序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 带辅助循环的直接接触凝结制冷系统 CN201710085345.5 2017-02-17 CN106766314A 2017-05-31 宁静红; 刘兴华; 代宝民; 朱宗升
发明公开了一种带辅助循环的直接接触凝结制冷系统。本发明主循环制冷压缩机的出口与直接接触凝结换热器的气体入口连接,直接接触凝结换热器的过冷液体进口与蒸发‑过冷器的过冷液体出口连接,直接接触凝结换热器的饱和液体出口分成两路,一路与蒸发‑过冷器的过冷液体入口连接,一路经过主循环节流蒸发器的入口连接,蒸发器的出口与主循环冷压缩机的入口连接;辅助循环制冷压缩机的出口与冷凝器的入口连接,冷凝器的出口经过辅助循环节流阀和蒸发‑过冷器的低温液体入口连接,蒸发‑过冷器的低温气体出口与辅助循环制冷压缩机的入口连接。本发明初投资减少,结构简单,操作方便、保护环境、节约能源
2 用于热供暖和空气调节的高效能系统 CN02820196.5 2002-12-12 CN1568417A 2005-01-19 史蒂夫·哈蒙; 友赢
发明提供一种用于提供热供暖和空气调节的系统,包括:用于在系统中循环制冷剂的一个或多个压缩机(1);具有热交换器(3)用于加热并储存热水的热水箱(2);用于分别在空气冷却或热水供暖和/或空气加热运行模式下,向室外环境排热或从室外环境取热的室外热交换器(4)和机(5);具有风机(9)用于室内空间空调和送风的室内热交换器(8)。该系统特别适合应用于需要全年热水供暖和房屋冷却的场合。该系统还可适用于其它场合,例如有季节性空气冷却的全年热水供暖,或有季节性空气冷却和加热的全年热水供暖等,该系统还用于不同应用场合,例如空间同时加热和冷却。
3 冷冻装置 CN200980116547.5 2009-04-28 CN102016449B 2013-12-25 藤本修二; 吉见敦史; 山口贵弘; 稻塚徹; 古庄和宏; 内田光阳; 片冈秀彦
一种能提高压缩效率并能提高供热用的水的加热效率的冷冻装置。该冷冻装置是对水回路(910)的水进行处理的供热水装置(1),所述水回路(910)包括:将从外部供给来的水引导至水分岔点(W)的进水配管(901);从水分岔点(W)延伸出的热源水配管(902、903)及中间水配管(904、905);以及从热源水配管(902、903)与中间水配管(904、905)合流的合流点(Z)延伸到外部的出水配管(906),中间冷却器(7)使通过从低级侧朝向高级侧的中间制冷剂管(22)的制冷剂与在中间水配管(904、905)中流动的水彼此进行热交换。热源侧热交换器(4)使通过连接高级侧的压缩元件(2d)的喷出侧与膨胀机构(5)的连接配管(72)的制冷剂不与在进水配管(901)中流动的水彼此进行热交换,而与在热源水配管(902、903)中流动的水进行热交换。
4 冷冻装置 CN200980116547.5 2009-04-28 CN102016449A 2011-04-13 藤本修二; 吉见敦史; 山口贵弘; 稻塚徹; 古庄和宏; 内田光阳; 片冈秀彦
一种能提高压缩效率并能提高供热用的水的加热效率的冷冻装置。该冷冻装置是对水回路(910)的水进行处理的供热水装置(1),所述水回路(910)包括:将从外部供给来的水引导至水分岔点(W)的进水配管(901);从水分岔点(W)延伸出的热源水配管(902、903)及中间水配管(904、905);以及从热源水配管(902、903)与中间水配管(904、905)合流的合流点(Z)延伸到外部的出水配管(906),中间冷却器(7)使通过从低级侧朝向高级侧的中间制冷剂管(22)的制冷剂与在中间水配管(904、905)中流动的水彼此进行热交换。热源侧热交换器(4)使通过连接高级侧的压缩元件(2d)的喷出侧与膨胀机构(5)的连接配管(72)的制冷剂不与在进水配管(901)中流动的水彼此进行热交换,而与在热源水配管(902、903)中流动的水进行热交换。
5 用于在空间内控制调节空气的系统及其操作方法 CN201510655570.9 2012-01-18 CN105202795A 2015-12-30 M·格伯; C·W·荣
提供用于在空间内控制调节空气的系统及其操作方法。其中,热泵系统可以包括供应空气通道,配置成接收空气以及将供应空气排出到所述空间内;再生空气通道,配置成从空间接收再生空气以及排出排,再生空气通道和供应空气通道由隔板分隔开;定位在再生空气通道内的再生空气热交换器;以及定位在隔板内的至少一个再循环风挡,其中所述至少一个再循环风挡配置成在除霜循环过程中打开以便提供再生空气的再循环回路,其中排风的再循环回路在除霜循环过程中从再生空气热交换器除霜。
6 过热降温器和充注截留器 CN201510450910.4 2015-06-10 CN105157283A 2015-12-16 S·S·汉考克
