序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Device for measuring fluid velocity US62994432 1932-08-22 US2061941A 1936-11-24 HUKILL WILLIAM V
102 이상징후 진단장치 KR20187008857 2016-09-16 KR20180048849A 2018-05-10
이상징후진단장치(1)는계측대상물의가동개시로부터연속하여또는사전에결정된시간간격마다계측대상물로부터발생하는열유속을검출하는열유속센서(10)와, 열유속센서(10)의검출결과에기초하여이상징후가있는지의여부의판정을실시하는제어장치(12)를구비한다. 설비에이상징후가발생하면, 설비로부터전류, 전압, 소리, 진동, 마찰중 적어도하나에의하여발생하는열유속이변화한다. 따라서, 전류, 전압, 소리, 진동, 마찰의각각을계측하기위해복수종류의센서를이용하지않고도, 열유속센서(10)를이용함으로써계측대상물의이상징후의유무를진단할수 있다.
103 질량 유량계 및 속도계 KR1020167033067 2015-05-07 KR1020160148645A 2016-12-26 하라다도시카즈; 사카이다아츠시
질량유량계는히터부(13)의양측에각각제 1, 제 2 센서부(11, 12)가형성된유량센서(10)를구비한다. 유량센서(10)는열가소성수지로구성되고, 복수적층된절연층(100, 110, 120)과, 이들의절연층에대하여형성되고, 서로접속된제 1, 제 2 도전체(130, 140)를구비하고, 복수의절연층(100, 110, 120)이가열하면서가압되어일체화한다층기판으로구성된다. 히터부(13)로부터방출된열을갖는유체가유량센서(10)의일면을따라서이동했을때에제 1, 제 2 센서부(11, 12)는각각의영역에있어서의일면과타면의사이에발생하는온도차에따른크기의기전력을발생한다. 유량센서(10)는복수의절연층이가열하면서가압되어일체화되어제조된구조이고, 다이어프램바로아래의공간과같은큰 공간이존재하지않는구조이기때문에다이어프램구조를갖는센서보다도파손되기어렵다.
104 열 신호 기록 장치 KR1020087021537 2007-03-05 KR101318489B1 2013-10-18 이마이,히로시; 마쯔시마,케이치; 우시구사,요시히로
열 신호의 기록 패턴을 명확하게 형성하는 열 신호 기록 장치가 제공된다. 채널의 적당한 위치에 고정되어, 상기 채널을 통해 이동하는 매체에 열 신호를 기록하기 위한 열 신호 기록 장치 (10)는, 바람직한 패턴에 따른 온도 변화를 갖는 열 신호를 가열 또는 냉각에 의해 기록하기 위한 펠티에 소자 (11); 상기 펠티에 소자 (11)의 일 면과 밀접하게 접촉한 바닥면을 갖으며, 열 전도체로 형성된 피라미드 형태의 채널 지지 부재 (12)(여기서, 상기 채널 지지 부재의 정점은 상기 채널 (1)과 직접 접촉함); 상기 펠티에 소자 (11)의 또 다른 면과 밀접하게 접촉한 히트 싱크 (13); 및 상기 정점에서의 채널 접촉면 (12a)을 제외하고, 상기 펠티에 소자 (11)의 외면과 채널 지지 부재 (12)를 감싸기 위한 내열 커버를 포함한다. 열 신호 기록 장치, 펠티에 소자, 채널 지지 부재
105 배기가스 체적 측정 시스템 KR1020127010823 2010-09-28 KR1020120056891A 2012-06-04 보쎌만토마스
본 발명은 고정식 또는 이동식 장치, 특히 선박을 위한 배기가스 체적 측정 시스템에 관한 것이며, 이러한 배기가스 체적 측정 시스템은 상기 장치의 배기가스 채널(2) 내에서 배기가스의 흐름 방향(4)에 대해 횡방향으로, 사전 결정된 위치들에 분포 배치되는 복수의 브래그 격자(5)와, 하나 이상의 광 도파관(7)으로 구성되고 내부에는 상기 브래그 격자들(5)이 형성되는 광 도파관 구조부(6)와, 상기 브래그 격자들(5)에 인접 배치되어 상기 브래그 격자들(5)이 가열될 수 있게 하는 가열 장치(10), 또는 상기 브래그 격자들(5)에 인접 배치되어 상기 브래그 격자들(5)이 냉각될 수 있게 하는 냉각 장치와, 상기 광 도파관 구조부(6) 내로 광을 방사하기 위한 하나 이상의 광원(22)과, 상기 광 도파관 구조부(6) 내에서 브래그 격자들(5)로부터 자신의 본래의 전파 방향의 반대 방향으로 역산란되는 광으로부터, 상기 광 도파관 구조부(6)의 진행 경로를 따르는 배기가스의 흐름 속도를 측정하고 이 흐름 속도로부터 상기 배기가스 채널(2)을 통해 흐르는 배기가스 체적을 도출하는 하나 이상의 신호 처리 장치(23)를 포함한다.
