序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 Individually platelets, and detection and a method and apparatus for counting the agglomerates JP2011500991 2009-03-20 JP5184697B2 2013-04-17 ワードロー,スティーヴン・シー; レヴァイン,ロバート・エー; ラルプリア,ニテン・ヴィー
82 Apparatus for determining the particle size JP2012538334 2010-11-11 JP2013511031A 2013-03-28 ハイネ マーティン; マンツ シュテファン
本発明は、粒度分布を測定するための、特に穀物、穀物製粉製品、穀物製品等の粒状物の広範囲の粒度分布を光学式に測定するための方法で、等級的に広範囲の粒度分布の測定を可能する方法に関する。 この課題を解決するために、個別化された粒子の試料が、1つの装置で少なくとも2つの測定方法によって光学式に検出され、この際に有利には、粒子の輪郭が同時に検出され、レーザ回析が行われる。
83 Distinguishable spectral bar code method and system JP2001575029 2001-04-06 JP5081359B2 2012-11-28 スティーヴン・エー.・エムペダクリーズ; ジョセフ・エー.トリードウェイ; アンドリュー・アール.・ワトソン
84 System and method for performing a selection operation of an object in the plurality of components to flow in-line monitoring of particles in opaque stream JP2011517300 2009-07-08 JP2011527751A 2011-11-04 アンドリュー マヴリーヴ,; ラシッド マヴリーヴ,
Systems and methods are disclosed for particle monitoring, in particular in-line particle monitoring and selective object manipulation in multi-component flow. An exemplary system can include a detection system for the monitoring of a component, such as a particle in a opaque flow carrier. An exemplary system includes confining a flowable sample which is opaque to at least a first range of wavelengths of light waves; compressing the flowable sample in a first direction while confining the sample in a second direction parallel to a flow direction of the flowable sample and orthogonal to the first direction, while elongating the sample in a third direction orthogonal to the first and second directions. When the sample is compressed in the first direction, the sample becomes transparent to at least one of the wavelengths in the first range of wavelengths enabling optical means for particle detection. The system can also include a device such as a valve or actuator to manipulate the detected component from other components in the flow carrier. A controller or other processor can receive and process detected component data and distinguish a component of interest from the remaining flowable sample. Once the component is recognized, the controller synchronizes the flow manipulation device with the detection system to manipulate the detected component from the flow carrier.
85 Method and apparatus for measuring the dispersion stability of suspension JP2001109564 2001-04-09 JP4757395B2 2011-08-24 ジェローム・ミカエル・ハリス; ダニエル・アライン・ソーシー
86 Particle analyzing apparatus JP2010198593 2010-09-06 JP2011133460A 2011-07-07 KOZASA MASATSUGU; KOBAYASHI HIROYUKI
PROBLEM TO BE SOLVED: To provide a particle analyzing apparatus capable of obtaining a high-contrast image, even from optically transparent particles and obtaining the characteristic parameters of the particle, based on at least forward scattered light. SOLUTION: The particle analyzing apparatus includes a flow cell for forming a sample flow containing a particle; first and second light sources for irradiating the sample flow with light; an irradiation optical system for leading the light, from the first and second light sources to the sample flow; a light-shielding plate disposed on the side opposite to the irradiation optical system, with the flow cell in-between and disposed on the optical path of the light emitted from the irradiation optical system; a photodiode for detecting the forward scattered light from the particle, which is disposed at a position where the direct light from the first light source is shielded by the light-shielding plate; and a CCD camera for imaging the particles in the sample flow, which are disposed at positions where the light from the second light source is shielded by the light-shielding plate. COPYRIGHT: (C)2011,JPO&INPIT
87 Powder measuring system and powder measuring method JP2005223594 2005-08-02 JP4642585B2 2011-03-02 一博 中嶋; 悦之 菰田; 洋基 薄井
A powder measuring system is described, a representative one of which includes: a holding vessel for holding a powder; a mixing blade for mixing the powder held in the holding vessel; detecting part for detecting a load on the mixing blade when the mixing blade rotates in the powder; and a control part for obtaining a viscosity as a powder characteristic based on the load detected by the detecting part.