所公开的过热降温器和充注截留器的系统和方法可以包括在一个供热、通和/或空气调节(HVAC)系统中提供一个过热降温器热交换器/充注截留器(DSHCR)系统,其中所述DSHCR系统被配置以当所述HVAC系统在冷却模式中运行时有选择地允许制冷剂流通过一个过热降温器热交换器,和当所述HVAC系统在加热模式中运行时有选择地防止制冷剂流通过所述过热降温器热交换器进入制冷剂流体回路。当所述HVAC系统在加热模式中运行时所述过热降温器热交换器也可被配置以执行充注截留器的功能并且储存至少部分制冷剂。
7 调湿装置 CN200980130945.2 2009-09-08 CN102112813B 2014-04-09 野田博资; 松井伸树; 冈昌弘
发明公开一种调湿装置,其包括制冷剂回路(50),该制冷剂回路(50)具有压缩机(53)、主电动膨胀(55)、载有吸附空气中分的吸附剂的第一吸附热交换器(51)和第二吸附热交换器(52),制冷剂在该制冷剂回路(50)中可逆循环进行蒸气压缩式制冷循环。该调湿装置通过可逆地切换制冷剂回路(50)的制冷剂循环,两个吸附热交换器(51、52)交替进行吸附剂的吸附动作和再生动作,从而调节通过吸附热交换器(51、52)的空气的湿度。制冷剂回路(50)具备辅助热交换器(61)和制冷剂调节机构(62),辅助热交换器(61)设置在吸附热交换器(51、52)的再生空气的上游侧,对供给到吸附热交换器(51、52)中的再生空气进行预先加热;制冷剂调节机构(62)调节流向辅助热交换器(61)的制冷剂的流入量。
8 调湿装置 CN200980130945.2 2009-09-08 CN102112813A 2011-06-29 野田博资; 松井伸树; 冈昌弘
发明公开一种调湿装置,其包括制冷剂回路(50),该制冷剂回路(50)具有压缩机(53)、主电动膨胀(55)、载有吸附空气中分的吸附剂的第一吸附热交换器(51)和第二吸附热交换器(52),制冷剂在该制冷剂回路(50)中可逆循环进行蒸气压缩式制冷循环。该调湿装置通过可逆地切换制冷剂回路(50)的制冷剂循环,两个吸附热交换器(51、52)交替进行吸附剂的吸附动作和再生动作,从而调节通过吸附热交换器(51、52)的空气的湿度。制冷剂回路(50)具备辅助热交换器(61)和制冷剂调节机构(62),辅助热交换器(61)设置在吸附热交换器(51、52)的再生空气的上游侧,对供给到吸附热交换器(51、52)中的再生空气进行预先加热;制冷剂调节机构(62)调节流向辅助热交换器(61)的制冷剂的流入量。
9 Refrigeration apparatus US15114708 2015-01-29 US09689589B2 2017-06-27 Junya Minami; Masahiro Oka; Mari Susaki
A refrigeration apparatus includes a refrigerant circuit connecting heat-source units in parallel with usage units. First and second heat-source units have first and second compressors, first and second heat-source-side heat exchangers, first and second high-pressure receivers, first and second detecting elements detecting whether the receivers are near flooding, first and second bypass channels returning refrigerant in top parts of the receivers to intake sides of the compressors, and first and second motor-operated valves on the bypass channels, respectively. A controller performs excess refrigerant distribution control in which an opening degree of the first valve is controlled to be greater than an opening degree of the second valve when the second detecting element detects a nearly flooded state, and the opening degree of the second valve is controlled to be greater than the opening degree of the first valve when the first detecting element detects a nearly flooded state.
