirement that the ideal form of the sensed signal be known has limited the application of the method to systems such as radar, where the echo should be a copy of the transmitted pulse. However, the invention shows how by starting with an estimate of the ideal form of the sensed signal - this estimate being taken as the initial shape of the reference signal and being referred to as a 'seed' - it is possible to modify the reference progressively, using the sensed signal itself, so that it approaches the unknown ideal form. As described the sensed signal 10, Fig. 1, is repeatedly sampled and digitized 11, and a block of 257 of the samples are stored in a recirculating sensed signal register 18, circulating at 256 times (=2À5 ms/cycle) the sampling rate. This results in each sample appearing on a lead S and being followed by the immediately proceeding 255 samples before the next sample occurs. (The 256th preceeding sample is written over by the next sample). The reference signal is stored in a 256 word recirculating register 30, which is so phased with the sensed signal store that the occurrence of a sample on lead S for the first time coincides with the beginning of the reference signal on a lead D. The two signals S and D are multiplied 19 and their products accumulated, 33, 35, to give the cross-correlation signal C defined by:- Thus immediately following each sample of the sensed signal, and before the next sample occurs, the corresponding value of the cross-correlation signal is computed using the current sample and the preceeding 255 samples. The successive values of the cross-correlation signal are converted to analogue form 39, appropriately smoothed, and passed to a peak detector 40, which produces one pulse, on a terminal 41, after a fixed delay of 250 ms, (this delay being less than the minimum expected period of the sensed signal) for each peak detected, unless a further larger peak occurs before the delay of 250 ms expires in which case the delay recommences from the further larger peak and the earlier peak is disregarded. The system described so far merely implements the general prior art method and would operate satisfactorily if the reference signal were optimal. However, this is not so and therefore means are provided to modify the reference signal progressively. The principle employed to modify progressively the reference signal is that those sample values S which result in an increasing cross-correlation signal C are averaged with the corresponding existing values of the reference signal, thereby producing an updated reference signal. Thus, whenever the crosscorrelation signal C is increasing in value, this being detected by the unit 40, the samples S then occurring are fed into an intermediate recirculating register 24, overwriting those samples already there. Once the cross-correlation signal C stops increasing, indicating a peak, firstly the delay period of 250 ms is initiated and secondly further input of samples into the intermediate register is blocked. Eventually (providing no further peak occurs) the 250 ms delay will expire and an output pulse 41 of 2.5 ms duration will occur. Simultaneously with the output pulse, a control unit 25 forming part of the reference signal store causes the reference signal to be modified by replacing each of the 256 values thereof by the arithmetic average of the existing value and the corresponding value in the intermediate store 24. This operation takes one complete cycle of 2À5 ms and therefore occurs between two consecutive data sampling instants. The output pulse 41, in addition to being passed to a frequency determining unit, not shown, also resets the peak detector unit 40, so that once the crosscorrelation function C again starts to increase, the samples then occurring can be fed into the intermediate store. Thus, progressively, the reference signal is modified in such a way as to maximize the largest peak in the cross-correlation signal. Peak occurrence detector Fig. 2 The successive values of the cross-correlation signal C are converted to analogue form 39, Fig. 1, and smoothed 403, Fig. 2, and the resulting waveform is applied to a peak detector 405, 409. Whilst the input waveform C is rising, the input to an amplifier 411 is positive and a transistor 417 is held conductive, thereby providing a positive signal 429. Once the input waveform begins to decrease, the output of amplifier 411 goes positive, thereby turning a transistor 413 off so that a capacitor C 1 commences to charge via a resistor R 1 , and eventually after 250 ms, unless a further larger peak occurs, an amplifier 419 produces a pulse which (a) discharges the peak storage capacitor 409, and (b) is shaped to provide a final output pulse that can be passed to an appropriate frequency measuring circuit.
