序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 Differential pressure type flowmeter and flow controller provided with the same US14625200 2015-02-18 US09500503B2 2016-11-22 Hiroki Igarashi
There is provided a differential pressure type flowmeter that includes an orifice provided in a main flow channel, a first pressure sensor configured to detect pressure of fluid on an upstream side of the orifice, a second pressure sensor configured to detect pressure of fluid on a downstream side of the orifice, a first pressure introduction flow channel configured to guide the fluid on the upstream side of the orifice to the first pressure sensor, and a second pressure introduction flow channel configured to guide the fluid on the downstream side of the orifice to the second pressure sensor, wherein a flow channel length and a flow channel diameter of the first pressure introduction flow channel coincide with those of the second pressure introduction flow channel, respectively, and a ratio of the flow channel length to the flow channel diameter is not less than 20 times and not more than 30 times.
62 APPARATUS AND METHOD FOR DETECTING HEALTH DETERIORATION US15033344 2014-10-03 US20160242675A1 2016-08-25 Rigoberto PEREZ DE ALEJO FORTUN; Mercedes FRANCO GAY
There is provided an apparatus for detecting the deteriorating health of a patient receiving gas from a respiratory device. The apparatus comprises a sensor unit configured to monitor a flow rate or pressure of a gas that is flowing in a pipe that connects the respiratory device to a gas delivery device worn by the patient, and a processor configured to measure a respiratory rate of the patient based on variations in the flow rate or pressure of gas in the pipe and to implement a trend analysis of the measured respiratory rate. The processor is configured to generate a warning when it determines that there is an upward trend in the measured respiratory rate and that a magnitude of the trend exceeds a threshold.
63 Measurement apparatus for measuring the throughflow of a fluid US14094043 2013-12-02 US09389110B2 2016-07-12 Burghardt Schaefer; Tuan Chu Anh
A measurement apparatus having a measurement tube and a thermal sensor for measuring a throughflow of a fluid flowing through the measurement tube, the measurement tube having an inlet and an outlet, and also a measurement section, in which the sensor is arranged. The inlet has an inlet internal diameter and the measurement section has a measurement section internal diameter, and whereby the measurement section internal diameter is greater than the inlet internal diameter.
64 Sensor module measuring and/or monitoring parameters of media flowing in pipelines and measuring system formed therewith US14237960 2012-07-17 US09291485B2 2016-03-22 Dominique Wiederkehr; Andreas Strub
A sensor module serves for registering a flow velocity and/or a volume flow rate, of a fluid flowing in a pipeline. The sensor module comprises a platform (PS) having, extending therein from an inlet opening to a drain opening remote therefrom and communicating with the lumen of the pipeline, a flow path for guiding a fluid volume portion branched from the fluid flowing in the pipeline and a transducer element for producing at least one sensor signal influenced by the fluid guided in the flow path. The flow path is additionally so embodied that an imaginary central axis (LB) of the intermediate region is not parallel to an imaginary central axis of the intake region and/or not parallel to an imaginary central axis of the drain region.
65 DIFFERENTIAL PRESSURE TYPE FLOWMETER AND FLOW CONTROLLER PROVIDED WITH THE SAME US14625200 2015-02-18 US20150233746A1 2015-08-20 Hiroki IGARASHI
There is provided a differential pressure type flowmeter that includes an orifice provided in a main flow channel, a first pressure sensor configured to detect pressure of fluid on an upstream side of the orifice, a second pressure sensor configured to detect pressure of fluid on a downstream side of the orifice, a first pressure introduction flow channel configured to guide the fluid on the upstream side of the orifice to the first pressure sensor, and a second pressure introduction flow channel configured to guide the fluid on the downstream side of the orifice to the second pressure sensor, wherein a flow channel length and a flow channel diameter of the first pressure introduction flow channel coincide with those of the second pressure introduction flow channel, respectively, and a ratio of the flow channel length to the flow channel diameter is not less than 20 times and not more than 30 times.
66 Flow rate range variable type flow rate control apparatus US13763178 2013-02-08 US09010369B2 2015-04-21 Tadahiro Ohmi; Masahito Saito; Shoichi Hino; Tsuyoshi Shimazu; Kazuyuki Miura; Kouji Nishino; Masaaki Nagase; Katsuyuki Sugita; Kaoru Hirata; Ryousuke Dohi; Takashi Hirose; Tsutomu Shinohara; Nobukazu Ikeda; Tomokazu Imai; Toshihide Yoshida; Hisashi Tanaka
A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1−P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
67 SENSOR MODULE MEASURING AND/OR MONITORING PARAMETERS OF MEDIA FLOWING IN PIPELINES AND MEASURING SYSTEM FORMED THEREWITH US14237960 2012-07-17 US20140174197A1 2014-06-26 Dominique Wiederkehr; Andreas Strub
A sensor module serves for registering a flow velocity and/or a volume flow rate, of a fluid flowing in a pipeline. The sensor module comprises a platform (PS) having, extending therein from an inlet opening to a drain opening remote therefrom and communicating with the lumen of the pipeline, a flow path for guiding a fluid volume portion branched from the fluid flowing in the pipeline and a transducer element for producing at least one sensor signal influenced by the fluid guided in the flow path. The flow path is additionally so embodied that an imaginary central axis (LB) of the intermediate region is not parallel to an imaginary central axis of the intake region and/or not parallel to an imaginary central axis of the drain region.
