序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 用于确定行车速度的方法 CN201310206364.0 2013-05-29 CN103454445A 2013-12-18 J.海泽; U.舒尔茨; A.瓦格纳
发明涉及一种用于基于流经车辆(2)的冷却装置(24)的换热器(28)的冷却介质(26)的冷却介质质量流(37)并且基于流经所述换热器(28)且由行车引起的空气质量流(44)来确定流向车辆(2)的行车风的速度(10)的方法,所述方法包括:确定冷却介质质量流(37)的温度下降(40);确定负责用于冷却介质质量流(37)的温度下降(40)的空气质量流(44);并且基于负责用于冷却介质质量流(37)的温度下降(40)的空气质量流(44)来确定流向所述车辆(2)的行车风的速度(10)。
22 用于确定核反应堆中的冷却剂平和流速的系统和方法 CN200810099667.6 2008-06-13 CN101325091B 2013-08-28 B·W·布里森; W·G·莫尔里斯; D·郑; D·J·蒙克; B·方; C·M·叙尔曼; D·D·安德森
发明涉及用于确定核反应堆中的冷却剂平和流速的系统和方法,一种沸水反应堆(10)包括反应堆容器(12),其具有用于将再循环的蒸汽冷凝物和/或补给冷却剂引入至容器(12)内的给水进口(14)和用于排出所产生的蒸汽以用于合适操作的蒸汽出口(16)。燃料芯部(18)位于压力容器(2)的下部区域内。燃料芯部(18)由芯部护罩(20)所围绕,该芯部护罩(20)与压力容器(12)的壁向内间隔,以提供在容器壁和芯部护罩(20)之间形成冷却剂流径的环形下降管(22)。探测器系统(40)包括传导率/阻性探测器(42,44)和/或一个或多个时域反射(TDR)探测器(46)的组合,并且至少部分地位于下降管(22)内。探测器系统(40)测量下降管(22)内的冷却剂水平(38)和流速。
23 用于调节引线计的装置 CN200980156666.3 2009-12-18 CN102317795B 2013-03-06 让-保罗·莫罗
发明涉及一种具有单条引线或n条相互平行的引线(n>1)的计探针,用于近壁测量,对于每条引线,包括:a)用于将引线保持在适当位置的两个引脚(4、6),每个引脚的端部包括用于定位并紧固引线的平坦区(43);以及b)引线(2)的笔直部分,钎焊至用于定位并紧固引线的所述平坦区(43)上。
24 具有废气体积测定功能的会产生废气的设施,尤其是船舶 CN201080043616.7 2010-09-28 CN102575952A 2012-07-11 托马斯·博塞尔曼; 赖纳·哈尔蒂希
发明涉及一种会产生废气的设施(1),尤其是船舶,包括一废气通道(2)和一装置(10),所述设施(1)的废气从所述废气通道排放到所述设施(1)的周围环境(18)中,所述装置用于测定一经所述废气通道(2)排放到所述周围环境(18)的废气体积,根据本发明,所述用于测定废气体积的装置(10)包括:多个在所述废气通道(2)末端横向于所述废气的流向(4)分布式布置在规定位置上的布拉格光栅(5);一光波导结构(6),所述布拉格光栅(5)形成在所述光波导结构中,其中,所述光波导结构(6)由至少一个光波导(5)构成;一与所述布拉格光栅(5)相邻布置且可为所述布拉格光栅(5)加热的加热装置(8),或者一与所述布拉格光栅(5)相邻布置且可为所述布拉格光栅(5)制冷的制冷装置,其中,所述光波导结构(6)和所述加热装置(8)或所述制冷装置布置在所述废气通道(2)末端且与所述废气进入所述设施(1)的周围环境(18)时所需经过一出口(12)之间间隔一距离(d)。
25 雾化器 CN201080033149.X 2010-07-20 CN102470225A 2012-05-23 A·T·J·M·席佩尔; M·J·R·莱伯德; J·S·H·德尼尔; A·戴奇; K·J·卢洛福斯; J·R·哈尔曾
雾化器(10)包括可拆卸地耦合至主体的头部。头部包括雾化装置(42、40、44)、空气通道(50)以及流动传感器(52)。在终止于接口件70中的空气通道(50)中释放经雾化的液体,用户通过该接口件70而吸入(5)和呼出(7)。吸入和呼出引起空气通道中的流动,利用流动传感器(52)来检测该流动。雾化装置由主体中所包括的控制装置(60、62)控制。
26 用于确定具有ICT设备的调节空间中冷却空气平衡的方法和仪器 CN201080021615.2 2010-03-17 CN102428374A 2012-04-25 J·H·J·斯勒藤; T·E·范迪杰克; C·普林斯; R·M·洛德尔
一种用于确定温度和空气湿度调节空间中供给的冷却空气量和排出的加热空气量之间平衡的方法,在所述温度和空气湿度调节空间中布置ICT设备(9),所述ICT设备(9)向经过的冷却空气发出热量以使得该空气被加热,其中通过对借助信号源(3)施加于参考气流的信号进行测量来监控空间中参考气流的自由运动。本发明进一步涉及一种用于确定温度和空气湿度调节空间中供给的冷却空气量和排出的加热空气量之间平衡的仪器,在所述温度和空气湿度调节空间中布置ICT设备(9),所述ICT设备(9)向经过的冷却空气发出热量以使得该空气被加热,所述仪器包括用于监控参考气流的运动的测量管(2)。
27 确定流动方向的流动测量装置 CN200780009407.9 2007-02-06 CN101405580B 2011-09-07 托马斯·博塞尔曼; 迈克尔·威尔希
发明涉及一种用于确定流体(22)流动方向的流动测量装置。此流动测量装置包括一个可被流体(22)绕流的测量元件(1),它有至少一个光波导体(4)和至少两个与所述至少一个光波导体(4)相邻设置的电加热元件(5a、6b)。其中,所述至少一个光波导体(4)可分别通过一个从各自的加热元件(5a、6b)朝所述至少一个光波导体(4)方向的热流加热,以及,热流的方向至少部分相反。还可以根据流体(22)的流动方向使各热流与流动方向有程度不同的相关性。此外,可按照所述至少一个光波导体(4)的温度,影响可耦合在所述至少一个光波导体(4)内的电磁波。此流动测量装置还有一个控制装置,借助它可向所述至少两个加热元件(5a、6b)时间上先后输入电功率,以及有一个计算装置(23),借助它可以计算电磁波源自于各热流的温度影响,并可以确定流体(22)的流动方向。此外,本发明涉及一种用按本发明的流动测量装置确定流体(22)流动方向的方法。本发明还涉及一种有一个按本发明的流动测量装置的电机
