序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
201 METHOD AND APPARATUS FOR MONITORING A SUPPLY OF GAS EP92923905.0 1992-11-25 EP0614525A1 1994-09-14 REYNOLDS, Patrick, John; BARTINGTON, John, Keith
Procédé et dispositif servant à contrôler une alimentation en gaz, telle que la production de méthane au moyen de la dégradation anaérobie de matières organiques et utilisant un manomètre (14), afin de mesurer avec précision des volumes prédéterminés dudit gaz. Chaque volume mesuré est introduit dans une chambre (18) possédant également un volume prédéterminé et contenant un deuxième gaz, de façon à obtenir une dilution connue avec précision de la production de gaz à contrôler. La chambre (18) contient un détecteur de gaz catalytique (36) sensible au gaz à contrôler et produisant une sortie indiquant la concentration du premier gaz à l'intérieur de ladite chambre (18), ce qui permet de déterminer le débit de production et le volume dudit premier gaz.
202 Method and apparatus for testing gas dispersed in a liquid EP91105509.3 1991-04-08 EP0451752A2 1991-10-16 Zanella, Paolo

A testing method and apparatus for measurement of quantities of gas dispersed in a liquid, in particular nucleation air in a polyurethane component contained in a pressurized tank (14). In accordance with the invention a sample of the liquid to be tested, is draw from the tank (14) and fed into a testing cylinder (10) at the same pressure of the tank (14); the liquid sample is than compressed to a predetermined pressure value in the testing cylinder (10) and the quantity of dispersed gas is determined an referred to the atmospheric pressure by means of a suitable calculation algorithm as a function of the difference in volume caused by the compression.

203 Procédé et dispositif de mesure pour determiner une caractéristique de pompage ou un paramètre d'un fluide EP89401701.1 1989-06-16 EP0349374A1 1990-01-03 Castel, Yvon

Procédé et dispositif de mesure pour déterminer au moins une caractéristique de pompage ou un paramètre d'un fluide ayant au moins une phase liquide et une phase gazeuse, ledit paramètre étant un paramètre dit GLR qui correspond au rapport du volume de la phase gazeuse au volume de la phase liquide.

Le dispositif selon l'invention est notamment caractérisé en ce qu'il comporte une pompe volumétrique (1) ayant une pression d'aspiration et une pression de refoulement, et comportant une chambre (2) ayant un volume, et en ce que le dispositif comporte en outre un au moins des éléments du groupe suivant :

- un capteur (42) de pression dans ladite chambre,

- un détecteur adapté à mesurer un travail de pompage, et

- un capteur (40,41) permettant de connaître le volume de la chambre,

lesdits éléments fournissant chacun une valeur, ladite caractéristique à déterminer étant une caractéristique qui n'est pas mesurée par ledit dispositif.

204 Cellule pour l'étude d'un produit fluide au moins en partie condensable EP85113362.9 1985-10-22 EP0180844B1 1989-07-26 Ollivaud, Bernard; Lebas, Jean-Marie
205 FLUIDIC OXYGEN SENSOR MONITOR EP87106420 1987-05-04 EP0244794A3 1988-06-15 MYERS, WILLIAM P.
A fluidic bridge for determining the partial pressure of a gas has a positive pressure inlet (21) for a reference gas and a sample gas and an ambient pressure outlet (76). The reference gas and the sample gas pass through a capillary passage (40) and an orifice passage (50), and the pressure differential between the outlet of the reference capillary passage and the outlet of the sample capillary passage is a function of the density of the gas. A pressure ratio regulator (60) is used to equalize the pressure of the reference gas and the sample gas applied to the inlets of the capillary passages. The length of the capillary passages and the flow characteristics of the orifice passages are adjustable to allow the bridge to be properly calibrated after being assembled.
206 Fluidic oxygen sensor monitor EP87106420.0 1987-05-04 EP0244794A2 1987-11-11 Myers, William P.

A fluidic bridge for determining the partial pressure of a gas has a positive pressure inlet (21) for a reference gas and a sample gas and an ambient pressure outlet (76). The reference gas and the sample gas pass through a capillary passage (40) and an orifice passage (50), and the pressure differential between the outlet of the reference capillary passage and the outlet of the sample capillary passage is a function of the density of the gas. A pressure ratio regulator (60) is used to equalize the pressure of the reference gas and the sample gas applied to the inlets of the capillary passages. The length of the capillary passages and the flow characteristics of the orifice passages are adjustable to allow the bridge to be properly calibrated after being assembled.

207 Apparatus for determining the supercompressibility factor of a flowing gas EP86100508.0 1986-01-16 EP0208046A1 1987-01-14 Jacobsen, Robert S.; Schneider, George W., Jr.

An arrangement for determining the supercompressibility factor of a flowing gas at elevated pressure includes a first meter for measuring the volume flow rate of the gas at the elevated pressure, a restrictor at the outlet of the first meter for dropping the pressure of the gas to a pressure at which the super­compressibility factor is known, and a second meter for measuring the volume flow rate of the gas at the lower pressure. A computer calculates the supercompressibility factor of the gas at the elevated pressure by utilizing measured values of temperature, pressure and volume flow rate of the gas at both the elevated and lower pressures.

