序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 Transducer installation US3771117D 1972-03-01 US3771117A 1973-11-06 SHAFFER T; WILSON C; WRIGHT L
A transducer assembly holder is mounted through the wall of a fluid conveying structure and includes an acoustic window in communication with the fluid. A transducer assembly is positioned within the holder and has a transducer active element encapsulated in an elastomeric material. The assembly is positioned up against the window of the holder and a spring force is applied to the assembly through a spacer tube or rod. The arrangement is such that the spring force is transferred evenly over the encapsulating elastomeric material and a pressure bond is created between the transducer active element and the acoustic window, such couplings being essential for proper transducer operation.
142 Fluid density transducers US48903255 1955-02-18 US2891400A 1959-06-23 STANTON AUSTIN N
143 Apparatus for measuring air velocity US57222845 1945-01-10 US2492371A 1949-12-27 SIVIAN LEON J
144 測定装置、測定方法、及びプログラム JP2017539043 2016-02-05 JP6292354B2 2018-03-14 坂上 智; 木代 雅巳; 新井 聡一
145 測定装置、測定方法、及び測定プログラム JP2016554747 2016-02-05 JPWO2017134828A1 2018-02-08 野口 真伍; 木代 雅巳
測定装置100は、配管99に設けられたセンサ11及び12を用いて配管内を流れる媒質98中に測定波を伝搬させて受信する測定ユニット10、受信された測定波のレベルが予め定められたトリガレベルを超えたかどうかを検出するトリガ検出部21、及び受信された測定波におけるトリガレベルを超えた周期とは異なる周期の波形部分に基づいて、測定波の受信タイミングを特定する特定部22を備える。特定部が、トリガ検出部により検出されるトリガレベルを超えた周期とは異なる周期の波形部分に基づいて測定波の受信タイミングを特定することで、順方向及び逆方向信号において対応するピーク波形についてトリガ検出するよう前後のピーク波形とピーク値の差の大きい時間軸上で前側のピーク波形についてトリガを検出し、ゼロクロス点の位置を高精度で検出するよう時間軸上で後側のSN比の高いピーク波形についてゼロクロス点を検出することができる。
146 流場測定装置および流場測定方法 JP2016523335 2015-11-30 JPWO2017094061A1 2017-11-30 英幸 安藤; 雅彦 谷川; 敏志 川浪; 昌彦 虫明
数Hz程度で変化する環境においても適切に流場を測定することを可能とする流場測定装置である。流場測定装置は、船底の複数の計測位置から、それぞれ複数の測定方向につき、前記各測定方向上での複数の異なる計測点における流体の流速を計測する計測部と、流体中の複数の対象位置につき、それぞれ、その近傍に所在する複数の要素位置における流速成分を合成して、前記各対象位置における流速を計算する流場計算部とを有する。前記各要素位置は、所定の前記測定方向上の所定の前記計測点であり、前記流速成分は、前記各要素位置においてそれぞれ前記計測部により計測された流速成分である。
147 検知システム、信号処理装置、検知方法及びプログラム JP2015178552 2015-09-10 JP2017053756A 2017-03-16 高峯 英文
【課題】AE信号の処理結果に混入する環境ノイズを減らす。
【解決手段】実施形態の検知システムは、検知装置と、AEセンサと、処理部と、を備える。検知装置は、構造物に生じる変化、又は、前記構造物に係る環境の変化を検知する。AEセンサは、構造物から発生するAE(Acoustic Emission)波を検知する。処理部は、構造物、又は、前記構造物に係る環境に変化が生じたことを示す検知信号が、前記検知装置から入されてから第1の時間が経過するまでにAEセンサから入力されたAE波を示すAE信号を処理する第1信号処理を実行する。
【選択図】図1
148 流場測定装置および流場測定方法 JP2016523335 2015-11-30 JP6043026B1 2016-12-14 安藤 英幸; 谷川 雅彦; 川浪 敏志; 虫明 昌彦
数Hz程度で変化する環境においても適切に流場を測定することを可能とする流場測定装置である。流場測定装置は、船底の複数の計測位置から、それぞれ複数の測定方向につき、前記各測定方向上での複数の異なる計測点における流体の流速を計測する計測部と、流体中の複数の対象位置につき、それぞれ、その近傍に所在する複数の要素位置における流速成分を合成して、前記各対象位置における流速を計算する流場計算部とを有する。前記各要素位置は、所定の前記測定方向上の所定の前記計測点であり、前記流速成分は、前記各要素位置においてそれぞれ前記計測部により計測された流速成分である。
149 Ultrasonic transducer for use in a fluid medium JP2012535708 2010-09-09 JP5496349B2 2014-05-21 ミュラー ローラント; ヒュフトレ ゲアハート; ホアストブリンク ミヒャエル; ラング トビアス; ラドワン サミ; キュンツル ベアント; ヴァーニャ ローラント
150 Discharge flow rate measurement method JP2009044439 2009-02-26 JP4832538B2 2011-12-07 米村  政雄
The object is to facilitate determination of a flow rate of fluid discharged from a discharge opening. Intensity (p) of a supersonic wave S generated at and propagated from the discharge opening in association with discharge of the fluid from the discharge opening 1 is determined at a determinate site distant from the discharge opening 1. And, a propagation distance L from the discharge opening 1 to the determination site 3 is determined or investigated. Then, based upon a correlation existent among the intensity (p) of the propagated supersonic wave S , the propagation distance L and the fluid discharge flow rate Q from the discharge opening 1, the fluid discharge rate Q is obtained from the determined or investigated supersonic wave intensity (p) and the propagation distance L.