28 确定流动方向的流动测量装置 CN200780009303.8 2007-02-01 CN101405579B 2010-12-15 托马斯·博塞尔曼; 迈克尔·威尔希
发明涉及一种用于确定流体(22)流动方向的流动测量装置。此流动测量装置包括一个可被流体(22)绕流的测量元件(1),它有至少一个光波导体(4)和至少两个与所述至少一个光波导体(4)相邻设置的电加热元件(5a、6b)。其中,所述至少一个光波导体(4a、4b)可分别通过一个从加热元件(5a、6b)朝所述至少一个光波导体(4)方向的热流加热,以及,热流的方向至少部分相反。还可以根据流体(22)的流动方向不同程度地影响各热流的量。此外,可按照所述至少一个光波导体(4)的温度,影响可耦合在所述至少一个光波导体(4)内的电磁波。此流动测量装置还有一个控制装置,借助它可向所述至少两个加热元件(5a、6b)先后输入电功率,以及有一个计算装置(23),借助它可以计算电磁波源自于各热流的温度影响,并可以确定流体(22)的流动方向。此外,本发明涉及一种用按本发明的流动测量装置确定流体(22)流动方向的方法。本发明还涉及一种有一个按本发明的流动测量装置的电机
29 确定流动方向的流动测量装置 CN200780009407.9 2007-02-06 CN101405580A 2009-04-08 托马斯·博塞尔曼; 迈克尔·威尔希
发明涉及一种用于确定流体(22)流动方向的流动测量装置。此流动测量装置包括一个可被流体(22)绕流的测量元件(1),它有至少一个光波导体(4)和至少两个与所述至少一个光波导体(4)相邻设置的电加热元件(5a、6b)。其中,所述至少一个光波导体(4)可分别通过一个从各自的加热元件(5a、6b)朝所述至少一个光波导体(4)方向的热流加热,以及,热流的方向至少部分相反。还可以根据流体(22)的流动方向使各热流与流动方向有程度不同的相关性。此外,可按照所述至少一个光波导体(4)的温度,影响可耦合在所述至少一个光波导体(4)内的电磁波。此流动测量装置还有一个控制装置,借助它可向所述至少两个加热元件(5a、6b)时间上先后输入电功率,以及有一个计算装置(23),借助它可以计算电磁波源自于各热流的温度影响,并可以确定流体(22)的流动方向。此外,本发明涉及一种用按本发明的流动测量装置确定流体(22)流动方向的方法。本发明还涉及一种有一个按本发明的流动测量装置的电机
30 确定流动方向的流动测量装置 CN200780009303.8 2007-02-01 CN101405579A 2009-04-08 托马斯·博塞尔曼; 迈克尔·威尔希
发明涉及一种用于确定流体(22)流动方向的流动测量装置。此流动测量装置包括一个可被流体(22)绕流的测量元件(1),它有至少一个光波导体(4)和至少两个与所述至少一个光波导体(4)相邻设置的电加热元件(5a、6b)。其中,所述至少一个光波导体(4a、4b)可分别通过一个从加热元件(5a、6b)朝所述至少一个光波导体(4)方向的热流加热,以及,热流的方向至少部分相反。还可以根据流体(22)的流动方向不同程度地影响各热流的量。此外,可按照所述至少一个光波导体(4)的温度,影响可耦合在所述至少一个光波导体(4)内的电磁波。此流动测量装置还有一个控制装置,借助它可向所述至少两个加热元件(5a、6b)先后输入电功率,以及有一个计算装置(23),借助它可以计算电磁波源自于各热流的温度影响,并可以确定流体(22)的流动方向。此外,本发明涉及一种用按本发明的流动测量装置确定流体(22)流动方向的方法。本发明还涉及一种有一个按本发明的流动测量装置的电机
31 用于确定核反应堆中的冷却剂平和流速的系统和方法 CN200810099667.6 2008-06-13 CN101325091A 2008-12-17 B·W·布里森; W·G·莫尔里斯; D·郑; D·J·蒙克; B·方; C·M·叙尔曼; D·D·安德森
发明涉及用于确定核反应堆中的冷却剂平和流速的系统和方法,一种沸水反应堆(10)包括反应堆容器(12),其具有用于将再循环的蒸汽冷凝物和/或补给冷却剂引入至容器(12)内的给水进口(14)和用于排出所产生的蒸汽以用于合适操作的蒸汽出口(16)。燃料芯部(18)位于压力容器(2)的下部区域内。燃料芯部(18)由芯部护罩(20)所围绕,该芯部护罩(20)与压力容器(12)的壁向内间隔,以提供在容器壁和芯部护罩(20)之间形成冷却剂流径的环形下降管(22)。探测器系统(40)包括传导率/阻性探测器(42,44)和/或一个或多个时域反射(TDR)探测器(46)的组合,并且至少部分地位于下降管(22)内。探测器系统(40)测量下降管(22)内的冷却剂水平(38)和流速。
32 Thermal air data (TAD) system US15646054 2017-07-10 US10073921B1 2018-09-11 Nathan R. Richardson