106 하나 이상의 와이어를 가지는 풍력계 프로브 및 그것의 제조 방법 KR1020117016115 2009-12-18 KR1020110102457A 2011-09-16 모로장-폴
본 발명은 벽에 가깝게 측정하기 위하여 단일의 와이어 또는 n 개의 와이어(n≥1)를 가진 풍력계 프로브 및 풍력계 프로브의 제조 방법에 관한 것으로서, 이것은 와이어들중 적어도 하나에 대하여, a) 와이어(2)의 직선 부분을 위치시키고 유지하는 단계로서, 와이어는 2 개의 표면들상에 보호 외피(22)로 둘러싸인 금속 코어(21)를 구비하는, 단계; 와이어의 활성 측정 영역(14)을 드러내기 위하여 외피(22)의 부분을 벗겨내는 단계;(c) 프로브의 동체의 2 개 핀들에 와이어를 브레이징(brazing)하는 단계를 포함한다.
107 골프장 풍향 및 풍속 측정 시스템 KR1020080064785 2008-07-04 KR1020100004559A 2010-01-13 박용은; 최용선
PURPOSE: A measure system of wind direction and wind velocity in golf course is provided to measure accurate wind direction and wind velocity in the golf course entire region by arranging an anemometer and anemoscope through temperature variation of thermopile. CONSTITUTION: A measure system of wind direction and wind velocity in golf course comprises a plurality of wireless wind direction and wind velocity gauges(1000); a central processing unit(2000) that calculates wind direction and wind velocity in the golf course entire region by wirelessly receiving the output of the anemometer and anemoscope; and a user terminal(3000) for providing the wind direction and wind velocity information to users.
108 반도체소자 KR1020050032854 2005-04-20 KR1020060110529A 2006-10-25 박성근
A semiconductor device is provided to reduce the size of a vacuum gauge by forming a heater and a thermocouple using a silicon MEMS(Micro-ElectroMechanical System) technique. A semiconductor device comprises an SOI(Silicon On Insulator) substrate, a trench, and a bridge. The trench(25) is formed on the SOI substrate. The bridge is formed on the trench. The bridge includes a heat radiating portion of a heat radiating body and a thermocouple. The heat radiating portion and the thermocouple are spaced apart from each other. The heat radiating body is composed of a conductive metal line. The thermocouple is composed of an N type polysilicon layer and a P type polysilicon layer. The thermocouple is made of a metallic material.
109 지하수의 유출속도 측정방법 및 그 측정장치 KR1020040028150 2004-04-23 KR1020050102853A 2005-10-27 김형수; 김규범
본 발명은 바다, 호수, 강, 연못 등으로 지하수가 유출되는 속도 측정방법 및 그 측정장치에 관한 것으로, 지하수를 모을 수 있는 챔버(10)에 좁은 관(20)을 부착하여 지하수의 흐름을 빠르게 하고, 이 관(20)의 내부에 히터&서미스터(32)와 서미스터(34,36)로 이루어진 열식 센서(30)를 부착하여 온도기울기(전압차)를 검출하여 관(20)내부를 흐르는 지하수의 유속을 측정한 후, 이 유속에 관(20)의 단면적을 곱하여 시간당 부피(유량)을 계산해내고, 이 부피를 챔버 밑의 단면적으로 나누어 단위면적당 유속을 계산해 내도록 한 것으로, 간단한 구조로 이루어져 있지만 그 동안 정확하게 측정할 수 없었던 매우 느린 지하수의 유출속도를 비교적 간단한 방법에 의해 신뢰할 수 있는 정도로 측정할 수 있다.
110 온도 및 흐름을 감지하는 센서의 제조 방법 KR1019970700067 1995-07-11 KR100206085B1 1999-07-01 하인리히지츠만
본 발명은 온도 및 흐름을 감지하는 센서에 관한 것으로 캐리어(102)와 상기 캐리어(102)위에 형성된 저항 층(104)으로 구성되며 이 저항 층(104)은 열처리된 플라티늄-수지/로듐-수지 혼합물로 이루어진 플라티늄-로듐층이다.
