序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 Projectile stabilization from smooth bore barrel US310602 1981-10-09 US4386747A 1983-06-07 Raymond D. Kuhl
A projectile for use with a smooth bore barrel is disclosed wherein longitudinal stability is provided by an oscillating mass within the projectile. A mass is disposed inside the projectile and attached and secured to the projectile by means of a bi-convex spring or equivalent flexible structure so that the mass is set off in oscillation upon the sudden acceleration due to the firing of the projectile. The inertial forces developed by the oscillating mass provide stability throughout the projectile's trajectory.
2 Projectile US52341544 1944-02-22 US2412173A 1946-12-03 POPE WINSLOW B
3 Long-range projectile US40272920 1920-08-10 US1442080A 1923-01-16 TADAUS LYBURIS; SMITH PETE F
4 JPS58501919A - JP50297782 1982-09-13 JPS58501919A 1983-11-10
5 GYROSCOPIC ATTITUDE CONTROL SYSTEM US15156507 2016-05-17 US20170336807A1 2017-11-23 Eero H. Ala; Christopher P. Owan
An attitude control system includes one or more control moment gyro pairs, with gyros of individual of the pairs being counter-rotated to rotate the rotation axes of flywheels of the gyros of a gyro pair in opposite direction. The flywheels of a gyro pair may be in paddle configuration, with the rotation axes of the flywheels rotating in the counter-rotation through separate planes as the gyros are rotated. The rotation of the gyros of a gyro pair may be accomplished by coupling both of the gyros to a servo motor with suitable coupling gears, or by using independent servos for each gyro. The counter-rotation of gyros of an individual pair produces a resultant torque about a fixed global axis, such as the axis of a flight vehicle of which the attitude control system is a part. Further control may be accomplished for example by varying rotation speeds of the flywheels.
6 AMMUNITION WITH ELECTROMOTOR US14196855 2014-03-04 US20160238358A1 2016-08-18 Andrey SOROKIN
Ammunition including a projectile, and an electromotor disposed within the projectile, the electromotor including a rotor having an axis of rotation aligned with a flight path of the projectile.
7 Steerable spin-stabilized projectile and method US12329699 2008-12-08 US08319162B2 2012-11-27 James W. Mccool
A spin-stabilized projectile has its course controlled by counter rotation of an internal mass about a longitudinal axis of the projectile. The internal mass may be a boom within a cavity of an external body of the projectile. The internal mass may be tiltable relative to the hull, and may be configured to counter rotate relative to the hull about the axis of the hull. The counter-rotation may keep the boom in a substantially same orientation relative to the (non-spinning) environment outside of the projectile. The positioning of the boom or other weight within the projectile thus may be used to steer the projectile, by providing an angle of attack to the projectile hull. A magnetic system may be used to counter rotate the boom or other weight. The projectile may have a laser guidance system to aid in steering the projectile toward a desired aim point.
8 Nutation damper assembly US61069467 1967-01-20 US3397851A 1968-08-20 MCNUTT DOUGLAS P
9 Steerable rotating projectile US15476275 2017-03-31 US10118696B1 2018-11-06 Steven M. Hoffberg
A method for controlling a flying projectile which rotates during flight, comprising: determining an angle of rotation of an inertial mass spinning about an axis during flight; and controlling at least one actuator for altering at least a portion of an aerodynamic structure, selectively in dependence on the determined angle of rotation and a control input, to control aerodynamic forces during flight. An aerodynamic surface may rotate and interact with surrounding air during flight, to produce aerodynamic forces. A sensor determines an angular rotation of the spin during flight. A control system, responsive to the sensor, produces a control signal in dependence on the determined angular rotation. An actuator selectively alters an aerodynamic characteristic of the aerodynamic surface in response to the control signal.
10 Method and system for analyzing ballistic trajectories US13787287 2013-03-06 US09342907B1 2016-05-17 Richard N. Pedersen; Paul D. Mountcastle; Stanley Jordan Viss
A method for analyzing ballistic trajectories comprises determining invariants for known ballistic objects, defining a reference graph having nodes corresponding to the invariants, and defining a query graph having nodes connected to nodes of the reference graph corresponding to anticipated invariant queries to be made using the query graph. One or more sets of invariants corresponding to trajectories of one or more observed objects are input into the reference graph and traverse through the nodes of the reference graph, leaving a record in the nodes traversed. A query is selected for the query graph corresponding to one or more range of invariants, the query generating a query result identifying the nodes of the reference graph that satisfy the query. Identifying each of the observed objects identified by a record in the identified nodes determines which of the one the observed objects satisfy the query.
11 Gyroscopic stabilizer US12799010 2010-03-31 US08581160B1 2013-11-12 Matthew Sanford
A gyroscopic stabilizer has a ring mounted at a missile rocket nozzle exit for rotation about the exit. The ring bears vanes extended inwardly into gases exiting from the nozzle and configured for rotation by the exiting gases so that the rotating mass of the ring gyroscopically stabilizes the missile. The ring may be mounted by a bearing having rolling elements or sliding surfaces. The axial length of the ring may be substantially less than its diameter. The ring has a low moment of inertia and is accelerated to stabilizing speed by vanes minimally impeding the exiting gases. When the stabilizer is used on a rocket propelled missile launched from a tube, the missile is fully stabilized in the tube before burnout and there is no rotational friction between the tube and the missile.
