序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 湿气体条件中的总压和总温度测量 CN201380067280.1 2013-12-16 CN104969050A 2015-10-07 F.格尔比; M.马拉佐; F.马拉希罗; G.曼弗里达
本探测器是能够在湿气体条件下测量管或压缩机内的两相流的小型化总压和总温度探测器(100)。当在湿气体条件中测量时,压力和温度探测器由液相的存在显著地影响。这引起气体性质的测量中的误差,或者不允许测量。该问题通过使探测器还关于限定量的液相准确地测量来解决。不同于标准探测器,此类探测器能够在杯的外侧上生成气体膨胀。这保证了来自杯的流动的液体部分的适当清洗,进行气体的总压力测量。除收集的液体的清洗之外,总温度探测器(100)还具有小型化的杯(1),以便保护测量元件免于液滴的直接冲击。这容许测量气体的总温度,而不影响流的液体部分。
2 用于生物甲烷潜测试的系统装备 CN201080016361.5 2010-04-01 CN102438958A 2012-05-02 刘京
发明公开了用于对生物样品进行生物甲烷潜测试的系统装备以及用于测量生物气体流中的生物甲烷气体的系统装备,系统装备除了别的以外还包括至少一个用于除了生物甲烷气体之外的其他气体的化学不可逆固定的容器,以及至少一个气体流量测量装置,所述其他气体是至少CO2。
3 用于测量超低气体流的装置 CN201080016668.5 2010-04-01 CN102395864A 2012-03-28 刘京
发明公开了一种用于测量超低气体流的测量装置1,其通过液体置换的原理工作,其中所述测量装置1包括至少一个池2,至少一个池2包括气体流入设备3、具有预先确定的内部几何物理容积和有效容积的气体隔间设备4,所述气体隔间设备4具有一个气体积聚端5和一个提升端6,所述气体隔间设备4还在气体填充循环期间界定在所述气体隔间设备4的内部的几何气体收集点,所述几何气体收集点在所述气体填充循环期间逐渐远离所述气体积聚端5向所述提升端6运动,并且其中所述池2包括保持设备7,所述保持设备7具有枢轴转动元件8,所述枢轴转动元件8使所述气体隔间设备4能够在所述几何气体收集点被定位在所述提升端6处并且在所述提升端6处提升大于下压力时向上枢轴转动,由此释放在所述气体隔间设备4中积聚的气体的全部,并且然后枢轴转动回至其初始待命位置,以在另一个气体填充循环期间进行气体的新的接收和储存直到下一个释放序列,并且其中所述池2还包括传感器设备9,所述传感器设备9被设置以在所述气体隔间设备4不在其初始待命位置时产生信号和/或改变信号的状态,其中所述气体隔间设备4的内部的气体储存容量在所述气体积聚端5处比在所述提升端6处大,并且其中在初始待命位置处所述气体积聚端5具有比所述提升端6高的竖直位置。
4 湿气体条件中的总压和总温度测量 CN201380067280.1 2013-12-16 CN104969050B 2017-07-18 F.格尔比; M.马拉佐; F.马拉希罗; G.曼弗里达
本探测器是能够在湿气体条件下测量管或压缩机内的两相流的小型化总压和总温度探测器(100)。当在湿气体条件中测量时,压力和温度探测器由液相的存在显著地影响。这引起气体性质的测量中的误差,或者不允许测量。该问题通过使探测器还关于限定量的液相准确地测量来解决。不同于标准探测器,此类探测器能够在杯的外侧上生成气体膨胀。这保证了来自杯的流动的液体部分的适当清洗,进行气体的总压力测量。除收集的液体的清洗之外,总温度探测器(100)还具有小型化的杯(1),以便保护测量元件免于液滴的直接冲击。这容许测量气体的总温度,而不影响流的液体部分。
5 用于测量超低气体流的装置 CN201080016668.5 2010-04-01 CN102395864B 2013-06-12 刘京
发明公开了一种用于测量超低气体流的测量装置1,其通过液体置换的原理工作,其中所述测量装置1包括至少一个池2,至少一个池2包括气体流入设备3、具有预先确定的内部几何物理容积和有效容积的气体隔间设备4,所述气体隔间设备4具有一个气体积聚端5和一个提升端6,所述气体隔间设备4还在气体填充循环期间界定在所述气体隔间设备4的内部的几何气体收集点,所述几何气体收集点在所述气体填充循环期间逐渐远离所述气体积聚端5向所述提升端6运动,并且其中所述池2包括保持设备7,所述保持设备7具有枢轴转动元件8,所述枢轴转动元件8使所述气体隔间设备4能够在所述几何气体收集点被定位在所述提升端6处并且在所述提升端6处提升大于下压力时向上枢轴转动,由此释放在所述气体隔间设备4中积聚的气体的全部,并且然后枢轴转动回至其初始待命位置,以在另一个气体填充循环期间进行气体的新的接收和储存直到下一个释放序列,并且其中所述池2还包括传感器设备9,所述传感器设备9被设置以在所述气体隔间设备4不在其初始待命位置时产生信号和/或改变信号的状态,其中所述气体隔间设备4的内部的气体储存容量在所述气体积聚端5处比在所述提升端6处大,并且其中在初始待命位置处所述气体积聚端5具有比所述提升端6高的竖直位置。
6 湿りガス状態での全圧および全温測定 JP2015548403 2013-12-16 JP6431849B2 2018-11-28 ジェルビ,フィリッポ; マラッツォ,マルコ; マラスキエロ,フランチェスコ; マンフリーダ,ジャンパオロ
7 湿りガス状態での全圧および全温測定 JP2015548403 2013-12-16 JP2016511389A 2016-04-14 ジェルビ,フィリッポ; マラッツォ,マルコ; マラスキエロ,フランチェスコ; マンフリーダ,ジャンパオロ