A thermal air data (TAD) sensor comprising a heat dissipating plate including a first surface and a second surface, the heat dissipating plate having a temperature maintained at the constant temperature. The heat dissipating plate is configured to be located at a first location with the first surface flush with an exterior surface of a vehicle. A temperature controller is provided to control the temperature of the heat dissipating plate to maintain the constant temperature during flight of the vehicle and is configured to calculate a value of power to maintain the heat dissipating plate at the constant temperature. An ambient air temperature sensor is to be located at a second location flush with the exterior surface of the vehicle and being paired with the first location.
33 Fall detectors and a method of detecting falls US13379051 2009-12-17 US09974908B2 2018-05-22 Heribert Baldus; Jacob Roger Haartsen; Stephan Schlumbohm; Ronald Dekker
There is provided a fall detector for detecting falls of a user or an object to which the fall detector is attached, characterized in that the fall detector comprises an air flow sensor for providing measurements indicative of vertical velocity and/or changes in altitude of the fall detector.
34 Thermal-type flow-rate sensor US15153977 2016-05-13 US09970802B2 2018-05-15 Taro Nishino; Kansho Yamamoto; Katsumi Fujimoto
A thermal-type flow-rate sensor includes a substrate and a detection unit that is supported by the substrate and at least an upper surface of which is exposed to a flow of a fluid. The detection unit includes: an insulating layer, a heating element arranged on an upper surface of the insulating layer, an upstream temperature measurement element that is arranged on the upper surface of the insulating layer upstream of the heating element in the flow direction that includes a pyroelectric layer, and a downstream temperature measurement element arranged on the upper surface of the insulating layer so as to be positioned downstream of the heating element in the flow direction and that includes a pyroelectric layer.
35 Flow Meter US15782215 2017-10-12 US20180106826A1 2018-04-19 Kazuo ABO; Koji NAKAJIMA
Provided is a flow meter including a cylindrical measurement tube having an internal flow passage, and a sensor substrate including a heating resistance wire and a temperature detecting resistance wire formed on a detection surface thereof along an axis. An outer circumferential surface of the measurement tube is provided with a flat surface arranged as opposed to the detection surface, and a pair of recesses arranged so as to sandwich the internal flow passage at a position where the heating resistance element is arranged. The flat surface and the detection surface are bonded together to form a bonding area A having a width in a direction orthogonal to the axis. A width of a first portion on the axis where the pair of recesses is arranged is narrower than a width of a second portion on the axis where the pair of recesses is not arranged.