208 Flueric partial pressure sensor EP86300933.8 1986-02-11 EP0196157A1 1986-10-01 Stevenson, George Francis

A flueric partical pressure sensor (10) includes a flueric bridge sensor (1 Oa having two bridge legs (11; 12) adapted for sensing a reference-gas and a sample-gas. A linear resistor (14, 15) and an orifice resistor (16, 17) are incorporated in each leg (11; 12) and arranged to cause asymmetric flow rates therethrough. Inlets to the two bridge legs (11; 12) are subject to a datum pressure within a datum pressure chamber (38) so that a change of datum pressure automatically changes control signals output by the sensor (10). The partial pressure sensor (10) is disclosed in combination with a molecular sieve type gas concentration system (24) in an on-board oxygen enrichment of air system for an aircraft and enables the oxygen concentration in oxygen enriched air delivery by the system to be appropriate to breathing requirement at an altitude intermediate aircraft cabin (39) and ambient atmospheric pressures.

209 Einrichtung zur Ermittlung des Sättigungszustandes bzw. des Abstandes zur Sättigung einer in einem geschlossenen System strömenden erhitzten und unter Druck stehenden Flüssigkeit EP82101214.3 1982-02-18 EP0059863B1 1985-05-15 Day, Bobby L.
210 Einrichtung zur Ermittlung des Sättigungszustandes bzw. des Abstandes zur Sättigung einer in einem geschlossenen System strömenden erhitzten und unter Druck stehenden Flüssigkeit EP82101214.3 1982-02-18 EP0059863A1 1982-09-15 Day, Bobby L.

Eine derartige Einrichtung soll unempfindlich gegen hohe Temperaturen und Drücke sein und zuverlässig arbeiten. Dazu ist vorgesehen, einen Differenzdruck-Meßumformer 4 mit einer Meßleitung 2 unmittelbar und mit einer Meßleitung 6 mittelbar zu verbinden. Die Meßleitung 6 weist bis zur Linie 7 eine Wasserfüllung auf und ragt mit ihrem geschlossenen Ende 8 in die Leitung 1 hinein. In dem oberhalb der Wasserfüllung befindlichen Freiraum 9 bildet sich ein Dampfpolster. Der an der Berührungsfläche zwischen Wasserfüllung und Dampfpolster daraufhin aufgebaute Druck entspricht dem Sättigungsdruck der in der Leitung 1 mit einer bestimmten Temperatur strömenden Flüssigkeit. Der zwischen den Maßkammern 3 und 5 auftretende Differenzdruck dient als Maß für den Sättigungsgrad der in Leitung 1 fließenden Flüssigkeit.