本プローブは、湿りガス状態でパイプまたは圧縮機内部の2相流れを測定することができる小型の全圧および全温プローブ(100)である。湿りガス状態で測定するとき、圧および温度プローブは、液相の存在によって大きな影響を受ける。これによって、ガスの特性の測定には誤差が生じるか、または測定できない。この問題は、液相の規定量でも正確な測定をするプローブで解決される。標準のプローブとは異なり、このようなプローブはカップ部の外側でガスを膨張させることができる。これによって、流れの液体部分を確実にカップ部から適切に排出し、ガスの全圧を測定する。全温プローブ(100)は、集まった液体を排出することに加えて、液滴が直接衝突することから測定素子を保護するために小型のカップ部(1)を有する。これによって、流れの液体部分に影響されずに、ガスの全温を測定することが可能となる。【選択図】図2
8 GASVOLUMENZÄHLER EP15171514.1 2015-06-10 EP3104138A1 2016-12-14 Dr. Ritter, Joachim; Kim, Young Sung

Bereit gestellt wird ein Gasvolumenzähler (1) mit einem ersten (2) und einem zweiten (3) sich nach oben erstreckenden, zur Aufnahme eines Sperrfluids (5) geeigneten Arbeitsrohr, wobei beide Arbeitsrohre (2,3) in ihrem oberen, freien Bereich in eine erste (7) bzw. zweite (8) Gasleitung übergehen und in ihrem unteren Bereich (4) fluidkommunizierend miteinander verbunden sind, mit einer Messvorrichtung (13), die zur Ermittlung des Füllstandes des Sperrfluids (5) geeignet ist, mit einer Ventileinrichtung (9) für die erste Gasleitung (7) und einer Ventileinrichtung (10) für die zweite Gasleitung (8), wobei die Ventileinrichtungen (9,10) dazu geeignet sind, die zugehörige erste bzw. zweite Gasleitung (7 bzw. 8) entweder mit einer gasabführenden Leitung (12,15) oder einer gaszuführenden Leitung (11,16) zu verbinden, mit einer Steuereinrichtung für die Ventileinrichtungen (9,10), welche die Ventileinrichtungen (9,10) derart steuert, dass, sobald die Messvorrichtung (13) die Erreichung eines bestimmten Füllstandes ermittelt, diejenige Ventileinrichtung (9,10), welche mit der gasabführenden Leitung (12,15) verbunden war, mit der gaszuführenden Leitung (11,16) verbindet, sowie diejenige Ventilleinrichtung (9,10), die mit der gaszuführenden Leitung (12,15), verbunden war, mit der gasabführenden Leitung (11,16) verbindet. Dieser Gasvolumenzähler ist dadurch gekennzeichnet, dass ein Messrohr (6) vorhanden ist, das in seinem unteren Bereich fluidkommunizierend mit den beiden Arbeitsrohren (2,3) verbunden ist, die Messvorrichtung (13) im oder am Messrohr (6) angeordnet ist und das Messrohr (6) in seinem oberen Bereich

i) entweder zur Atmosphäre offen ist oder

ii) mit einem mit einer Gastrenneinrichtung ausgestatteten Druckrohr über eine weitere, von der Steuereinrichtung gesteuerten Ventileinrichtung (20) mit den beiden Arbeitsrohren (2,3) verbindbar ist.