36 Method of manufacturing an anemometer used for determining a fluid flow US14883164 2015-10-14 US09851372B2 2017-12-26 Jeffrey Lynn Heath; Harry Joseph Kleeburg; Heath Dixon Stewart
An anemometer and method for analyzing fluid flow is described. In one embodiment, a transistor sensor is heated by applying power to cause its base-emitter junction to rise from an ambient first temperature to a second temperature. The power is removed, and the Vbe is measured at intervals as the junction cools. The Vbe equates to a temperature of the junction. The temperature exponentially decreases, and the time constant of the decay corresponds to the fluid flow velocity. A best fit curve analysis is performed on the temperature decay curve, and the time constant of the exponential decay is derived by a data processor. A transfer function correlates the time constant to the fluid flow velocity. The transistor is thermally coupled to a metal rod heat sink extending from the package, and the characteristics of the rod are controlled to adjust the performance of the anemometer.
37 MASS FLOWMETER AND VELOCIMETER US15315742 2015-05-07 US20170102255A1 2017-04-13 Toshikazu HARADA; Atusi SAKAIDA
A mass flowmeter includes a flow sensor having a first sensor part and a second sensor part formed on both sides of a heater part. The flow sensor is formed of a thermoplastic resin, and is configured of a multi-layer substrate including a plurality of stacked insulating layers, and a first conductor and a second conductor and formed on these insulating layers and connected to each other. The multi-layer substrate is formed by pressurizing and heating the plurality of insulating layers for integration. When a fluid having heat released from the heater part is moved along the one face of the flow sensor, the first and the second sensor parts and generate electromotive forces in the level corresponding to temperature differences generated between the one face and the other face in the first and the second sensor parts. The flow sensor has a structure manufactured by pressurizing and heating the plurality of insulating layers for integration. The structure has no large space unlike a structure having a space immediately below a diaphragm. Thus, the flow sensor is less breakable than a sensor having a diaphragm structure is.
38 MEASUREMENT DEVICE AND MEASUREMENT SYSTEM USING SAME US15308529 2015-05-18 US20170052206A1 2017-02-23 Tatsuya TOYAMA; Motohiro KITADA; Takashi YASUDA
A measurement device includes a frame member rotatably supported about a first axis line, a detection body disposed inside of the frame member and rotatably supported relative to the frame member about a second axis line, and a vane disposed on one end side of the detection body in a direction orthogonal to the second axis line and that directs the other end side of the detection body in the direction orthogonal to the second axis line toward an air flow upstream side upon receiving an air flow. The measurement device includes a wind direction sensor disposed in the detection body that detects a wind direction as a direction of the other end side of the detection body in the direction orthogonal to the second axis line, and a wind speed sensor disposed in the detection body that detects a wind speed of the air flow.
39 SYSTEM AND METHOD FOR MONITORING A STATE OF A FLUID IN AN INDOOR SPACE AS WELL AS A CLIMATE CONTROL SYSTEM US15306624 2015-04-28 US20170045548A1 2017-02-16 Paul Sebastian BOOIJ; Jeroen Edwin FRANSMAN; Joris SIJS
A monitoring system for monitoring a state of a fluid in an indoor space including a state of a flow field for said fluid is presented. The system includes an input unit (81), a simulation unit (82), a comparison unit (83) and a state correction unit (84). The input unit (81) comprises a plurality of temperature sensors (81a, 81b, . . . , 81mT) to obtain temperature measurement data indicative for a temperature field in said indoor space. The simulation unit (82) is provided to simulate the fluid in said indoor space according to an indoor climate model to predict a state of the fluid including at least a temperature field and a flow field for the fluid in said indoor space, and has an output to provide a signal indicative for the flow field. The comparison unit (83) is provided to compare the predicted temperature field with the temperature measurement data, and the state correction unit (84) is provided to correct the predicted state of the fluid based on a comparison result of said comparison unit (83). The monitoring system may be part of a climate control system.
40 Apparatuses, Systems and Methods for Determining Effective Wind Speed US15178989 2016-06-10 US20170038406A1 2017-02-09 Gary Michael MILLER
Systems and methods for determining an effective wind speed are disclosed. A system includes a first detector, a second detector and a processing unit. The first detector includes a heated temperature-sensing element having a heater and a first temperature sensor, and a first housing at least partially housing the heated temperature-sensing element. The second detector includes a non-heated temperature-sensing element having a second temperature sensor, a second housing at least partially housing the non-heated temperature-sensing element. The processing unit can be adapted to determine the effective wind speed according to a temperature at the heated temperature-sensing element, a temperature at the non-heated temperature-sensing element, and/or a difference between these temperatures and in accordance with an algorithm or table of values. The heated and non-heated temperature-sensing elements and their respective first housing and second housing are collinear, proximal and parallel to the conductor, and protected from precipitation by a shield.
QQ群二维码
意见反馈