185 JPS511137B1 - JP9397770 1970-10-27 JPS511137B1 1976-01-14
186 JPS5057674A - JP10589074 1974-09-13 JPS5057674A 1975-05-20
187 JPS5025155A - JP1748474 1974-02-13 JPS5025155A 1975-03-17
188 JPS4970664A - JP11222073 1973-10-05 JPS4970664A 1974-07-09
189 JPS4878981A - JP807372 1972-01-22 JPS4878981A 1973-10-23
190 JPS4849475A - JP3182372 1972-03-31 JPS4849475A 1973-07-12
191 JPS4841643A - JP9566772 1972-09-22 JPS4841643A 1973-06-18
192 JPS476595A - JP7164071 1971-09-14 JPS476595A 1972-04-12
193 ボイスコイルモータの駆動回路およびそれを用いたレンズモジュールおよび電子機器、ボイスコイルモータの駆動方法 JP2014041520 2014-03-04 JP6385076B2 2018-09-05 二宮 竜也
194 信号処理装置、レーダ装置、及び信号処理方法 JP2016573201 2015-12-15 JP6343356B2 2018-06-13 中谷 文弥
195 交流回転機の制御装置及びこれを備えた電動パワ−ステアリング装置 JP2016515791 2014-04-29 JPWO2015166546A1 2017-04-20 俊介 中嶋; 祐也 土本; 勲 家造坊; 金原 義彦; 義彦 金原
推定回転位置によってセンサレス制御へ移行する時の逆トルクを軽減すること、或いは過電流による交流回転機、及び交流回転機の駆動回路の故障を防止する交流回転機の制御装置を提供する。回転位置センサ2が異常と判定された場合に交流回転機1の推定回転位置を算出する回転位置推定手段9と、交流回転機を駆動するために供給する駆動電を制限する電力制限手段6と、センサ異常判定手段3が回転位置センサを異常と判定している場合には推定回転位置に基づいて、電力制限手段に制限された前記駆動電力に、回転位置推定手段が回転位置を推定するために供給する回転位置推定電力を加えた電力を交流回転機に供給する電力供給手段10と、を備え、電力制限手段6は少なくともセンサ異常判定手段3が異常と判定してから推定回転位置の推定誤差が所定範囲内に収まるための所定時間、駆動電流を制限する。
196 交流回転機の制御装置及びこれを備えた電動パワ−ステアリング装置 JP2016515791 2014-04-29 JP6095851B2 2017-03-15 中嶋 俊介; 土本 祐也; 家造坊 勲; 金原 義彦
197 晶振動子 JP2014142396 2014-07-10 JP2016019225A 2016-02-01 岸 正一; 伊藤 秀; 伊東 雅之
【課題】 プローブを用いずに特性の測定が可能な晶振動子の提供。
【解決手段】 水晶振動子は、水晶片と、前記水晶片の第1表面に配置され、非磁性材料により形成される励振電極と、前記水晶片における前記第1表面とは逆側の第2表面に、前記励振電極に対向して配置され、磁性材料により形成される磁性体部とを含み、前記磁性体部は、第1磁性体部位と、前記第1磁性体部位よりも前記水晶片の中心側に位置する第2磁性体部位とを含み、前記第2磁性体部位は、前記第1磁性体部位よりも、厚さ、密度及び透磁率のうちの少なくともいずれか1つが大きい。
【選択図】 図1
198 モータ駆動装置 JP2014112087 2014-05-30 JP2015226449A 2015-12-14 国田 祐司
【課題】信号線の追加を要さずにモータが定常回転しているか否かを判定する。
【解決手段】モータ駆動装置21は、加速信号SUと減速信号SDの入を受けてドライバ制御信号S10を生成する制御回路100と、ドライバ制御信号S10に応じてモータ駆動信号S3を生成する駆動回路200と、加速信号SUと減速信号SDの入力パターンを監視してモータ回転数が所望の目標回転数で安定しているか否かを判定するフェーズロック判定回路500と、を有する。
【選択図】図2
199 ボイスコイルモータの駆動回路およびそれを用いたレンズモジュールおよび電子機器、ボイスコイルモータの駆動方法 JP2014041520 2014-03-04 JP2015167455A 2015-09-24 二宮 竜也
【課題】回路面積の増大を抑制しつつ、高精度で駆動電流を制御可能な駆動回路を提供する。
【解決手段】D/Aコンバータ12は、n(nは整数)ビットの精度を有し、後段の電流ドライバ14に駆動電流IDRVの目標量を指示する制御信号VCNTを出する。ロジック部10は、m(m>n)ビットの入力制御データDCNT1を受け、D/Aコンバータ12にnビットの中間制御データDCNT2を出力する。データ抽出部60は、mビットの入力制御データDCNT1を、上位nビットの第1データD1と、下位(m−n)ビットの第2データD2に分割する。カウンタ62は、クロック信号と同期して第2データD2を累積加算する。キャリー検出部64は、カウンタ62において、下位(m−n)ビット目に桁上がりが発生すると、キャリー信号CRRYをアサートする。出力制御部66は、キャリー信号CRRYに応じて、中間制御データDCNT2を、第1データD1と、第1データD1に1LSBを加算した第3データD3と、の2値で切りかえる。
【選択図】図3
200 無線センサにおける可変インピーダンス素子を測定するためのシステム及び方法 JP2015511453 2013-03-14 JP2015523840A 2015-08-13 ダブリュ.クイベンホーベン ニール; ディー.ディーン コディ; ダブリュ.バールマン デイビッド; シー.モース ベンジャミン; ディー.グイェン ハイ; ジェイ.ノーコンク マシュー; ケー.シュワネッケ ジョシュア; ビー.テイラー ジョシュア; エス.メルトン,ジュニア ジョセフ; エル.ストッダード ロナルド
無線リモートセンサは、誘電伝送器によって電が供給され、一又は複数の検知パラメータに基づいて変化する振動波を生成するように構成されている。振動波は、反射インピーダンスによって誘導伝送器に伝達され、検知値(複数可)を決定するために検知される。他の観点において、本発明は、検知値を示す電磁場を生成するための内部発振回路を有するホイートストンブリッジ構成を備える無線リモートセンサを提供する。第3の観点において、本発明は、基準回路とセンサ回路とからの光フィードバックを使用する無線リモートセンサを提供する。第4の観点によれば、本発明は、コイルの大きさ及び/又は形状が温度の増減につれて変化するように、高い熱膨張係数を備える材料上に印刷されたコイルを有する無線リモート温度センサを提供する。
QQ群二维码
意见反馈