211 Apparatus and methods for determining swelling reactivity of materials under subterranean wellbore conditions US15022165 2013-10-15 US10145775B2 2018-12-04 Sharath Savari; Bhargav Gajji; Somesh Kurella
Methods and apparatuses for determining the swell of a subterranean formation sample when contacted with a fluid at subterranean conditions.
212 APPARATUS FOR CONTROLLING FLOW AND METHOD OF CALIBRATING SAME US15858689 2017-12-29 US20180188700A1 2018-07-05 Sean Penley; Michael Maeder
Apparatuses for controlling gas flow are important components for delivering process gases for semiconductor fabrication. In one embodiment, a method of calibrating an apparatus for controlling gas flow is disclosed. Specifically, the apparatus may be calibrated on installation using a two-step process of measuring the volume of gas box downstream from the apparatus by flowing nitrogen gas into the gas box and measuring the resulting temperature and rate of pressure rise. Using the computed volume of the gas box, a sweep of several mass flow rates may be performed using the process gas and the gas map for the process gas. The apparatus is calibrated based on the measured temperature and pressure values, which allow calculation of the actual mass flow rate for the process gas as compared with the commanded mass flow rates.
213 FLUID PRESSURIZATION AND DISPENSING SYSTEM US15892252 2018-02-08 US20180162711A1 2018-06-14 John Delano Gibson; Todd Kristian Hansen
A fluid pressurization and dispensing system, including a coupler releasably attached to a vessel via an attachment means for securing a vacuum seal between the coupler and the vessel for maintaining pressure within the vessel, refreshing the gas composition within the vessel, and dispensing of a fluid contents externally from within the vessel without disturbing the vacuum seal. The coupler has a rigid single body unit having a tap head, a shank, and a cap which are contiguous thereof the coupler including a plurality of channels each integrally machined within an interior portion of the coupler. The system regulates a flow of gas from a pressurized gas cartridge via a gas pressure regulator, enables venting excess gas via a gas pressure relief valve, enables measurement of gas pressure within the vessel via a gas pressure gauge. Another embodiment of the system includes a coupler including a bi-level tap head.
214 Systems and methods for rapid measurement of carbon dioxide in water US14937331 2015-11-10 US09970915B2 2018-05-15 Alexander Whitman Miller; Gerhardt F. Riedel; Karl John Klug
Systems and methods are provided for rapidly determining the partial pressure of CO2 (pCO2) in a body of water. The systems and methods are particularly useful for measuring p CO2 in coastal waters and other bodies of water where pCO2 can change rapidly and vary widely at sites that are in close proximity to each other. Additionally, pCO2 measurements can be important for industrial CO2 sequestration monitoring, monitoring pCO2 in wastewater and drinking water treatment plants, as well as monitoring and controlling pH in municipal and private swimming pools.
215 SYSTEM AND METHOD FOR DETERMINING THE ADIABATIC STRESS DERIVATIVE OF THE TEMPERATURE FOR ROCKS UNDER WATER US15546743 2016-04-19 US20180120476A1 2018-05-03 Xiaoqiu Yang; Weiren Lin; Ziying Xu; Xiaobin Shi; Hehua Xu
A system and method for determining adiabatic stress derivative of temperature for rocks under water. The system includes three pressure vessels disposed in seawater. A data collecting unit is in the first pressure vessel. A rock sample is in a first chamber of the second pressure vessel. A temperature sensor is in each of the center of the rock, the surface of the rock sample, and the first chamber. A pressure sensor is also in the first chamber. Outputs of the temperature sensors and the pressure sensor are communicated with inputs of the data collecting unit. A first drain valve is provided on the second pressure vessel and communicated with the first chamber. A second drain valve is provided between the second pressure vessel and the third pressure vessel, and communicated with the first chamber and the second chamber.
216 METHOD AND MEASURING APPARATUS FOR DETERMINING PHYSICAL PROPERTIES OF GAS US15610000 2017-05-31 US20170261480A1 2017-09-14 Philippe PRETRE; Andreas KEMPE; Tobias SUTER
A method using a gas reservoir and a critical nozzle for determining physical properties and/or quantities relevant to combustion of gas or gas mixtures, the method includes: flowing a gas or gas mixture under pressure from the gas reservoir through the critical nozzle; measuring pressure drop in the gas reservoir as a function of time; determining a gas property factor (Γ*), dependent on physical properties of the gas or gas mixture, based on the measured values of the pressure drop; and determining a desired physical property or quantity relevant to combustion based on the gas property factor (Γ*) through correlation.
217 PRESSURE INDICATOR FOR HYDRAULIC HAMMER US14966772 2015-12-11 US20170167962A1 2017-06-15 Cody T. Moore; Lauritz P. Pillers
A pressure indicator for a hydraulic hammer is provided. The pressure indicator includes a sleeve member configured to couple to an opening defined in a wall housing of an accumulator of the hydraulic hammer. The pressure indicator further includes a plunger slidably disposed within the sleeve member and movable between a first position and a second position with respect to the sleeve member. The plunger includes a first end disposed outside the wall housing of the accumulator. The plunger further includes a flange coupled to a second end. The pressure indicator further includes an elastic member inserted over the plunger and disposed between the wall housing of the accumulator and the flange. A position of the first end of the plunger with reference to an outer end of the sleeve member provides a visual indication of the pressure of the gas within the accumulator.
218 TESTING APPARATUS FOR CURED LINERS USED IN PIPELINE REHABILITATION US15287967 2016-10-07 US20170100879A1 2017-04-13 David Samuel Pleasants; William Donald Pleasants, JR.
A testing apparatus for onsite creation of cured sample liners necessary for confirming proper rehabilitation of pipelines includes a testing box having a base with a plurality of upstanding side walls defining an open upper end of the testing box. The testing box also includes an electrical power control assembly and an ultraviolet light assembly. A liner support manifold is shaped and dimensioned for supporting a sample liner and for attachment to the open upper end of the testing box for exposing the sample liner to pressure and ultraviolet light. In practice, and with the sample liner secured to the liner support manifold and the liner support manifold secured to the testing box, the sample liner is exposed to pressure and UV light in a highly controlled manner allowing for replication of actual in-line curing processing.
219 Method of measuring concentrations of gas mixtures US14438855 2013-08-23 US09574982B2 2017-02-21 Yinshan Feng; Parmesh Verma; Mary Teresa Lombardo
A method of measuring concentrations of gas mixtures is disclosed in which an ionic liquid and/or low vapor-pressure organic solvent is exposed to a gas mixture being tested to form a solution of the gas components in the liquid. The vapor pressure of the solution is then measured at one or more other temperatures and compared to predicted vapor pressures based on known individual vapor pressure profiles of the gas components in the liquid in order to determine the actual proportions of the components in the gas sample.
220 Gum detection in a dental hygiene detection apparatus by stream probe blocking US14649034 2013-12-20 US09526598B2 2016-12-27 Edgar Martinus Van Gool; Mark Thomas Johnson; Johannes Hendrikus Maria Spruit
A detection apparatus (400, 1100) detects the presence of a substance (116) on a surface (31, 33) based on measurement of a signal of obstructing the passage of second fluid (30) through a first stream probe and confirmation that the substance is not the gums of a subject or a user of the detection apparatus and not the generation of a false alarm signal that the substance is the gums of the subject or of the user of the detection apparatus by comparing to a signal of at least partial obstruction to a signal correlating to an object not obstructing the passage of fluid (30) through a second stream probe (402). The signals may include pressure, flow rate and strain.
QQ群二维码
意见反馈