111 Device for measuring aerodynamic magnitudes intended to be placed in a flow passage of a turbine engine US15348824 2016-11-10 US10138754B2 2018-11-27 Jeremy Giordan; Bernard Joseph Florian Kockenpo
The present invention relates to a device for measuring aerodynamic magnitudes (1) intended to be placed transversally in a flow passage (12, 13) of a turbine engine comprising: an upstream body (2) having a profile of general cylindrical shape defining a leading edge (5) a plurality of sensors (4), the instrumentation lines (45) of the sensors being placed in the body (2), the sensitive elements (41) of the sensors extending at the leading edge (5); a downstream fairing (3) mounted on the upstream body (2) and defining a trailing edge (6); the downstream fairing (3) comprising, in the longitudinal direction of the upstream body (2), several sections (35) fixed independently of each other to the body (2), two successive sections (35) being connected by a flexible junction (37).
112 AIRSPEED MEASUREMENT SYSTEM US15899283 2018-02-19 US20180237155A1 2018-08-23 Naotsugu Ueda; Katsuyuki Yugami; Hirotaka Okuda; Yoshihisa Toyosaki
A technique enables horizontal measurement of the airspeed of a low-speed flight vehicle. An airspeed measurement system is for a low-speed flight vehicle, and includes a flow sensor that measures an airspeed along at least two axes in a horizontal direction during flight of the low-speed flight vehicle.
113 FLOW MEASUREMENT DEVICE, FLOW MEASUREMENT METHOD, AND FLOW MEASUREMENT PROGRAM US15901053 2018-02-21 US20180180455A1 2018-06-28 Hideyuki NAKAO; Katsuyuki YAMAMOTO; Kenichi HANDA; Ryuhei GOTO
A flow measurement device includes a flow sensor that senses a flow rate of a measurement target fluid flowing through a main channel, a characteristic-value obtaining unit that includes a heater heating the target fluid and a temperature sensor sensing a temperature of the target fluid, and obtains a characteristic value of the target fluid, and a flow rate correction unit that corrects a flow rate of the target fluid calculated based on a sensing signal from the flow sensor using the characteristic value of the target fluid obtained by the characteristic-value obtaining unit. The heater and the temperature sensor are arranged parallel to each other in a direction orthogonal to a flow direction of the target fluid. The characteristic-value obtaining unit obtains the characteristic value based on a difference between the temperatures of the target fluid sensed by the temperature sensor before and after the heater temperature is changed.
114 Bolometer fluid flow and temperature sensor US15259102 2016-09-08 US09933312B2 2018-04-03 Seow Yuen Yee; Gary Yama; Thomas Rocznik
The sensor comprises a reference bolometer and a plurality of sensing bolometers. Each sensing bolometer is arranged adjacent to the reference bolometer. Each bolometer comprises (i) a substrate, (ii) a cap structure connected to the substrate, the cap structure configured to define a cavity between an inner surface of the cap structure and a first surface of the substrate, (iii) an absorber connected the substrate and arranged within the cavity, the absorber configured to absorb infrared radiation within the cavity, and (iv) a readout circuit connected to the absorber and configured to provide a signal that indicates an amount of infrared radiation absorbed by the absorber. The cap structure of the reference bolometer blocks infrared radiation from entering the cavity from outside the cap structure. The cap structure of each sensing bolometers allows infrared radiation to enter the cavity from outside the cap structure.
115 BOLOMETER FLUID FLOW AND TEMPERATURE SENSOR US15259102 2016-09-08 US20180066994A1 2018-03-08 Seow Yuen Yee; Gary Yama; Thomas Rocznik
The sensor comprises a reference bolometer and a plurality of sensing bolometers. Each sensing bolometer is arranged adjacent to the reference bolometer. Each bolometer comprises (i) a substrate, (ii) a cap structure connected to the substrate, the cap structure configured to define a cavity between an inner surface of the cap structure and a first surface of the substrate, (iii) an absorber connected the substrate and arranged within the cavity, the absorber configured to absorb infrared radiation within the cavity, and (iv) a readout circuit connected to the absorber and configured to provide a signal that indicates an amount of infrared radiation absorbed by the absorber. The cap structure of the reference bolometer blocks infrared radiation from entering the cavity from outside the cap structure. The cap structure of each sensing bolometers allows infrared radiation to enter the cavity from outside the cap structure.