12 STEERABLE SPIN-STABILIZED PROJECTILE AND METHOD US12329699 2008-12-08 US20120211590A1 2012-08-23 James W. Mccool
A spin-stabilized projectile has its course controlled by counter rotation of an internal mass about a longitudinal axis of the projectile. The internal mass may be a boom within a cavity of an external body of the projectile. The internal mass may be tiltable relative to the hull, and may be configured to counter rotate relative to the hull about the axis of the hull. The counter-rotation may keep the boom in a substantially same orientation relative to the (non-spinning) environment outside of the projectile. The positioning of the boom or other weight within the projectile thus may be used to steer the projectile, by providing an angle of attack to the projectile hull. A magnetic system may be used to counter rotate the boom or other weight. The projectile may have a laser guidance system to aid in steering the projectile toward a desired aim point.
13 Rocket construction US51929355 1955-06-30 US2849955A 1958-09-02 SMATHERS SPURGEON E
14 Projectile US43152942 1942-02-19 US2402718A 1946-06-25 NORMAN ALBREE GEORGE
15 Long range gun and projectile therefor US40112741 1941-07-05 US2386686A 1945-10-09 HUNSDORF WILLIAM P
16 Steerable spin stabilized projectile and methods JP2011539533 2009-09-18 JP2012511683A 2012-05-24 マックール、ジェームズ・ダブリュ
スピン安定発射体は、発射体の前後軸を中心とした内部質量の逆回転により、その進路が制御される。 内部質量は、発射体の外部ボディの空洞内にあるブームであってもよい。 内部質量は、外殻に対して傾斜可能であり、外殻の軸を中心に、外殻に対して逆回転するように構成されていてもよい。 逆回転により、発射体の外側の(スピンしていない)環境に対して、実質的に同じ向きにブームを保つことができる。 したがって、発射体の外殻に迎えを与えることにより、発射体を操縦するために、発射体内のブームまたは他の重量のポジショニングを使用することができる。 磁気システムを使用して、ブームまたは他の重量を逆回転させてもよい。 発射体は、所望の照準点に向けて発射体を操縦することを支援するレーザ誘導システムを有していてもよい。
【選択図】 図2
17 Electronic housings of composite material to be active damping of piezoelectric fiber JP2011516243 2008-07-02 JP2011526989A 2011-10-20 シースリー、クレイグ・デー.; ファッシアーノ、アンドリュー・ビー.; フラバセク、グレグ・ジェイ.; ムーア、ロバート・ティー.
振動制御ハウジング。 新規なハウジングは、ハウジング構造と機構とを含み、機構は、制御信号を受信して、制御信号に従って、ハウジング構造の構造応答を電子的に同調させる。 例示的な実施形態において、ハウジング構造は、複数の圧電ファイバで構成されている複合材料を含み、複数の圧電ファイバは、ハウジング構造における変形に応答して、電気信号を発生し、複数の圧電ファイバに印加された電気信号に応答して、ハウジング構造を変形させるように構成されている。 制御回路は、前記圧電ファイバから感知信号を受信して、励磁信号を発生する。 励磁信号は、圧電ファイバに印加されて、所定の周波数において圧電ファイバのスチフネス又はコンプライアンスを増加させる。 例示的な実施形態において、制御信号は、低周波のスチフネスと強度の性能を提供して、一方で、高周波振動を減衰して、ハウジング構造内に収容された電子機器を保護するように構成されている。
【選択図】 図1a
18 PIEZOELECTRIC FIBER, ACTIVE DAMPED, COMPOSITE ELECTRONIC HOUSINGS EP08874892.6 2008-07-02 EP2307847A1 2011-04-13 FACCIANO, Andrew, B.; MOORE, Robert, T.; HLAVACEK, Gregg, J.; SEASLY, Craig, D.
A vibration controlled housing. The novel housing includes a housing structure and a mechanism for receiving a control signal and in accordance therewith electronically tuning a structural response of the structure. In an illustrative embodiment, the housing structure includes a composite material containing a plurality of piezoelectric fibers adapted to generate an electrical signal in response to a deformation in the structure and to deform the structure in response to an electrical signal applied thereto. A control circuit receives the sensed signal from the fibers and generates an excitation signal that is applied to the fibers to increase the stiffness or compliance of the fibers at predetermined frequencies. In an illustrative embodiment, the control signal is adapted to provide low frequency stiffness and strength performance while attenuating high frequency vibrations to protect electronics housed within the structure.
19 PROJECTILE STABILIZATION FROM SMOOTH BORE BARREL. EP82903012 1982-09-13 EP0090001A4 1985-04-11 KUHL RAYMOND D
20 STEERABLE SPIN-STABALIZED PROJECTILE AND METHOD EP09817076.4 2009-09-18 EP2356398B1 2014-05-07 MCCOOL, James W
QQ群二维码
意见反馈