10 REFRIGERATION APPARATUS US15114708 2015-01-29 US20160341451A1 2016-11-24 Junya MINAMI; Masahiro OKA; Mari SUSAKI
A refrigeration apparatus includes a refrigerant circuit connecting heat-source units in parallel with usage units. First and second heat-source units have first and second compressors, first and second heat-source-side heat exchangers, first and second high-pressure receivers, first and second detecting elements detecting whether the receivers are near flooding, first and second bypass channels returning refrigerant in top parts of the receivers to intake sides of the compressors, and first and second motor-operated valves on the bypass channels, respectively. A controller performs excess refrigerant distribution control in which an opening degree of the first valve is controlled to be greater than an opening degree of the second valve when the second detecting element detects a nearly flooded state, and the opening degree of the second valve is controlled to be greater than the opening degree of the first valve when the first detecting element detects a nearly flooded state.
11 HEAT PUMP SYSTEM HAVING A PRE-PROCESSING MODULE US13009222 2011-01-19 US20120180982A1 2012-07-19 MANFRED GERBER; CAN WEN RONG
A heat pump system for conditioning regeneration air from a space is provided. The heat pump system is operable in a winter mode and/or a summer mode. The system includes an energy recovery module that receives and conditions air in a regeneration air channel. A pre-processing module is positioned downstream of the energy recovery module. The pre-processing module receives and heats air from the energy recovery module. A regeneration air heat exchanger is positioned downstream of the pre-processing module. The regeneration air heat exchanger receives and conditions air from the pre-processing module. The pre-processing module heats the air from the energy recovery module to increase an efficiency of the regeneration air heat exchanger.
12 Air conditioning apparatus for vehicle US10756755 2004-01-14 US07055590B2 2006-06-06 Junichiro Hara
An air conditioning apparatus includes a valve for selectively introducing the coolant discharged from a compressor to either a flow path for a water-coolant heat exchanger or another flow path to avoid the heat exchanger, a thermostat for detecting the temperature of a cooling water flowing into an engine and a controller for controlling the valve. When the temperature of the cooling water is equal to or less than a predetermined temperature, the controller controls the valve so that the coolant discharged from the compressor is introduced to the water-coolant heat exchanger. When the temperature of the cooling water is more than the predetermined temperature, the controller controls the valve so that the coolant discharged from the compressor avoids the water-coolant heat exchanger.
13 Vehicle air conditioner with ejector refrigerant cycle US10422255 2003-04-24 US06935421B2 2005-08-30 Hirotsugu Takeuchi; Shin Nisida
An air conditioner includes a compressor for compressing refrigerant, an exterior heat exchanger for performing heat exchange between refrigerant and outside air, an interior heat exchanger for performing heat exchange between the refrigerant and air to be blown into the compartment, an ejector for decompressing high-pressure refrigerant, a heater core for heating air using a high-temperature fluid as a heating source, and a fluid-refrigerant heat exchanger that heats the fluid flowing to the heater core using high-temperature refrigerant discharged from the compressor as a heating source. In a dehumidifying and heating operation, refrigerant in the interior heat exchanger absorbs heat from air so that the air is cooled and dehumidified, and the dehumidified and cooled air can be further heated in the heater core by indirectly using the heating source from the high-temperature refrigerant.
14 Vehicle air conditioner with vapor-compression refrigerant cycle US10422194 2003-04-24 US20030200763A1 2003-10-30 Hirotsugu Takeuchi
An air conditioner includes a compressor for compressing refrigerant, an exterior heat exchanger for performing heat exchange between refrigerant and outside air, an interior heat exchanger for performing heat exchange between the refrigerant and air to be blown into the compartment, a decompression unit for decompressing high-pressure refrigerant, and a heater that heats air using high-temperature refrigerant discharged from the compressor as a heating source. In a dehumidifying and heating operation, refrigerant in the interior heat exchanger absorbs heat from air so that the air is cooled and dehumidified, and the heater heats air having been dehumidified and cooled by using the heating source, so that low-humidity and high-temperature air is supplied into the compartment. The heater can be disposed to indirectly heat air by heating a fluid flowing through a heater core for heating air, or to directly heat air to be blown into the compartment.
