序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 Fluid type angular velocity detector JP16081076 1976-12-28 JPS5296075A 1977-08-12 MATSUKUSU AANORUDO SHIEEFUAA
22 JPS4825950B1 - JP6196469 1969-08-06 JPS4825950B1 1973-08-02
23 VORRICHTUNG UND VERFAHREN ZUR MESSUNG EINER ROTATIONSBEWEGUNG SOWIE ZUR ERKENNUNG EINES WELLENBRUCHS EP17187699.8 2017-08-24 EP3296748A3 2018-05-23 KESTERING, Jens

Die Erfindung betrifft eine Turbomaschine mit mindestens einer drehbaren Welle und mindestens einer Vorrichtung zur Messung einer Rotationsbewegung eines drehbaren Bauteils (20, 21), insbesondere der Welle, wobei die Vorrichtung einen Empfänger (10, 10') und einen ersten Musterträger (11, 11'), der mindestens eine Musterstelle (110) aufweist, umfasst. Dabei umfasst die Vorrichtung (1, 1', 1") einen zweiten Musterträger (18, 18') mit mindestens einer Musterstelle (180) vorgesehen, wobei die Musterträger (11, 11', 18, 18') jeweils mit dem drehbaren Bauteil (20, 21) verbindbar oder verbunden sind, sodass sie derart gemeinsam damit um eine Rotationsachse (R) bezüglich dem Empfänger (10, 10') rotierbar sind, dass die Musterstelle (110) des ersten Musterträgers (11, 11') in Deckung mit der Musterstelle (180) des zweiten Musterträgers (18, 18') liegt, und wobei der Empfänger (10, 10') ausgebildet und eingerichtet ist, zu erfassen, ob die Musterstellen (110, 180) in Deckung liegen oder nicht. Die Erfindung betrifft ferner ein Verfahren.

24 VORRICHTUNG UND VERFAHREN ZUR MESSUNG EINER ROTATIONSBEWEGUNG SOWIE ZUR ERKENNUNG EINES WELLENBRUCHS EP17187699.8 2017-08-24 EP3296748A2 2018-03-21 KESTERING, Jens

Die Erfindung betrifft eine Turbomaschine mit mindestens einer drehbaren Welle und mindestens einer Vorrichtung zur Messung einer Rotationsbewegung eines drehbaren Bauteils (20, 21), insbesondere der Welle, wobei die Vorrichtung einen Empfänger (10, 10') und einen ersten Musterträger (11, 11'), der mindestens eine Musterstelle (110) aufweist, umfasst. Dabei umfasst die Vorrichtung (1, 1', 1") einen zweiten Musterträger (18, 18') mit mindestens einer Musterstelle (180) vorgesehen, wobei die Musterträger (11, 11', 18, 18') jeweils mit dem drehbaren Bauteil (20, 21) verbindbar oder verbunden sind, sodass sie derart gemeinsam damit um eine Rotationsachse (R) bezüglich dem Empfänger (10, 10') rotierbar sind, dass die Musterstelle (110) des ersten Musterträgers (11, 11') in Deckung mit der Musterstelle (180) des zweiten Musterträgers (18, 18') liegt, und wobei der Empfänger (10, 10') ausgebildet und eingerichtet ist, zu erfassen, ob die Musterstellen (110, 180) in Deckung liegen oder nicht. Die Erfindung betrifft ferner ein Verfahren.

25 SHIP SPEED METER AND SHIP SPEED MEASUREMENT METHOD EP13749496.9 2013-02-04 EP2816359B1 2016-09-14 ANDO, Hideyuki; HORI, Masatoshi; KAKUTA, Ryo
26 ANGULAR RATE SENTOR EP90909764.0 1990-07-05 EP0486503A1 1992-05-27 DWYER, Douglas Frank George
Un détecteur angulaire mesurant la vitesse angulaire autour d'un axe sensible d'une cavité comprend une cavité remplie de fluide , un dispositif qui provoque la rotation du fluide dans la cavité autour d'un axe perpendiculaire audit axe sensible, le fluide possédant parallèlement audit axe de rotation un gradient de débit, et un dispositif destiné à détecter une variation du grandient de débit avec la rotation de la cavité autour dudit axe sensible. Le dispositif peut être électrique, par exemple grâce à la mesure de la variation du potentiel électrique ou de la résistance électrique ou du courant électrique à travers le trajet du fluide, ou alors optique grâce à la mesure de la variation dans la répartition d'un matériau flottant neutre dans un fluide transparent optique.
27 Angular rate sensor with integrated impulse jet pump assembly EP81630028.9 1981-04-02 EP0037794A1 1981-10-14 Moffatt, Marston E.