68 Molded flow restrictor US13074932 2011-03-29 US08756990B2 2014-06-24 Jamie Speldrich
The present disclosure relates generally to flow sensors, and more particularly, to devices and methods for providing a pressure drop through a flow sensor at a given flow rate. In one illustrative embodiment, a sensor assembly includes a housing with a first flow port and a second flow port. The housing may define a fluid channel extending between the first flow port and the second flow port, with a sensor positioned in the housing and exposed to the fluid channel. The illustrative sensor may be configured to sense a measure related to the flow rate of a fluid flowing through the fluid channel. A flow restrictor may be situated in and integrally molded with at least one of the first flow port and the second flow port. The flow restrictor may be configured to accurately provide a pressure drop through the flow sensor at a given flow rate.
69 MOLDED FLOW RESTRICTOR US13074932 2011-03-29 US20110247411A1 2011-10-13 Jamie Speldrich
The present disclosure relates generally to flow sensors, and more particularly, to devices and methods for providing a pressure drop through a flow sensor at a given flow rate. In one illustrative embodiment, a sensor assembly includes a housing with a first flow port and a second flow port. The housing may define a fluid channel extending between the first flow port and the second flow port, with a sensor positioned in the housing and exposed to the fluid channel. The illustrative sensor may be configured to sense a measure related to the flow rate of a fluid flowing through the fluid channel. A flow restrictor may be situated in and integrally molded with at least one of the first flow port and the second flow port. The flow restrictor may be configured to accurately provide a pressure drop through the flow sensor at a given flow rate.
70 Particulate sampler and dilution gas flow device arrangement for an exhaust sampling system US11546048 2006-10-11 US20080087107A1 2008-04-17 William Martin Silvis; Gerald Marek; Wolfgang Schindler
An exhaust sampling system is provided that includes a sampler having a sample inlet for receiving an exhaust gas sample. The sampler includes a mixer for receiving the exhaust gas sample and a diluent to produce a diluted exhaust gas. The exhaust sampling system includes first and second dilution gas flow devices. The first and second dilution gas flow devices are fluidly connected to one another at a second junction. Any diluent provided by the first and second dilution gas flow devices intermingles with one another prior to reaching the mixer. A diluted sample flow meter is arranged downstream from the mixer for receiving the diluted exhaust gas. In one example, diluent flow from the first and second dilution gas flow devices intermingles before being introduced to the mixer. In another example, diluent flow from the first dilution gas flow device is leaked out of the second dilution gas flow device in a controlled manner to achieve a desired diluent flow into the mixer. The example exhaust sampling system does not require a measurement of the flow of exhaust gas sample into the system. Instead, the flow of the diluted exhaust gas is measured by the diluted sample flow meter. And, the flow of diluent through the first and second dilution flow meters is measured and the net flow through the first and second dilution flow meters is subtracted from the flow of the diluted exhaust gas through the diluted sample flow meter.
71 Fluid Flow Meter And Mixer Having Removable And Replacable Displacement Member US11660021 2004-08-10 US20080016968A1 2008-01-24 Floyd McCall; Joyann Gongaware; Robert Peters
Fluid flow apparatus, such as a fluid flow meter, a fluid mixing device or a fluid dispersing device, includes a fluid displacement member removeably mounted in a conduit and a pipe or tube extending through the wall of the conduit and having a portion extending through the displacement member to its downstream face for sensing flow conditions at the axis of the conduit downstream of the displacement member. The displacement member is removeably and replaceably mounted on the pipe or tube so that one displacement member can be replaced by one or more displacement members and thereby accommodate a very broad range of flows of various fluids, fluid suspensions and slurries.
72 MEMS flow sensor US11297861 2005-12-09 US20070131279A1 2007-06-14 Parag Thakre; Atanu Phukan; Nikhil Chandra; Sriharsha Aradhya
A micro-electro-mechanical, micro-fluidic flow sensor (14) includes a flow separating element (15) for separating a first portion (24) of a fluid flow (25) from a second portion (26) of the fluid flow. The flow sensor also includes a flow obstructing member (17) disposed in the first portion of the flow for at least partially obstructing the first portion of the flow. The flow obstructing member deflects in response to the first portion of the flow so that a degree of partial obstruction of the first portion of the flow by the flow obstructing member varies in response to the first portion of the fluid flow.
73 Flow and pressure sensor for harsh fluids US10011932 2001-10-30 US06681623B2 2004-01-27 Ulrich Bonne; Jamie Speldrich
Methods and systems for preventing degradation of a sensor exposed to a harsh fluid, such as one that might corrode or be exposed to radioactive contaminants, live pathogens, freezing temperatures, overheating, particle deposition or condensable vapors is disclosed. An auxiliary purge stream of comparatively clean fluid or purge fluid is utilized, which flows past the sensor in opposition to the harsh fluid, thereby preventing the harsh fluid from contacting and degrading the sensor. The clean fluid itself may comprise a purge gas, such as clean, dry air, or a liquid that is compatible with the composition of the harsh fluid. The flow and pressure of the clean fluid can be adjusted utilizing one or more supply regulator valves.