88 Animal blood cell measuring apparatus JP2009072646 2009-03-24 JP2010223833A 2010-10-07 NAKAMURA YOICHI; HIRAYAMA HIDEKI; MATSUMOTO HIDEAKI; MORIYAMA KEIKO
PROBLEM TO BE SOLVED: To provide a hemocyte measuring apparatus for animals capable of counting aggregate reticulocytes. SOLUTION: A first coordinate region including erythrocytes and reticulocytes is fractionated from a scattergram, having fluorescence intensity and forward scattered light intensity as coordinate axes. The distribution of the number of hemocytes to fluorescence intensity is determined, on the basis of plot data in the first coordinate region. Fluorescence intensity X, at which the number of hemocytes, has a peak and a dispersion σ of the distribution are acquired, on the basis of a determined distribution. Thr=X+α×σ is computed to determine a threshold Thr of fluorescence intensity, on the basis of acquired fluorescence intensity X; dispersion σ; and a coefficient α applied for the measurement of aggregate reticulocytes. A second coordinate region, including aggregate reticulocytes, is fractionated, on the basis of the threshold value Thr to count the number of plots in the second coordinate region and acquire the number of aggregate reticulocytes. Here, the coefficient α is set approximately double, in comparison with the case of counting the number of aggregate reticulocytes of a canine or the like not containing aggregate reticulocytes. COPYRIGHT: (C)2011,JPO&INPIT
89 Measurements of cohesion parameter JP2009542357 2007-12-18 JP2010513913A 2010-04-30 キーフィット,ペフィー デ; ユー ディットマー,ウェンディ; ハー ニーウェンハイス,イェルーン; エイゼンドールン,レオナルデュス イェー ファン; ウェー イェー プリンス,メンノ; イェー アー ヤンセン,クサンデル
反応チャンバ内で行われる1つ以上の磁性粒子による標的誘起凝集アッセイでの凝集を測定する方法及びシステムが記載されている。 前記アッセイ内に、標的(5)と結合することのできる磁性粒子(3,15)が供された後、少なくとも1つの磁性粒子を含む粒子(100)が凝集する凝集プロセスが行われる。 当該方法は、前記アッセイに交流磁場(H AC )を印加する手順、及び表面に付着しない1つ以上の前記磁性粒子(3,15)への前記H ACの効果を測定する手順をさらに有する。 前記の測定された効果は1つ以上の凝集パラメータを表す。
90 凝集判定方法 JP2008544201 2007-11-15 JPWO2008059934A1 2010-03-04 匡 羽賀
部分凝集であっても自動的に凝集と判定でき、これによって信頼性の高い判定結果が得られる凝集判定方法を提供する。凝集反応後の粒子により容器内に形成された反応パターンを光学的に測定し、そのデータに基づいて前記粒子の凝集又は非凝集を自動的に判定する凝集判定方法であって、前記反応パターンの予め定められた領域に含まれる測定点について、各測定点の透過光量データを求める第1の工程と、前記領域内における透過光量のバラツキを表すパラメータを算出する第2の工程と、前記算出したパラメータを予め設定された基準値と照らし合わせて凝集あるいは非凝集と判定する第3の工程とを備える凝集判定方法を提供する。
91 Dispersion analysis method and device, as well as dispersion stability evaluation method and device JP2008185414 2008-07-16 JP2010025643A 2010-02-04 INOUE KOJI; NIIDA JOJU; MATSUMURA YASUO; MATSUMIYA KENTARO
<P>PROBLEM TO BE SOLVED: To provide a dispersion analysis method and device which enables the quantitative analysis of the state of aggregate, and to provide a dispersion stability evaluating method and device which enables the quantitative analysis of the stability of the dispersion. <P>SOLUTION: The dispersion analysis method is used for analysis of the dispersion using a sample solution prepared by forming the aggregate of a dispersoid in a dispersing medium and contains a dispersing stage for dispersing the dispersoid forming the aggregate in the dispersing medium and a measuring stage for measuring the amount of the dispersoid dispersed by the dispersing stage. The dispersion analysis device includes a speaker 21 for propagating a sonic wave from the outside of a sample solution 14, a spectrophotometer 22 for measuring the absorbance of the sample solution 14 and a computer 23 for controlling the speaker 21 and the spectrophotometer 22. The absorbance measured by the spectrophotometer 22 is the measured value of the amount of the dispersoid and, in the stability evaluating device of the dispersion, the stability of the dispersion is evaluated on the basis of the measured value of the spectrophotometer 22. <P>COPYRIGHT: (C)2010,JPO&INPIT