9 TOTAL PRESSURE AND TOTAL TEMPERATURE MEASUREMENT IN WET GAS CONDITION EP13805398.8 2013-12-16 EP2936101A1 2015-10-28 GERBI, Filippo; MARRAZZO, Marco; MARASCHIELLO, Francesco; MANFRIDA, Giampaolo
The present probes are miniaturized, total pressure and total temperature, probes (100) able to measure in wet gas conditions, two phase flow, inside pipes or compressor. When measuring in wet gas conditions, the pressure and temperature probes are significantly affected by the presence of liquid phase. This causes errors in the measurement of the gas properties or doesn't allow the measurement. This problem is solved by letting the probe measure accurately also with a defined amount of liquid phase. Differently from standard probes, such probes are able to generate a gas expansion on the external side of the cup. This guarantees the appropriate purging of the liquid fraction of the flow from the cup, letting the total pressure measurement of the gas. The total temperature probe (100), beside the purging of the liquid collected, has a miniaturized cup (1) in order to protect the measuring element from the direct impact of the liquid droplets. This permits to measure the total temperature of the gas, without influence of the liquid fraction of the flow.
10 SYSTEMS AND METHODS FOR ACCURATE MEASUREMENT OF GAS FROM WET GAS WELLS EP16775020.7 2016-09-08 EP3347683A1 2018-07-18 AL-KUAIT, Abdulmohsen, S.; ARSALAN, Muhammad
Systems and methods are described for liquid removal to increase the accuracy of gas flow meters, such as venturi meters. Systems and methods include a liquid knockout drum, an impingement plate, a drum separator, and a check valve.
11 WET GAS FLOW MEASURING METHOD AND APPARATUS EP13823679 2013-07-24 EP2878934A4 2016-04-13 CHEN JIGE
A wet gas flow measuring method, wherein measuring total flow differential pressure value ”P of wet gas in a pipeline by a differential pressure flow measuring device (201), measuring section gas contents of the wet gas in the pipeline by at least two phase fraction meters respectively (202), obtaining optimized section gas content value GVF opt by a flow calculating module based on the section gas contents respectively measured by the at least two phase fraction meters (203); and calculating gas volume flow rate Q g and liquid volume flow rate Q l by the flow calculating module based on the total flow differential pressure value ”P of the wet gas and the optimized section gas content value GVF opt (204). As the section gas content of the wet gas in the pipeline is detected by the redundant phase fraction meters, the gas volume flow rate Q g and the liquid volume flow rate Q l can be measured accurately, which meets the requirements on production measurements of oil and gas field and facilitates management improvement and production optimization of oil-gas reservoir. A wet gas flow measuring apparatus is also provided.
12 WET GAS FLOW MEASURING METHOD AND APPARATUS EP13823679.9 2013-07-24 EP2878934A1 2015-06-03 CHEN, Jige

A wet gas flow measuring method, wherein measuring total flow differential pressure value ΔP of wet gas in a pipeline by a differential pressure flow measuring device (201), measuring section gas contents of the wet gas in the pipeline by at least two phase fraction meters respectively (202), obtaining optimized section gas content value GVFopt by a flow calculating module based on the section gas contents respectively measured by the at least two phase fraction meters (203); and calculating gas volume flow rate Qg and liquid volume flow rate Ql by the flow calculating module based on the total flow differential pressure value ΔP of the wet gas and the optimized section gas content value GVFopt (204). As the section gas content of the wet gas in the pipeline is detected by the redundant phase fraction meters, the gas volume flow rate Qg and the liquid volume flow rate Ql can be measured accurately, which meets the requirements on production measurements of oil and gas field and facilitates management improvement and production optimization of oil-gas reservoir. A wet gas flow measuring apparatus is also provided.