An angular rate sensor includes a unitary structure impulse pump (70) for providing fluid under pressure, at a constant rate of flow, to a nozzle (28) disposed at one end of a jet chamber (29) to form a constant flow fluid jet, the jet chamber including a pair of temperature sensitive elements (53, 54) disposed at the other end in such a manner as to be differentially cooled by the fluid jet in dependence on the angular rotation of the sensor.

28 와치타입 단말기 KR20160148273 2016-11-08 KR20180051227A 2018-05-16 SHIM HONG JO; LEE HYUN OK; PARK MI HYUN; LEE KYOUNG JIN; LEE SUNG JIN
신체의일 영역에장착가능한 본체, 육상모드에서상기본체의일 영역에장착되어외부압력의변화를감지하는압력센서, 상기압력의변화가기 설정된기준변화량보다크거나같은경우, 상기육상모드를수중모드로전환하여특정기능의수행을제어하는제어부를포함하는와치타입단말기를제공한다.
29 DEVICE AND METHOD FOR MEASURING A ROTATIONAL MOVEMENT, IN PARTICULAR A ROTATIONAL DIRECTION, AND FOR DETECTING A SHAFT BREAK US15697051 2017-09-06 US20180073387A1 2018-03-15 Jens KESTERING
A turbomachine with at least one rotatable shaft and at least one device for measuring a rotational movement of a rotatable structural component), in particular of the shaft, is provided. The device has a receiver and a first pattern carrier that has at least one pattern site. Here, the device comprises a second pattern carrier with at least one pattern site, wherein the pattern carriers are respectively connectable or connected to the rotatable structural component, so that they are rotatable together with the same about a rotational axis with respect to the receiver, namely in such a manner that the pattern site of the first pattern carrier is positioned in congruence with the pattern site of the second pattern carrier, and wherein the receiver is embodied and configured for detecting whether or not the pattern sites are positioned in congruence with one another.
30 Hybrid MEMS microfluidic gyroscope US14425153 2013-09-04 US09759562B2 2017-09-12 Julius Georgiou; Charalambos Michael Andreou
A hybrid MEMS microfluidic gyroscope is disclosed. The hybrid MEMS microfluidic gyroscope may include a micro-machined base enclosure having a top fluid enclosure, a fluid sensing enclosure and a bottom fluid enclosure. The hybrid MEMS microfluidic gyroscope may include a plurality of cantilevers disposed within the bottom semi-circular portion of the micro-machined base enclosure or a single membrane disposed within the bottom semi-circular portion of the micro-machined base enclosure.
31 SYSTEM AND METHOD FOR ESTIMATING TURBOCHARGER OPERATING SPEED US15267857 2016-09-16 US20170002752A1 2017-01-05 John N. Chi; John M. Mulloy; Siriram S. Popuri
A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
32 System and method for water column aided navigation US14439213 2013-10-28 US09500484B2 2016-11-22 Brandon S. Strong
Underwater vehicles may fix their position from GPS at the surface of the water and use bottom track for dead reckoning once it has descended to within tracking range of the bottom of a body of water. This disclosure describes a method and system for navigation through the water through depths where GPS is not available using current profiles from sonar systems including acoustic Doppler current profilers (ADCP). This extrapolation of earth referenced current profiles can provide a way to estimate vehicle motion below the surface before the vehicle reaches the bottom. Once bottom track is achieved, the corrected reference for vehicle motion improves the vehicle position estimate. A Kalman filter updates vehicle position and current profile estimates during descent, and the bottom track when the bottom comes within range to enable navigation of underwater vehicles.
33 HYBRID MEMS MICROFLUIDIC GYROSCOPE US14425153 2013-09-04 US20150260518A1 2015-09-17 Julius Georgiou; Charalambos Michael Andreous
A hybrid MEMS microfluidic gyroscope is disclosed. The hybrid MEMS microfluidic gyroscope may include a micro-machined base enclosure having a top fluid enclosure, a fluid sensing enclosure and a bottom fluid enclosure. The hybrid MEMS microfluidic gyroscope may include a plurality of cantilevers disposed within the bottom semi-circular portion of the micro-machined base enclosure or a single membrane disposed within the bottom semi-circular portion of the micro-machined base enclosure.
34 System and method for estimating turbocharger operating speed US13244540 2011-09-25 US08892332B2 2014-11-18 John N. Chi; John M. Mulloy; Sriram S. Popuri
A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
35 SYSTEM AND METHOD FOR ESTIMATING TURBOCHARGER OPERATING SPEED US13244540 2011-09-25 US20130080024A1 2013-03-28 John N. Chi; John M. Mulloy; Sriram S. Popuri