116 Airflow sensing systems and apparatus US15092790 2016-04-07 US09758257B1 2017-09-12 Sergey V. Frolov; Michael Cyrus; Allan J. Bruce; John P. Moussouris
Embodiments of air flow sensing systems are provided herein. In some embodiments, one or more sensors are positionable on an aircraft and dimensioned and arranged to measure vector components of airflow velocity having at least one of a transverse or streamwise direction relative to a flight direction of the aircraft. In some embodiments, the one or more sensors are positioned in front of an aircraft wing and distributed as an array of sensors along the span of the aircraft wing.
117 Apparatuses, systems and methods for determining effective wind speed US15178989 2016-06-10 US09720010B2 2017-08-01 Gary Michael Miller
Systems and methods for determining an effective wind speed are disclosed. A system includes a first detector, a second detector and a processing unit. The first detector includes a heated temperature-sensing element having a heater and a first temperature sensor, and a first housing at least partially housing the heated temperature-sensing element. The second detector includes a non-heated temperature-sensing element having a second temperature sensor, a second housing at least partially housing the non-heated temperature-sensing element. The processing unit can be adapted to determine the effective wind speed according to a temperature at the heated temperature-sensing element, a temperature at the non-heated temperature-sensing element, and/or a difference between these temperatures and in accordance with an algorithm or table of values. The heated and non-heated temperature-sensing elements and their respective first housing and second housing are collinear, proximal and parallel to the conductor, and protected from precipitation by a shield.
118 DEVICE FOR MEASURING AERODYNAMIC MAGNITUDES INTENDED TO BE PLACED IN A FLOW PASSAGE OF A TURBINE ENGINE US15348824 2016-11-10 US20170138216A1 2017-05-18 Jeremy GIORDAN; Bernard Joseph Florian KOCKENPO
The present invention relates to a device for measuring aerodynamic magnitudes (1) intended to be placed transversally in a flow passage (12, 13) of a turbine engine comprising: an upstream body (2) having a profile of general cylindrical shape defining a leading edge (5) a plurality of sensors (4), the instrumentation lines (45) of the sensors being placed in the body (2), the sensitive elements (41) of the sensors extending at the leading edge (5); a downstream fairing (3) mounted on the upstream body (2) and defining a trailing edge (6); the downstream fairing (3) comprising, in the longitudinal direction of the upstream body (2), several sections (35) fixed independently of each other to the body (2), two successive sections (35) being connected by a flexible junction (37).
119 WIND DIRECTION METER, WIND DIRECTION/FLOW METER, AND MOVEMENT DIRECTION METER US15315782 2015-05-11 US20170108527A1 2017-04-20 Toshikazu HARADA; Atusi SAKAIDA; Toshihisa TANIGUCHI
A wind direction meter has the following plurality of sensors and a control unit. Each sensor has a first surface and has first and second interlayer connection members made of different metals or semiconductors. Further, the wind direction meter includes a thermoelectric conversion element which generates an electrical output when a temperature difference occurs between first ends and second ends of the respective first and second interlayer connection members. The sensor generates an electric output when the surrounding air, whose temperature has been changed by a heater, is moved by the wind to produce a temperature difference between the first ends and the second ends of the first and second interlayer connection members. The control unit calculates the direction of the wind on the basis of the difference in output. Thus, the wind direction of a weak wind can be detected with the wind direction meter.
120 SYSTEM AND APPARATUS COMPRISING A MULTI-SENSOR CATHETER FOR RIGHT HEART AND PULMONARY ARTERY CATHETERIZATION US15293380 2016-10-14 US20170027458A1 2017-02-02 Christopher GLOVER; Eric CARON; Sylvain ABEL
A system and apparatus comprising a multi-sensor catheter for right heart and pulmonary artery catheterization is disclosed. The multi-sensor catheter comprises multi-lumen catheter tubing into which at least three optical pressure sensors, and their respective optical fibers, are inserted. The three optical pressure sensors are arranged within a distal end portion of the catheter, spaced apart lengthwise within the distal end portion for measuring pressure concurrently at each sensor location. The sensor locations are configured for placement of at least one sensor in each of the right atrium, the right ventricle and the pulmonary artery, for concurrent measurement of pressure at each sensor location. The sensor arrangement may further comprise an optical thermo-dilution sensor, and another lumen is provided for fluid injection for thermo-dilution measurements. The catheter may comprise an inflatable balloon tip and a guidewire lumen, and preferably has an outside diameter of 6 French or less.
QQ群二维码
意见反馈