序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 流体の流動プロセスを時間分解方式で測定するためのシステム JP2016060619 2016-03-24 JP2016180756A 2016-10-13 ヘリベアト カマーシュテッター; クリスティアン トーマス ベアガー; オトフリート デアシュミット; マンフレート プロス; マーティン デュルヴェヒター; ヘアヴィヒ ブライトヴィーザー; オトマー ベアンハート
【課題】流量推移をより正確に計算できるシステムを提供する。
【解決手段】本発明は、流体の流動プロセスを時間分解方式で測定するためのシステムであって、入口部(12)、出口部(14)、ならびに、前記入口部(12)と出口部(14)との間に配置された流量計(10)を備えたシステムに関する。
更に、移送対象の流体の化学的および物理的特性の値も常時得られるようにするため、バイパス管路(16)を介して、前記流量計(10)の管路一部区間(18)を迂回して流すことができ、前記バイパス管路(16)内に、移送される前記流体の物理的または化学的特性を測定するためのセンサ(50)とポンプ(48)とが、直列接続されて配置されている構成を提案する。
【選択図】図2
42 Measuring device for measuring the flow rate of the fluid JP2014513077 2012-05-24 JP2014515491A 2014-06-30 ブルクハルト シェーファー; アンー ツアン チュー
【課題】本発明の目的は、測定管と、測定管を流れる流体の流量を測定するための温度センサとを備える測定装置を提供することであり、測定装置は、測定管を流れる流体の流速を広い流速範囲にわたり、とりわけ高流速においても正確に測定する。
【解決手段】 本発明は、測定管(12;112、122)と温度センサ(20;120)とを有する、測定管(12;112)を流れる流体の流量を測定する測定装置に関し、測定管(12;112、122)は、入口(4、114、124)と、出口(16、116、126)と、センサ(20;120)が配置されている測定部(18;118、128)とを有し、入口(14、114、124)は、入口内径を有し、測定部(18;118、128)は、測定部内径を有し、測定部内径は、入口内径よりも大きい。
43 Flow rate range variable type flow control device JP2005185845 2005-06-27 JP4856905B2 2012-01-18 和幸 三浦; 智一 今井; 俊英 吉田; 亮介 土肥; 忠弘 大見; 強 嶋津; 薫 平田; 隆 広瀬; 雅仁 斎藤; 昭一 日野; 勝幸 杉田; 正明 永瀬; 信一 池田; 久士 田中; 努 篠原; 功二 西野
44 Fluid flow equipment JP2007525584 2004-08-10 JP4668997B2 2011-04-13 フロイド・マッコール; ロバート・ジェイ・ダブリュー・ピーターズ
45 Fluid flow equipment JP2007525584 2004-08-10 JP2008510137A 2008-04-03 フロイド・マッコール; ロバート・ジェイ・ダブリュー・ピーターズ
導管セクション(20)内に取り外し可能に設けられる変位部材(40)と、前記導管セクションの壁を通って延び、変位部材(40)の下流端面まで変位部材(40)を通って延伸する延伸部を有する管体とを含んでいる、変位部材の下流にある導管軸芯線部分における流れの状態を検知するための流体流量計(10)である。 前記変位部材(4)は取り外し可能であり、1つの変位部材を他の変位部材で取り替えることができ、これにより非常に広範囲の流れに適用することが可能になる。
46 Flow rate range variable flow control device JP2005185845 2005-06-27 JP2007004644A 2007-01-11 OMI TADAHIRO; SAITO MASAHITO; HINO SHOICHI; SHIMAZU TSUTOMU; MIURA KAZUYUKI; NISHINO KOJI; NAGASE MASAAKI; SUGITA KATSUYUKI; HIRATA KAORU; DOI RYOSUKE; HIROSE TAKASHI; SHINOHARA TSUTOMU; IKEDA SHINICHI; IMAI TOMOKAZU; YOSHIDA SHUNEI; TANAKA HISASHI
<P>PROBLEM TO BE SOLVED: To miniaturize a flow control device and to reduce the facility cost by enabling accurate flow control of a fluid in a further wide flow area by use of one flow control device. <P>SOLUTION: The pressure type flow control device is adapted to calculate the flow rate of a fluid passing through an orifice 8 using an orifice upstream pressure P<SB>1</SB>and/or an orifice downstream pressure P<SB>2</SB>as Qc=KP<SB>1</SB>(K is a proportionality factor) or Qc=KP<SB>2</SB><SP>m</SP>(P<SB>1</SB>-P<SB>2</SB>)<SP>n</SP>(K is a proportionality factor, and m and n are constant numbers). In this pressure type flow control device, a fluid passage between the downstream side of a control valve and a fluid supplying conduit is formed of at least two or more parallel fluid passages, and orifices differed in fluid flow characteristic are interposed in the parallel fluid passages, respectively. The fluid in a small flow area is distributed to one orifice in flow control of the fluid in the small flow area, and the fluid in a large flow area is switchingly distributed to the other orifice in flow control of the fluid in the large flow area. <P>COPYRIGHT: (C)2007,JPO&INPIT
47 Flow rate and pressure sensor for the poor fluid JP2003540605 2002-10-24 JP2005508000A 2005-03-24 スペルドリッヒ,ジャミー・ダブリュー; ボンネ,ウルリヒ
粗悪流体、例えば腐食をもたらす流体、あるいは放射性汚染、生きた病原体、凍結温度、過熱、粒子付着又は凝縮性蒸気に晒される流体に露出されるセンサの劣化を防止するための方法及びシステムが開示される。 比較的清浄な流体即ちパージ流体の補助パージ流が利用される。 この補助パージ流は、粗悪流体に対向してセンサを通過して流れ、それにより粗悪流体とセンサの接触が防止され、延いてはセンサの劣化が防止される。 清浄流体自体は、粗悪流体の組成物と適合する清浄で乾燥した空気などのパージガスあるいは液体からなっている。 清浄流体の流量及び圧は、1つ又は複数の供給調整器弁を利用して調整することができる。
48 Laminar flow element device JP6124793 1993-02-26 JP3244849B2 2002-01-07 イョウズマ ビブレン
49 Flowmeter JP52363398 1997-09-23 JP2000504426A 2000-04-11 シャンバヤティ,アリ
