首页 / 国际专利分类库 / 物理 / 测量 / 借助于测定材料的化学或物理性质来测试或分析材料 / 用电、电化学或磁的方法测试或分析材料 / .通过测试击穿电压(G01N 27/60,G01N 27/62优先;检测固体或流体物品或样品的绝缘强度或击穿电压入G01R31/12)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 自动化钻井液分析器 CN201180018419.4 2011-02-10 CN102918379B 2017-04-19 T·斯托克; E·罗奈斯; T·希尔顿
一种自动钻井液性质分析器,包括:外壳,其具有入口和出口;至少一个,其安置于靠近所述入口处并且被构造成打开和关闭以将液体样品提供到所述外壳中;电子制模,其被构造成发送信号到所述至少一个阀门;探头组合件,其操作性地连接到所述电子控制模块,所述探头组合件包括电极探头,该电极探头具有两个电极和介于两个电极之间的探头间隙;粘度计套筒,其安置于所述外壳中;测锤(bob),其安置于所述套筒中,其中在所述粘度计套筒与所述测锤之间形成环形域,并且其中所述粘度计套筒和所述测锤中的至少一个被构造成旋转;电机,其操作性地连接到所述粘度计套筒和所述测锤中的至少一个;以及扭矩测量装置,其操作性地连接到所述粘度计套筒和所述测锤。
2 一种基于光耦的检测绝缘材料击穿的报警电路 CN201510774108.0 2015-11-13 CN105425121A 2016-03-23 李振凯; 陈阔; 于月平; 段立春; 吴玉光; 耿洪斌; 袁桂华; 沈栋; 魏燕飞; 章一丹; 高学民; 郝秀杰; 王鸿雁; 殷红旭; 张瑞芳
发明提供一种基于光耦的检测绝缘材料击穿的报警电路,包括:高压电源依次连接电极与绝缘材料、电流电压转换模、滤波模块、正负比较器、信号输出模块、自保持电路及报警电路。采用正比较器和负比较器的原因是交流电源或正、负电源引起击穿时均能够报警,信号输出时采用上拉电阻将电流脉冲转换为电压脉冲信号,光耦自保持电路是将脉冲信号自保持,从而到达持续报警的功能,报警电路可以采用启动蜂鸣器同时采取切断高压电源措施引起人员注意,切断电源。本发明能够有效的检测绝缘材料在加压时发生击穿或放电现象,能够有效采取措施保护电源设备在绝缘击穿时的损害。
3 用于评估接头处的电流威胁影响的方法、装置及设备 CN201510501583.0 2015-08-14 CN105372516A 2016-03-02 理查德·E·米尔斯; 弗兰克·弗卢朗; 马修·科莱; 马修·詹金斯; 西蒙·埃文斯
发明提出了用于对响应于雷击或其他电流威胁从接头被释放和/或被捕获在接头内的出气产物自身的和/或所引起的一个或更多个物理特性进行测量的方法及装置。本发明还提出了用于对为设计具有针对由于雷击而引起的不可接受的损坏的防护的接头的一组设计规则进行确定的方法。接头包括固件,紧固件穿过结构件使得紧固件的端部从结构件突出。该装置包括:具有围绕腔的开口的基部的容纳构件,容纳构件被布置成安装在紧固件的端部上方以将紧固件的端部围封在该腔内并且密封开口;以及一个或更多个传感器,其被布置成用于测量:该腔所容纳的出气产物的一个或更多个物理特性;和/或容纳构件或接头的由该腔所容纳的出气产物引起的一个或更多个物理特性。
4 用于检测包装材料中的瑕疵的方法和设备 CN201180056421.0 2011-12-22 CN103250051B 2016-08-10 汉斯·哈尔斯坦迪斯; 菲利普·林戈伊斯
发明提供了用于检测具有至少一个导电层的包装层压材料中的瑕疵的方法和设备。该方法包括步骤:将该包装层压材料的导电层接地、邻近所述包装层压材料设置电极、通过使电压从初始值向较高的预定值逐渐上升而对所述电极施加高电压、以及通过显示该电极与该包装层压材料的导电层之间的电介质击穿检测所述包装材料中的瑕疵。
5 用于检测包装材料中的瑕疵的方法和设备 CN201180056421.0 2011-12-22 CN103250051A 2013-08-14 汉斯·哈尔斯坦迪斯; 菲利普·林戈伊斯
发明提供了用于检测具有至少一个导电层的包装层压材料中的瑕疵的方法和设备。该方法包括步骤:将该包装层压材料的导电层接地、邻近所述包装层压材料设置电极、通过使电压从初始值向较高的预定值逐渐上升而对所述电极施加高电压、以及通过显示该电极与该包装层压材料的导电层之间的电介质击穿检测所述包装材料中的瑕疵。
6 自动化钻井液分析器 CN201180018419.4 2011-02-10 CN102918379A 2013-02-06 T·斯托克; E·罗奈斯; T·希尔顿
一种自动钻井液性质分析器,包括:外壳,其具有入口和出口;至少一个,其安置于靠近所述入口处并且被构造成打开和关闭以将液体样品提供到所述外壳中;电子制模,其被构造成发送信号到所述至少一个阀门;探头组合件,其操作性地连接到所述电子控制模块,所述探头组合件包括电极探头,该电极探头具有两个电极和介于两个电极之间的探头间隙;粘度计套筒,其安置于所述外壳中;测锤(bob),其安置于所述套筒中,其中在所述粘度计套筒与所述测锤之间形成环形域,并且其中所述粘度计套筒和所述测锤中的至少一个被构造成旋转;电机,其操作性地连接到所述粘度计套筒和所述测锤中的至少一个;以及扭矩测量装置,其操作性地连接到所述粘度计套筒和所述测锤。