13 습식 가스 컨디션에서의 총 압력 및 총 온도 측정법 KR1020157018717 2013-12-16 KR1020150095848A 2015-08-21 제르비필립포; 마라조마르코; 마라쉬엘로프란체스코; 만프리다지암파올로
본 발명의 프로브는 파이프 또는 압축기 내의 습식 가스 컨디션에서 2상 흐름을 측정할 수 있는 소형 총 압력 및 총 온도 프로브(100)이다. 습식 가스 컨디션에서 측정할 때에 압력 및 온도 프로브는 액상의 존재에 의해 큰 영향을 받는다. 이것은 가스 속성의 측정에 있어서 에러를 유발하거나 측정을 불가능하게 한다. 이러한 문제는 프로브가 액상의 양이 정해진 경우에도 또한 정확히 측정하도록 하는 것에 의해 해결된다. 표준 프로브와는 달리, 그러한 프로브는 컵 외측에서 가스 팽창을 생성할 수 있다. 이것은 컵으로부터의 흐름의 액체 부분의 적절한 퍼지를 보장하여, 가스의 총 압력이 측정되도록 한다. 수집된 액체의 퍼지 외에도 총 온도 프로브(100)는 액적의 직접 충돌로부터 측정 요소를 보호하기 위해 소형 컵(1)을 갖는다. 이것은 흐름의 액체 부분의 영향을 받지 않고 가스의 총 온도를 측정하도록 한다.
14 습식 가스 유량 측정 장치 KR1020020023442 2002-04-29 KR1020020038657A 2002-05-23 박경암; 최해만; 이생희; 윤병로; 오연균; 이덕기; 신민철
PURPOSE: A wet gas flow measuring device is provided to easily adjust fluid level, to easily grasp integral value and to improve convenience by converting detected gas flow into flow under standard temperature and air pressure. CONSTITUTION: A device includes a drum(208); a magnetic coupling; an encoder; a level adjusting part; and a conversion/display part. The drum comprises a fixed number of compartments and an axis and has an inlet and an outlet of gas separated from each other and is filled with sealing fluid. The magnetic coupling couples the drum in a chamber(202) and the encoder outside the chamber by magnetism so that an axis of the encoder rotates by rotation of the drum. The encoder is driven by the magnetic coupling as the drum rotates to output pulse proportional to the rotation frequency of the drum. The level adjusting part has a bar(220) inserted by screw to adjust level of the sealing fluid by adjusting volume of the bar sinking under the sealing fluid. The conversion/display part calculates gas flow data based on the pulse to convert into flow under standard temperature and air pressure and display.
15 DEVICE FOR MEASURING AN ULTRA LOW GAS FLOW EP10764735 2010-04-01 EP2419701A4 2018-02-28 LIU JING
A measuring device is disclosed for measuring an ultra low gas flow, working by the principle of liquid displacement. In at least one embodiment, the measuring device includes at least one cell including a gas inflow device, a gas compartment device with a predefined inner geometric physical volume and active volume. In at least one embodiment, the gas compartment device includes one gas accumulating end and one lifting end, the gas compartment device also defining a geometric gas collecting point inside of the gas compartment device, during a gas filling cycle, the geometric gas collecting point moving further and further from the gas accumulating end to the lifting end during the gas filling cycle. Further, in at least one embodiment the cell includes a holding device having a pivoting element enabling the gas compartment device to pivot upwards when the geometric gas collecting point is positioned at the lifting end and the lifting force is larger than the down-pressing force at the lifting end, thereby releasing all of the accumulated gas in the gas compartment device, and then pivoting back to its initial standby position for new receipt and storage of gas during another gas filling cycle until next releasing sequence. Finally, in at least one embodiment, the cell also includes a sensor provided to generate a signal and/or change the state of a signal when the gas compartment device is not in its initial standby position, wherein the gas storing capacity of the inside of the gas compartment device is larger at the gas accumulating end than at the lifting end and wherein the gas accumulating end has a higher vertical position than the lifting end at the initial standby position.
16 WET GAS FLOW MEASURING METHOD AND APPARATUS EP13823679.9 2013-07-24 EP2878934B1 2017-09-06 CHEN, Jige
A wet gas flow measuring method, wherein measuring total flow differential pressure value ”P of wet gas in a pipeline by a differential pressure flow measuring device (201), measuring section gas contents of the wet gas in the pipeline by at least two phase fraction meters respectively (202), obtaining optimized section gas content value GVF opt by a flow calculating module based on the section gas contents respectively measured by the at least two phase fraction meters (203); and calculating gas volume flow rate Q g and liquid volume flow rate Q l by the flow calculating module based on the total flow differential pressure value ”P of the wet gas and the optimized section gas content value GVF opt (204). As the section gas content of the wet gas in the pipeline is detected by the redundant phase fraction meters, the gas volume flow rate Q g and the liquid volume flow rate Q l can be measured accurately, which meets the requirements on production measurements of oil and gas field and facilitates management improvement and production optimization of oil-gas reservoir. A wet gas flow measuring apparatus is also provided.