(57)【要約】 流体用流量計(10)は、層流モジュール(16)を組み込むために1つの側面が開口し、かつモジュールの前後の圧降下を計測する検知用電子回路を組み込むために他端が開口している空洞を有するフレーム(14)で構成されている。 該モジュールはワイヤで間隙が形成され、かつ交換が容易となる単体組立を形成するよう互いに結束されている複数の平板から構成されている。
50 JPH0256614B2 - JP17457282 1982-10-06 JPH0256614B2 1990-11-30 RIKUTA SOTOKAZU; YAGI FUMIO; IWATA MINORU; TAKASAKI YASUSHI
51 Device for detecting air flow rate JP17463082 1982-10-06 JPS5965217A 1984-04-13 KASHIWATANI MINEO; TAKAYAMA TERUO
PURPOSE:To obtain approximately the same output under the same conditions, by providing the inlet opening part of a bent pipe in the direction, which does not receive the dynamic pressure of an intake air flow with respect to the axial line of a Venturi part, and guiding a static pressure to the inlet opening part of the bent pipe. CONSTITUTION:An inlet opening part 18 of a bent pipe 12 is opened at a clearance angle theta as shown by a cutting line D with respect to an axial direction line C of a Venturi part 3. The intake air flows along the axial direction line of the Venturi part 3, but the inlet opening part 18 of the bent pipe 12 does not receive the dynamic pressure of the intake air flow. Therefore, the output of a heat sensitive resistor, which is arranged in a bypass air path 8 of an air flow rate detecting device, becomes approximately the same under the same conditions.
52 Valve for measuring and controlling flow rate JP5139180 1980-04-18 JPS56148013A 1981-11-17 RIKUTA SOTOKAZU
PURPOSE:To enable the flow rate control and the flow rate measurement to be simultaneously performed, by providing a cylindrical body provided with a flow rate curve to a rod which can vary the sectional area of a through hole in a main pipe having a by-pass including a tapered tube. CONSTITUTION:A valve 3 in which a through hole 2 has been bored is closely fitted into a main pipe 1, and a by-pass 7 which has a float 4 floating therein and includes a tapered tube 6 having a small hole path 5 is made to communicate with the main pipe, in front and the rear of the valve 3. Moreover, the valve 3 is provided with a rod 8 projecting therefrom and having a handle 9 provided with graduations showing the opening area of the through hole 2. When it is open, a differential pressure is provided between in front and the rear of the valve 3. Consequently, the float 4 in the tapered tube 6 is floated by the fluid Q flowing through the by-pass 7. Therefore, providing a flow rate curve 16 showing the relationship among the opening area (a) of the hole 2, the floating stop height H of the float 4 and the flow rate Q to a cylindrical body 15 secured to the rod 8 permits the flow rate to be obtained from the stop position of the float 4.
53 JPS5113590B1 - JP10372270 1970-11-26 JPS5113590B1 1976-04-30
54 FLOW MEASUREMENT MANDREL PCT/US9812452 1998-06-15 WO9905478A3 1999-04-08 PRINGLE RONALD E; MORRIS ARTHUR J
The flow measurement having a substantially cylindrical housing (12) with a valve element connected to an inner surface thereof. The valve is movable between an open position and a closed position in the bore (14). A secondary flow passageway is formed in the housing and extends along the longitudinal axis of the housing. A first end of the secondary flow passageway is in fluid communication with the bore below the valve element. A flow measuring device (10) is located near a second end of the secondary flow passageway for measuring the rate of fluid flow therethrough. The housing is adapted to be connected at each end thereof to well tubing. The present invention provides a flow measurement mandrel that diverts the production flow the secondary flow passageway by closing a hydraulically operated flapper valve and routing the fluid or gas through a venturi flume in the secondary flow passageway for flow measurement. After monitoring flow rate, the flapper valve is re-opened and full bore production is achieved.