7 X射线荧光分析器 CN201180012999.6 2011-02-10 CN102884423A 2013-01-16 T·斯托克; E·罗奈斯; T·希尔顿
一种用于测量样品液体的性质的x射线荧光仪器,所述仪器包括具有入口和出口的外壳;安置在外壳中的测试室,所述测试室包括与入口流体连通的注入口;安置在测试室中的载物片,所述载物片包括样品仓;和测试口;安置在外壳中的x射线荧光光谱仪,以及与测试室的载物片可操作性耦接的至少一个电机。而且,一种测试液体的方法,所述方法包括通过测试室的注入口将液体注入载物片的样品仓中;将载物片在测试室中横向移动至中间位置;将载物片在测试室中横向移动至测试位置;以及在载物片处于测试位置中时启动x射线荧光光谱仪以便对样品仓中的液体进行取样。
8 检查装置 CN201510648899.2 2015-10-09 CN105510387A 2016-04-20 伊藤祐介; 吉川大雄; 壶阪健二; 野口哲郎
发明提供一种检查装置,检查具有阶梯部的工件,在该检查装置中抑制了温度上升。检查具有阶梯部(115)的工件(100)的检查装置(20)具备:一对电极板(220、230),夹持上述工件(100)并对上述工件(100)施加电压,且包含配置于上述阶梯部(115)侧的第一电极板(220)和配置于上述工件(100)的上述阶梯部(115)的相反侧的第二电极板(230);及传热部件(240),以在上述阶梯部和上述第一电极板(220)之间不会产生间隙的方式配置。
9 X射线荧光分析器 CN201180012999.6 2011-02-10 CN102884423B 2015-06-03 T·斯托克; E·罗奈斯; T·希尔顿
一种用于测量样品液体的性质的x射线荧光仪器,所述仪器包括具有入口和出口的外壳;安置在外壳中的测试室,所述测试室包括与入口流体连通的注入口;安置在测试室中的载物片,所述载物片包括样品仓;和测试口;安置在外壳中的x射线荧光光谱仪,以及与测试室的载物片可操作性耦接的至少一个电机。而且,一种测试液体的方法,所述方法包括通过测试室的注入口将液体注入载物片的样品仓中;将载物片在测试室中横向移动至中间位置;将载物片在测试室中横向移动至测试位置;以及在载物片处于测试位置中时启动x射线荧光光谱仪以便对样品仓中的液体进行取样。
10 用于监测轴承的方法和装置 CN201310414329.8 2013-09-12 CN103674548A 2014-03-26 J.纽文休岑
发明涉及用于监测轴承的方法和装置,具体描述了监测涡轮机中的轴承状态的方法和装置。风力涡轮机的轴承(2)包括第一轴承壳体(6)和第二轴承壳体(7)以及在第一和第二轴承壳体(6、7)之间的润滑层(9)。测量润滑状态的方法包括步骤:从电压源向轴承壳体(6、7)施加电压以便在轴承壳体(6、7)之间建立电势。增加施加给轴承壳体(6、7)的电压平直到达到润滑层(9)的击穿电压。测量施加给轴承壳体(6、7)的电压从而检测并测量轴承(2)中的润滑层(9)的击穿电压的值。
11 Method and device for detecting a defective part in the packaging material JP2013547402 2011-12-22 JP2014502726A 2014-02-03 ハンス・ハルスタディウス; フィリップ・リンゴイス
少なくとも1つの導電層を有するパッケージング積層体における不良部を検出するための方法およびデバイスが提供される。 この方法は、パッケージング積層体の導電層を接地するステップと、電極をパッケージング積層体に隣接して配置するステップと、初期値から上位の既定の値へ電圧をランプすることによって電極に高電圧を付与するステップと、電極とパッケージング積層体の導電層との間の絶縁破壊を検知することによってパッケージング材料における不良部を検出するステップと、を含む。
12 Insulating film evaluation method and apparatus and process evaluation method JP35709597 1997-12-25 JP3789220B2 2006-06-21 健治 岡田
13 Insulating film evaluation test structure JP29929599 1999-10-21 JP2001118900A 2001-04-27 SHIGA KATSUYA; MURATA NAOFUMI