151 Method and system for collecting ultrasonic image data JP2006142646 2006-05-23 JP2006326310A 2006-12-07 SABOURIN THOMAS JAMES; MICHELLE GANIERE ANGLE; THOMPSON ROBERT B
<P>PROBLEM TO BE SOLVED: To provide a method and a system for collecting ultrasonic image data. <P>SOLUTION: The method and system for collecting the ultrasonic image data are provided. The method includes: a process for receiving synthetic image information from an ultrasonic system (100); a process for receiving color flow image information from the ultrasonic system; and a process for processing the received synthetic image information and color flow image information in order to generate a synthesized ultrasonic image combined with color flow imaging. <P>COPYRIGHT: (C)2007,JPO&INPIT
152 Measurements dexterity sound source JP27445494 1994-10-12 JP2978939B2 1999-11-15 MYAHARA TAKAKAZU
153 Sound source for measuring instrument JP27445494 1994-10-12 JPH08110788A 1996-04-30 MIYAHARA TAKAKAZU
PURPOSE: To provide a small nondirectional sound source suitable for an anemometer. CONSTITUTION: Two needle-like electrode rods 24, 25 made of a conducting material are arranged so that their tips face each other at a prescribed gap, and a pulse-like high voltage is applied between two electrode rods 24, 25. The sound wave containing ultrasonic wave is uniformly emitted to the surrounding by an electric discharge between the electrode rods 24, 25.
154 Method of measuring the wind speed in a predetermined direction using an ultrasonic anemometer JP6592584 1984-04-04 JPH0634017B2 1994-05-02 YOSHIDA MASAFUMI; MORITA YUKIJI
155 Apparatus for displaying fluid distribution JP13470686 1986-06-10 JPS62330A 1987-01-06 DEIBITSUTO RITSUPUSHIYUTSU
156 Ultrasonic speed measuring apparatus JP7235084 1984-04-11 JPS60216263A 1985-10-29 TANAKA MOTONAO
PURPOSE:To make it possible to detect the speed in a specimen body with high accuracy, by sending the continuous or pulse wave of an ultrasonic wave into the specimen body and changing over the same to a detection range corresponding to a speed to detect an echo while displaying said echo by a function scale. CONSTITUTION:An ultrasonic vibrator 10 receiving control by a high voltage exciting part 20 and a trigger pulse generation part 30 is closely contacted with a body to be inspected to send a pulse or continuous ultrasonic wave and the echo from the interior of the body is received as an electric signal. After output is amplified by a high frequency amplifier part 40, it is supplied to a speed detection part 50 and processed along with the reference signal from a reference signal generation part 60 to detect the speed. Further, a detection range control part 70 for controlling the generation parts 30, 60, the detection part 50 and a display control part 80 are provided and the speed detected by the detection part 50 is displayed in a function scale by a display part 90 through the control part 80. By this method, a detection range is selected over a wide range and a speed can be read with high accuracy.