A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
36 Motion sensor and method for detecting motion US10976459 2004-10-29 US07426859B2 2008-09-23 Michael E. Greene; Victor S. Trent
A motion sensor may detect linear and/or angular acceleration and/or angular velocity of a body relative to one axis, two orthogonal axes or three orthogonal axes. Movement of the body or reference structure may be detected relative to one or more spinning rotors. The rotor(s) may be suspended for rotation and/or other movement relative to the reference structure without physical contacting the reference structure. In one embodiment, the rotor(s) may be electrostatically suspended in such a way that movement of the rotor(s) relative to the reference structure may be detected.
37 Method and device for detecting the speed of a pump US10662827 2003-09-15 US07083391B2 2006-08-01 Holger Sievert; Juergen Hachtel; Guenther Hertlein
A method and a system for detecting the speed of a pump motor of a hydraulic pump system are provided, in which pump system a pump is driven by a pump motor to deliver hydraulic fluid into a pump reservoir. In accordance with the present invention, a pressure signal representing the fluid-delivery activity of the pump is detected, and the pressure peaks within this pressure signal identified. The speed of the pump motor is determined on the basis of the frequency or the time intervals of these pressure peaks.
38 Motion sensor and method for detecting motion US10976459 2004-10-29 US20060090564A1 2006-05-04 Michael Greene; Victor Trent
A motion sensor may detect linear and/or angular acceleration and/or angular velocity of a body relative to one axis, two orthogonal axes or three orthogonal axes. Movement of the body or reference structure may be detected relative to one or more spinning rotors. The rotor(s) may be suspended for rotation and/or other movement relative to the reference structure without physical contacting the reference structure. In one embodiment, the rotor(s) may be electrostatically suspended in such a way that movement of the rotor(s) relative to the reference structure may be detected.
39 Apparatus and method for sensing angular displacement US09546480 2000-04-10 US06354132B1 2002-03-12 Arent Kits Van Heyningen
An apparatus and method for sensing angular displacement of a rotating object. A reference object is provided that maintains an independent angular reference. An angular displacement of the rotating object may be measured with respect to the reference object. The apparatus may include a turn sensor for measuring directional changes in the heading of the object, an angular compensator, and a servomotor for maintaining the turn sensor in a same angular position. The object may be a vehicle such as a boat, car, train, airplane or any other vehicle. The turn sensor is coupled to the servomotor that may be attached to a platform of the vehicle. As the vehicle rotates, the heading of the vehicle changes. The servomotor rotates the turn sensor housing to keep the sensor at the same angular position. The heading may be determined by measuring an angular difference between the position of the turn sensor in relation to the moving object.
40 Fluid dynamic angular rate sensor US3490 1979-01-12 US4254659A 1981-03-10 Kenneth R. Benedetto; Larry J. Linder
An angular rate of change sensing device of the type wherein angular rate of change, movement, or velocity is indicated by sensing a differential fluid velocity relative to a sensing apparatus in an underdeveloped laminar fluid flow field and is characterized primarily in that under conditions of no angular movement, there exists a constant or flat fluid velocity and density profile in a plane normal to the longitudinal axis of the flow channel. The device consists of a fluid flow inlet conditioner, a contoured inlet nozzle, a straight or slightly diffusing flow channel, a flow sensing apparatus inside the channel, and a device for pumping fluid through the flow conditioner and channel. Under conditions of angular rotation the velocity profile of a constant velocity, laminar fluid flow field relative to a sensing apparatus, is distorted due to fluid dynamic inertial effects and due to the effects of a relative velocity differential between sensing elements. Sensing apparatus positioned inside the fluid flow channel responds to a differential fluid velocity and yields output signals proportional to an induced angular movement in a plane which includes the differential sensors and the longitudinal axis of the flow channel.
QQ群二维码
意见反馈