PROBLEM TO BE SOLVED: To obtain an insulating film evaluation test structure which is capable of easily detecting fault points. SOLUTION: An insulating film evaluating test structure is provided with a CCD structure equipped with a semiconductor substrate 1, a gate-insulating film 2 formed on all the main surface of the substrate 1 to be detected, gate electrodes 3a to 3i which are arranged at regular intervals on the gate insulating film 2, a wiring 20 connected to the gate electrodes 3a, 3d, and 3g, a wiring 21 connected to the gate electrodes 3b, 3e, and 3h, and a wiring 22 connected to the gate electrodes 3c, 3f, and 3i. Furthermore, the insulating film evaluating test structure is equipped with a read-out circuit 5 composed of an inverter 4 and others and is connected to the output stage of the CCD structure.
14 Electrical characteristics inspection method of a silicon single crystal JP32046790 1990-11-22 JPH06103714B2 1994-12-14 浩利 山岸; 泉 布施川; 幸男 柄沢; 延嘉 藤巻
15 Flaw detection method of metallic material JP13843382 1982-08-11 JPS5928655A 1984-02-15 MATSUBA HIRONORI; NUMANAMI MASAE
PURPOSE:To detect automatically and continuously flaws with high reliability, by disposing an electrode which is applied with voltage oppositely to a metallic material and detecting the electric discharge pulses generated between the metallic material and a power source. CONSTITUTION:One end of a traveling metallic wire rod 10 is grounded and a DC voltage E is applied from a DC power source 14 to an annular electrode 12 which encloses the wire rod 10 apart therefrom. If there is a flaw such as a projection or dent on the surface of the traveling wire rod 10, the electric field between the electrode 12 and the wire rod 10 increases in the vertex of the projection, the edge of the dent, etc.; therefore, a partial discharge is generated between the flaw part and the annular electrode. Then a pulse current flows to a capacitor 16 and a pulse voltage Ep is detected by a pulse detector 20. The presence or absence of the flaw in the wire rod 10 and the position thereof are detected from the traveling speed of the wire rod 10 by the pulse detector 20 in the above-mentioned way.