55 MULTI-GAS FLOW DEVICE PCT/US2007019333 2007-09-05 WO2008030454A3 2008-05-02 VALENTINE WILLIAM; WANG CHIUN; LULL JOHN
A system and method of characterizing or controlling a flow of a fluid is provided that involves a sensor conduit and a bypass. A plurality of fluids may be utilized in the flow control device based on characteristic information of the device generated during calibration thereof. The characteristic information, in turn is based on a dimensionless parameters, such as adjusted dynamic pressure and adjusted Reynolds number.
56 CALIBRATION APPARATUS AND SENSITIVITY DETERMINING MODULE FOR VIRTURL FLOW METER AND ASSOCIATED METHOD US15780958 2016-12-22 US20180356275A1 2018-12-13 Tong ZHAO; Yu RU
The present disclosure relates to a calibration device and a sensitivity determining device for a virtual flow meter, and corresponding methods. The present disclosure relates to a calibration device for calibrating a virtual flow meter of a production system, and the production system includes components for transferring fluid, where the virtual flow meter is configured to estimate a flow rate of the fluid based on property values of the components and values of variable parameters of the components, and the calibration device includes a sensitivity determining module configured to calculate a first sensitivity, where the first sensitivity is used to indicate a degree of change of the values of the variable parameters relative to disturbance of the property values; and a calibration module configured to calibrate the virtual flow meter according to the first sensitivity. The present disclosure further relates to corresponding methods.
57 Water Meters Having Integrated Pressure Regulating Systems and Related Methods US15947990 2018-04-09 US20180292248A1 2018-10-11 Christian Heizenroeder
Meters including a pressure regulating systems are provided. The pressure regulating system includes a pressure sensor configured to sense pressure of water flowing through the meter; an actuator coupled to the pressure sensor; an electronics module configured to receive pressure information related sensed pressure from the actuator and process the received pressure information; and a radio module coupled to the meter and configured to receive the processed sensor information from the electronics module, communicate the processed sensor information to a remote location and receive pressure adjustment information from the remote location. The received pressure adjustment information is used to adjust water pressure in the meter from the remote location.
58 System for measuring temporally resolved through-flow processes of fluids US15075207 2016-03-21 US10094378B2 2018-10-09 Heribert Kammerstetter; Christian Thomas Berger; Otfried Derschmidt; Manfred Pross; Martin Duerrwaechter; Herwig Breitwieser; Othmar Bernhard
A system for measuring temporally resolved through-flow processes of a fluid. The system includes an inlet, a main line comprising a line section, an outlet fluidically connected with the inlet via the main line, a displacement device arranged in the main line, a circuitous line which branches off the main line between the inlet and the displacement device and to enter the main line between the displacement device and the outlet, a pressure difference transducer arranged in the circuitous line, an evaluation and control unit which controls the displacement device, and a bypass line comprising a pump and a sensor. The bypass line branches off from the main line or from the circuitous line and ends at a same side of the displacement device and the pressure difference transducer to bypass the line section or the circuitous line from which the bypass line branches off.
59 THERMAL AIR FLOW METER US15647354 2017-07-12 US20180266861A1 2018-09-20 Naoki MORINAGA; Yuji ARIYOSHI; Shinichiro HIDAKA; Masahiro KAWAI
This signal processing unit includes: a comparison signal output unit which outputs a comparison signal on a negative side that corresponds to a negative side portion, of a second amplitude-increased signal, which is on the negative side with respect to the comparison threshold TH; an averaging processing unit which outputs an average signal obtained by averaging the comparison signal; a coefficient multiplication processing unit which outputs a coefficient-multiplied signal obtained by multiplying the average signal by an adjustment coefficient set in advance; and a signal correction processing unit which outputs, as a flow rate signal, a value obtained by correcting a first amplitude-increased signal so as to be decreased by use of the coefficient-multiplied signal, wherein the comparison threshold TH is set on the basis of an output characteristic of a sensor measured in advance with respect to at least a forward flow direction of an intake air.
60 A PARTICLE SENSOR AND PARTICLE SENSING METHOD US15736832 2016-06-29 US20180164203A1 2018-06-14 ACHIM GERHARD ROLF KOERBER; RAINER HILBIG; CORNELIS REINDER RONDA
A particle sensor uses an electrostatic particle charging section in the form of an ionization chamber. A flow sensor arrangement is used to produce a signal which is representative of the amount of gas flow between the outside of the ionization chamber and the inside of the ionization chamber. This information is indicative of the flow conditions, and can be used to determine when adverse flow conditions are present which may adversely affect the performance or lifetime of the particle sensor.
QQ群二维码
意见反馈