74 Flow and pressure sensor for harsh fluids US10011932 2001-10-30 US20030079542A1 2003-05-01 Ulrich Bonne; Jamie Speldrich
Methods and systems for preventing degradation of a sensor exposed to a harsh fluid, such as one that might corrode or be exposed to radioactive contaminants, live pathogens, freezing temperatures, overheating, particle deposition or condensable vapors is disclosed. An auxiliary purge stream of comparatively clean fluid or purge fluid is utilized, which flows past the sensor in opposition to the harsh fluid, thereby preventing the harsh fluid from contacting and degrading the sensor. The clean fluid itself may comprise a purge gas, such as clean, dry air, or a liquid that is compatible with the composition of the harsh fluid. The flow and pressure of the clean fluid can be adjusted utilizing one or more supply regulator valves.
75 Laminar flow device US571235 1995-12-12 US5672821A 1997-09-30 Isao Suzuki
A laminar flow device includes a plurality of disks and a plurality of spacers alternately stacked together. The plurality of disks are defined by first disks and second disks, each of the first disks having a hole formed through a central portion thereof, and each of the second disks having a plurality of holes formed through an outer peripheral portion thereof. The first disks and the second disks are alternately arranged with the spacer interposed between any two adjacent ones of the disks.
76 Laminar flow element for a flowmeter US551371 1995-11-01 US5576498A 1996-11-19 Ali Shambayati
A precision laminar flow element for use in mass and volumetric fluid flowmeters is disclosed. The flow element comprises a single or a plurality of wire-wound plates positioned in the flow path. The flow through the laminar flow element results in a pressure drop across the element that is linearly proportional to the flow rate. Pressure measurement holes are positioned at some distance from the inlet and outlet of the flow element where laminar flow is fully developed. Full scale flow rate of the flowmeter can be varied by stacking more than one wire-wound flow element, resulting in a series of instruments capable of measuring a wide range of flow. The symmetrical design of the laminar flow element enables bi-directional flow measurement.
77 Flowmeter with a variable constriction US256006 1994-06-16 US5554805A 1996-09-10 G oran Bahrton
A flowmeter with a main conduit having a constriction formed therein through which a main flow passes, and a by-pass conduit which is in fluid connection with the main conduit upstream and downstream of the constriction and in which a by-pass flow passes in response to a pressure drop across the constriction. The constriction includes a conical body which is movable within the main conduit to produce an increasing flow area in response to an increasing pressure drop across the constriction. A by-pass flowmeter is provided in the by-pass conduit which produces signals in proportion to a by-pass flow through the by-pass conduit. A calibrated electronic signal converter converts signals produced by the by-pass flowmeter to signals which correspond to the total flow through the main conduit.
78 Wide range laminar flow element US121350 1993-09-15 US5511416A 1996-04-30 Ali Shambayati
A wide range laminar flow element for use in differential pressure and thermal mass flowmeters is disclosed. The flow element comprises multiple rectangular channels in a single rectangular plate. The flow element contains tabs which can be selectively removed to alter the effective diameter of the flow channel. Alternatively, the laminar flow elements can be stacked to provide a larger effective diameter of the flow channel.
79 Accurate method of measure tray pressure drop to determine liquid flow in flue gas desulfurization systems US252024 1994-06-01 US5461912A 1995-10-31 Wadie F. Gohara
A method for measuring a pressure drop at a component within a flue gas desulfurization vessel caused by a gas flow includes locating a plurality of taps near the component to be measured in order to receive a portion of the flow. A line leading from the tap is connected to a pressure measuring device in order to measure the pressure at the component based on the flow fed into the tap. After the pressure is measured, the line is disconnected from the pressure device and connected to a cleaning device in order to clean the connecting line and tap. After cleaning the tap, air is blown through the line in order to dry the line for the next measurement. The pressure drop determined is used to calculate the liquid flow passing through the system from pre established relationships.
80 Volumetric flow corrector and method US9481 1993-01-25 US5323657A 1994-06-28 William H. Vander Heyden
A method and apparatus for measuring a base condition volumetric flowrate of a pipeline gas flowing through a pipeline in which a pipeline gas flowrate is measured by a pipeline gas flowmeter that responds to density in a characteristic manner, a sample gas flowrate is measured by a sample gas flowmeter that responds to density in the same manner as a pipeline gas flowmeter, and a base condition sample gas volumetric flowrate is measured by measuring the base condition energy flowrate of the sample gas, measuring the base condition heating value of the sample gas and dividing the base condition energy flowrate by the base condition heating value. The measured pipeline gas flowrate through the pipeline is then adjusted by the ratio of the base condition sample gas flowrate divided by the measured flowrate of the sample gas. The temperature of the sample gas should be substantially the same as the pipeline gas in the pipeline when the sample gas flowrate is measured.
QQ群二维码
意见反馈