16 검사 장치 KR1020150141783 2015-10-08 KR1020160043913A 2016-04-22 이토오유스케; 요시카와히로오; 츠보사카겐지; 노구치데츠오
본발명의과제는, 단차부를갖는워크를검사하는검사장치에있어서, 온도상승을억제하는것이다. 단차부(115)를갖는워크(100)를검사하는검사장치(20)는, 상기워크(100)를끼워, 상기워크(100)에전압을인가하는한 쌍의전극판(220, 230)이며, 상기단차부(115)측에배치되는제1 전극판(220)과상기워크(100)의상기단차부(115)와는반대측에배치되는제2 전극판(230)을포함하는한 쌍의전극판과, 상기단차부와상기제1 전극판(220) 사이에간극이발생하지않도록배치되는전열부재(240)를구비한다.
17 Monitoring systems and methods for electrical machines US14969893 2015-12-15 US09976989B2 2018-05-22 Ehsan Dehghan Niri; Curtis Wayne Rose; Andrew Batton Witney
A monitoring system includes an acoustic emission monitoring system including acoustic emission sensors, a partial discharge monitoring system including partial discharge sensors and synchronized with the acoustic emission monitoring system, and a computer receiving acoustic emission data from the acoustic emission sensors and electrical data from the partial discharge sensors. The computer is configured to classify a first statistical event as a fatigue cracking event by pattern recognition of the acoustic emission data and determine a first location and a first damage condition resulting from the fatigue cracking event, classify a second statistical event as a partial discharge event by pattern recognition of the acoustic emission data or the electrical data, and fuse the acoustic emission data and the electrical data for the second statistical event and determine a second location and a second damage condition resulting from the partial discharge event. Methods of monitoring are also disclosed.
18 METHOD AND DEVICE FOR TESTING TEST OBJECTS FOR THE PRESENCE OF DAMAGE US15557533 2016-10-21 US20180100829A1 2018-04-12 Klaus SCHÖNHOFF; Holger ZIRNING; Olaf KOZIESSA; Gerd FUHRMANN
A method and a device for testing for the presence of micro-holes or microcracks in a bottom surface of test objects includes an upper electrode arranged above a transport level and a lower electrode arranged below the transport level. The magnitude of a test voltage generated by two voltage sources connected in series is controlled at the electrodes so that the test voltage is greater than or equal to the breakdown voltage between the electrodes in air, and smaller than the breakdown voltage through a test object without holes or cracks. The test voltage is controlled temporally and synchronously with the movement of the test objects, so that the test voltage is only applied when one of the test objects is located between the electrodes. A hole or crack is recognized by a breakdown to the discharge path between the electrodes.
19 Method and a device for detecting defects in a packaging material US13977451 2011-12-22 US09759687B2 2017-09-12 Philippe Langois; Hans Hallstadius
A method and a device for detecting defects in a packaging laminate having at least one conductive layer are provided. The method comprises the steps of grounding the conductive layer of the packaging laminate, arranging an electrode adjacent to the packaging laminate, applying a high voltage to the electrode by ramping the voltage from an initial value towards an upper predetermined value, and detecting a defect in the packaging material by registering dielectric breakdown between the electrode and the conductive layer of the packaging laminate.
20 Automated electrical stability meter US12741051 2008-11-07 US08994389B2 2015-03-31 Frederick B. Growcock; Marian Baranowski; Donovan Balli
A method for automatically measuring a property of a fluid associated with a drilling application, including obtaining a sample of the fluid, wherein the sample of the fluid is obtained by directing the fluid through an electrode probe assembly comprising an electrode probe and depositing the fluid in a probe gap between electrodes of the electrode probe, ramping up a voltage applied to the electrodes of the electrode probe until a threshold current is obtained, recording the breakdown voltage at the threshold current value, and using the breakdown voltage to compute the property of the sample of the fluid.
QQ群二维码
意见反馈