17 TOTAL PRESSURE AND TOTAL TEMPERATURE MEASUREMENT IN WET GAS CONDITION EP13805398.8 2013-12-16 EP2936101B1 2017-02-22 GERBI, Filippo; MARRAZZO, Marco; MARASCHIELLO, Francesco; MANFRIDA, Giampaolo
18 METHOD AND APPARATUS FOR MEASURING GAS FLOW EP14816151.6 2014-12-05 EP3080561A1 2016-10-19 TELI, Aronne
There are described a method and an apparatus for measuring gas flow rate and/or volume (such as gas accumulation and consuption) based on the "rate of rise" method, particularly useful in the field of small gas flow rates, that uses a duct immersed in a liquid so as to generate a hydrostatic pressure that allows increase in pressure in a sealed chamber, so as to avoid the use of solenoid valves, producing a particular advantage when a multiple measurement system is required, when a plurality of gas flows are to be measured. The method can be applied advantageously to measure flow rates of gas produced by chemical and/or biological reactions, in particular the Biochemical Methane Potential (BMP) or the Biochemical Hydrogen Potential (BHP). A variant of the method also allows measurement of the Biochemical Oxygen Demand (BOD).
19 SYSTEM SETUP FOR BIOLOGICAL METHANE POTENTIAL TEST EP10764736 2010-04-01 EP2419385A4 2014-08-27 LIU JING
A measuring device is disclosed for measuring an ultra low gas flow, working by the principle of liquid displacement. In at least one embodiment, the measuring device includes at least one cell including a gas inflow device, a gas compartment device with a predefined inner geometric physical volume and active volume. In at least one embodiment, the gas compartment device includes one gas accumulating end and one lifting end, the gas compartment device also defining a geometric gas collecting point inside of the gas compartment device, during a gas filling cycle, the geometric gas collecting point moving further and further from the gas accumulating end to the lifting end during the gas filling cycle. Further, in at least one embodiment the cell includes a holding device having a pivoting element enabling the gas compartment device to pivot upwards when the geometric gas collecting point is positioned at the lifting end and the lifting force is larger than the down-pressing force at the lifting end, thereby releasing all of the accumulated gas in the gas compartment device, and then pivoting back to its initial standby position for new receipt and storage of gas during another gas filling cycle until next releasing sequence. Finally, in at least one embodiment, the cell also includes a sensor provided to generate a signal and/or change the state of a signal when the gas compartment device is not in its initial standby position, wherein the gas storing capacity of the inside of the gas compartment device is larger at the gas accumulating end than at the lifting end and wherein the gas accumulating end has a higher vertical position than the lifting end at the initial standby position.
20 DEVICE FOR MEASURING AN ULTRA LOW GAS FLOW EP10764735.6 2010-04-01 EP2419701A1 2012-02-22 LIU, Jing
A measuring device is disclosed for measuring an ultra low gas flow, working by the principle of liquid displacement. In at least one embodiment, the measuring device includes at least one cell including a gas inflow device, a gas compartment device with a predefined inner geometric physical volume and active volume. In at least one embodiment, the gas compartment device includes one gas accumulating end and one lifting end, the gas compartment device also defining a geometric gas collecting point inside of the gas compartment device, during a gas filling cycle, the geometric gas collecting point moving further and further from the gas accumulating end to the lifting end during the gas filling cycle. Further, in at least one embodiment the cell includes a holding device having a pivoting element enabling the gas compartment device to pivot upwards when the geometric gas collecting point is positioned at the lifting end and the lifting force is larger than the down-pressing force at the lifting end, thereby releasing all of the accumulated gas in the gas compartment device, and then pivoting back to its initial standby position for new receipt and storage of gas during another gas filling cycle until next releasing sequence. Finally, in at least one embodiment, the cell also includes a sensor provided to generate a signal and/or change the state of a signal when the gas compartment device is not in its initial standby position, wherein the gas storing capacity of the inside of the gas compartment device is larger at the gas accumulating end than at the lifting end and wherein the gas accumulating end has a higher vertical position than the lifting end at the initial standby position.
QQ群二维码
意见反馈