92 Alumina fillers and rubber compositions containing such fillers JP2000523264 1998-11-27 JP4374137B2 2009-12-02 エマニュエル キュストデロ; ロール シモーノ; ジャン クロード タルディヴァ
Aluminum (oxide-)hydroxides useful as reinforcing filler for rubber. Aluminous reinforcing fillers for diene rubber compositions to be used in the manufacture of tyres, consisting of an aluminum (oxide-)hydroxide corresponding, including impurities and water of hydration, the formula (I) Al(OH) aO b (I) in which 0 a = 3 and b = (3-a)/2, and which has a specific BET surface of 30-400 (preferably 50-350) m 2>/g, an average particle size by weight of 20-400 (preferably 30-200) nm, and a rate of deagglomeration (alpha ) measured by the ultrasound deagglomeration test at 100 % power of a 600 watt ultrasound probe of greater than 5 X 10 -> 3> mu m -> 1>/s, preferably greater than 6 X 10 -> 3> mu m -> 1>/s. Independent claims are included covering: (a) a process for preparing the aluminous fillers (I); (b) sulfur-vulcanisable rubber compositions containing a white reinforcing filler which includes the aluminous filler (I) and a coupling agent; (c) a device (II) for measuring the rate of deagglomeration of a filler using ultrasonics; and (d) a method of measuring the rate of deagglomeration using the above device.
93 Flow cell system for solubility measurement JP2002262014 2002-09-06 JP4309107B2 2009-08-05 ジェイ.グッドウィン ジョーゼフ
94 Analysis of the anti-coagulated whole blood sample still JP2000534195 1999-02-19 JP4290876B2 2009-07-08 ウォードロウ、スチーブン、シー
95 Alumina filler, and rubber composition containing the filler JP2008332312 2008-12-26 JP2009145354A 2009-07-02 CUSTODERO EMMANUEL; SIMONOT LAURE; TARDIVAT JEAN-CLAUDE
<P>PROBLEM TO BE SOLVED: To provide a device and method for measuring an ultrasonic disaggregation speed of filler in a form of particle aggregate. <P>SOLUTION: The device includes a cyclic path 1 in which a flow 2 of particles suspended in a liquid 3 circulates. The cyclic path 1 includes a sample preparation device 10 for sending a sample to the cyclic path 1 in a form of the flow 2, a laser granulometer for measuring a size of the aggregate when the flow passes, and a continuous processing cell 30 having a destroying means 35 for destroying the aggregate when the flow 2 from the laser granulometer 20 passes. The cyclic path includes the processing cell 30 arranged between an outlet port 22 of the granulometer 20 and an inlet port 11 of the preparation device 10, and at least one valve 13, 33 formed to an open space for eliminating bubbles formed by destroying operation so that the flow 2 of the particles from the preparation device 10 passes through the laser granulometer 20 before entering the processing cell 30. <P>COPYRIGHT: (C)2009,JPO&INPIT
96 粉体の比表面積測定用サンプルの形成装置 JP2006531744 2005-08-11 JPWO2006016660A1 2008-05-01 道彦 小須田; 直也 重本
粉体の比表面積測定装置で使用される測定用セル内に、再現よく空隙率が一定の円柱状サンプル層(粉体層)を容易に形成することができる、上部が開放されている円筒状の粉体充填室(1)と、該充填室の底部を構成するフィルター(2)とからなる粉体の比表面積測定用サンプル層形成用セル(A)と、上記粉体充填室(1)内に充填された粉体(12)の圧密化手段(B)とからなり、上記フィルター(2)が気体を透過させるが粉体を透過させないフィルターであり、上記粉体の圧密化手段(B)が、その加圧面(3)の少なくとも一部に粉体中の気体をセル外に排気するための通気孔(4)を有するプランジャー(5)をピストン(6)先端に設置したピストンシリンダー(7)であることを特徴とする粉体の比表面積測定用サンプルの形成装置、該サンプルの形成方法および粉体の比表面積測定装置である。