157 Measurement of wind velocity in predetermined direction by using ultrasonic anemometer JP6592584 1984-04-04 JPS60210769A 1985-10-23 YOSHIDA MASAFUMI; MORITA YUKIJI
PURPOSE:To enable the measurement of a wind velocity component in the direction really parallel to the access openings of a tunnel without being affected by a wind direction or a sensor, by respectively providing ultrasonic anemometers on the axial lines of two crossing axes wherein a wind velocity measuring axis comes to bisected axes and calculating the wind velocity of the measuring axis from the measured value thereof. CONSTITUTION:Anemometers formed of ultrasonic wave transmitters and receivers P, P' and Q, Q' are provided so as to be respectively opposed to two crossing axes A and B forming a bisection angle theta wherein a wind velocity measuring axis comes to bisected axes and axial direction wind velocity components A, B of wind with velocity V'. Whereupon, the wind velocity component V in the direction of the axis C takes the value of the formula and the wind velocity component in the direction really parallel to the access openings of a tunnel can be measured and calculated without being affected by a sensor because it is unnecessary to provide the anemometers so as to incline the same to the direction of wind.
158 Noise anemometer JP4823684 1984-03-15 JPS60194366A 1985-10-02 ISHII YASUSHI
PURPOSE:To obtain a stable anemometer having rapid response and excellent in portability, by utilizing the magnitude of wind hissing sound generated when a gas stream is impinged to an acoustic microphone. CONSTITUTION:Microphones 1, 1', to which sponge like spherical windshields 2, 2' each having a large porocity are attached, are arranged at intervals (d) sufficiently small as compared with the wavelength of objective sound. The outputs of the microphones 1, 1' contain wind hissing sound generated by wind impinged to the windshields 2, 2' and other external noise but, because external noise has almost the same amplitude and the same phase in two microphones 1, 1', the output of a differential amplifier 4 corresponds to wind hissing sound. These outputs are displayed by a meter through a filter 5 and a rectifier circuit 6 to obtain a wind velocity value. By this mechanism, a stable anemometer high in a response speed is obtained.
159 Ultrasonic current meter JP9279281 1981-06-16 JPS57207864A 1982-12-20 AMAMIYA SHINICHI
PURPOSE:To detect a movement even if an object to be measured moves by >=+ or -lambda/4 within a repetitive time of transmission of an ultrasonic pulse, by executing a mutual correlation detection so that amplitude information of a reflected wave can be utilized. CONSTITUTION:A transmitting signal TS of a transmitter 1 is converted 2 to an ultrasonic pulse, and a reflected wave by an object to be measured of this ultrasonic pulse is received, and is amplified and orthogonally detected by a receiver 3. An output signal RS of the receiver 3 is applied to a correlation detection type data generating part 4. Said signal RS is divided into an even one RA and an odd one RB by a switch 41, and its time section portion only is stored in a waveform storage device 42A or 42B by a sampling position signal S. On one of said waveform storage devices 42A, 42B, for instance, 42B, a shifting circuit is provided, and output signals fi (t) and fi-1 (t+gamma) from the waveform storage device are applied to a mutual correlation detector 43, and its mutual correlation is detected. Subsequently, a peak position in an output Gi(t) of this detector 43 is detected 44, and a velocity of flow of the object to be measured is calculated from a data of this peak position.
160 Ultrasonic doppler flow meter JP3135881 1981-03-06 JPS57147063A 1982-09-10 SAITOU KOUJI
PURPOSE:To eliminate the influence of the level fluctuation of a detection signal, by comparing an amplitude average value of the Doppler-shifted detection signal as a reference voltage with the detection signal in the ultrasonic Doppler flow meter. CONSTITUTION:Ultrasonic waves are transferred from an oscillator 3 into a fluid 5 by a signal from an ultrasonic transmitting part 1. Reflection waves due to scattered materials 6 and the transmission signal propagated in the tube wall are received by a receiving oscillator 3', and these reflection waves and the transmission signal generate the beat of a Doppler frequency. The beat signal has Doppler shift components extracted through a high frequency amplifier 7, a detecting circuit 8, a low pass filter 9, and a low frequency amplifier 10. A part of this output becomes a DC voltage corresponding to the magnitude of the received signal through a full-wave rectifying circuit 18 and an average value circuit 19 and is used as a reference voltage of a comparator 20 and is compared with a Doppler signal, and thus, the influence of the fluctuation of the received signal level due to the change of the density of scattered materials, the degradation of the characteristic of oscillators, etc. is eliminated.
QQ群二维码
意见反馈