97 Agglomerate detection method and agglomerate detecting device, and the polymerization process of the fluidized bed olefin polymerization reactor and olefins with the device JP35184399 1999-12-10 JP3657485B2 2005-06-08 力 小中; 浩二 瀧宮; 満 田村
98 Two-dimensional spectral imaging system JP2001574483 2001-04-06 JP2004500669A 2004-01-08 アンドリュー・アール.・ワトソン; スティーヴン・エー.・エムペダクリーズ
信号検出領域内からの信号を検知及び/又は識別するための改良された装置、システム(14)及び方法が、スペクトルコードの識別に十分に適する。 独立に識別可能な多数のコードが、十分に小さな本体(12a、12b)により発生され得、複数のこれらの本体又はプローブ(12a、12b)が、検出領域内に存在し得る。 検出領域中からの識別可能なスペクトル(60)を同時に画像化することにより、プローブ(12a、12b)が識別できる。 識別可能なスペクトルは十分に大きな検出フィールド内のポイントソースから発生されるものとして取り扱うことができるので、プリズム、回折格子、ホログラフィー透過格子など(56)が、センサー表面を横切ってラベルの画像をスペクトル的に分散できる。 CCD(18)は、スペクトルを生成する信号の相対的な波長を識別できる。 絶対信号波長は、ラベルの位置を決めることや、スペクトル(60)内の内部波長基準などにより決めることができる。
99 Cone plate type cell abrasion device JP2001353650 2001-11-19 JP2003156484A 2003-05-30 SAKAI KATSUKO; USHIDA TAKASHI; TATEISHI TETSUYA
PROBLEM TO BE SOLVED: To make analyzable, simply at a low cost, adhesive strength under a shearing stress by flowing fluid, concerning various cells seeded on a test material of a plate shape, a film shape, a three-dimensional carrier or the like. SOLUTION: The test material 10 having the cells seeded on its surface is sandwiched between a material loading plate and a presser plate with O-ring 11 and fixed onto a bottom plate 1. A cone holder 20 for supporting a small- diameter transparent cone 23 is fixed in a ring gear 34, and the ring gear is rotated by a motor 30 through a gear 32 supported on a support plate 31. The support plate 31 is fixed rockably to the motor 30, and a cone-plate part can be moved between the temperature-controlled box 43 inside and the outside. The motor 30 is supported movably in the X, Y, Z directions. An objective lens 51 of an erecting-type vertical-light fluorescent microscope 42 is arranged over the cone 61, and the state of the cells seeded on the test material, under liquid flow generated by a cone, is observed in real time by a monitor 60. COPYRIGHT: (C)2003,JPO
100 Method for digitally analyzing growth of particle on surface of semiconductor wafer using scanning electromicroscope image file JP2001313076 2001-10-10 JP2002228607A 2002-08-14 KIM CHUSHIN; CHON SANG-MOON; SAI SOHO; KIN KEIGEN; LEE SANG HOON; YANG YU-SIN; KIM SANG-MIN; RI SOKICHI
PROBLEM TO BE SOLVED: To provide a method for automatically calculating the growth degree of particles grown on the surface of a semiconductor wafer with a computer to grasp the same as a numerical value, and an apparatus therefor. SOLUTION: The electromicroscopic photograph of a predetermined region on the surface of the semiconductor wafer is stored in an indicated data base simultaneously with photographing. After this work is carried out with respect to all of measuring regions, an automatic digitizing program is performed. Automatic dizitization is performed by selecting an analytical region wherein a mesh is adapted to an analytical screen frame, and applying smoothing processing using the mean value of the image data of peripheral pixels to the respective cells of the region. Further, in order to eliminate the brightness difference between images, standarization processing is performed by image. The image data value of each of the pixels of the standardized image is compared with a predetermined threshold value to add the number of pixels exceeding the threshold value and a ratio of the added number of pixels, and the total number of pixels constituting an image to be analized is digitized to embody the growth degree of particles. COPYRIGHT: (C)2002,JPO
QQ群二维码
意见反馈