15 Refrigerating unit JP2008120738 2008-05-02 JP2009270747A 2009-11-19 FUJIMOTO SHUJI; YOSHIMI ATSUSHI; YAMAGUCHI TAKAHIRO; INAZUKA TORU; KOSHO KAZUHIRO; UCHIDA MITSUAKI; KATAOKA HIDEHIKO
<P>PROBLEM TO BE SOLVED: To provide a refrigerating unit for improving compression efficiency while increasing the efficiency of heating water for hot water supply. <P>SOLUTION: This hot water supply device 1 handles the water in a water circuit 910 comprising a water inlet pipe 901 which guides the externally-supplied water to a water branching point W, heat source water pipes 902, 903 and intermediate water pipes 904, 905 which extend from the water branching point W, and an outlet water pipe 906 which guides the water to the outside from a confluence point Z where the heat source water pipes 902, 903 and intermediate water pipes 904, 905 are confluent. An intermediate cooler 7 performs heat exchange between a coolant passing through intermediate coolant tubing 22 which goes from a low level to a high level, and the water flowing in the intermediate water pipes 904, 905. A heat source heat exchanger 4 performs heat exchange between the coolant passing through a connecting pipe 72 which connects a discharge side of a high level-side compressor element 2d and an expansion mechanism 5, and the water flowing the heat source water pipes 902, 903 without permitting heat exchange with the water flowing in the water inlet pipe 901. <P>COPYRIGHT: (C)2010,JPO&INPIT
16 Heat pump with a re-heat circuit JP2007530258 2005-08-31 JP2008511813A 2008-04-17 タラス,マイケル,エフ.; リフソン,アレクサンダー
冷媒ヒートポンプシステムは、暖房モードでも冷房モードでも動作可能である。 温度および湿度の制御を改善し顕熱および潜熱の容量需要の広い範囲をカバーするために、再熱回路がシステムの回路内に組み込まれる。 暖房モードでは、容量損失を伴わずにシステム効率を向上させるために、再熱コイルは、拡大された室内熱交換器(この場合はコンデンサ)の一部として働くように使用される。 場合によっては、設計者が、効率向上と容量増大の間で選択できる場合は、暖房モードでは、再熱コイルの選択的な動作により、容量調節の追加の段階を提供することができる。 システムの信頼性がスタート・ストップの繰り返しの低減によって改善される。 室内および室外熱交換器に関する様々な再熱コイルの配置が提供され、再熱のコンセプトが考えられているが、本発明の利益は、このようなシステム設計の特徴とは独立しておりそれらに対して明白である。
17 Vehicle air conditioner JP2002126404 2002-04-26 JP2003320838A 2003-11-11 TAKEUCHI HIROTSUGU
<P>PROBLEM TO BE SOLVED: To prevent fog from being generated on a wind shield and to quickly remove the fog even if the fog is temporarily generated on the wind shield. <P>SOLUTION: Air blown out by an indoor heat exchanger 30 is heated making a coolant of high temperatures delivered from a compressor 10 as a heat source. Thereby, it can be prevented that the fog is generated on a window glass such as a window shield and even if the fog is temporarily generated on the window shield, the fog can be quickly removed by the blown air of high temperatures. Even in the case where a temperature of cooling water is low as in the case just after the engine is started, heating of the indoor can be quickly carried out by the coolant of high temperatures delivered from the compressor 10. <P>COPYRIGHT: (C)2004,JPO
18 Heat recovery US14380439 2013-02-28 US09869466B2 2018-01-16 Colin Thomas Thomson
A heat recovery system arranged to heat water includes at least one heat exchanger (9) arranged to heat water by heat exchange with waste heat. A storage reservoir (11) is arranged to store water heated by the heat exchanger (9). The heat exchanger (9) is switchable between a first mode of operation in which water is circulated by a pump (12) in a circuit that includes the storage reservoir (11) and the heat exchanger (9), and a second mode of operation in which water is circulated by the pump (12) in a circuit that by-passes the heat exchanger (9). Heated water of at least a desired minimum temperature can be supplied to at least one outlet during both the first and second modes of operation.
19 REFRIGERATION AND HEATING SYSTEM US15537683 2014-12-19 US20170356681A1 2017-12-14 Christian Douven; Markus Hafkemeyer
A method of operating a refrigeration and heating system (2a, 2b) comprises: circulating a refrigerant through a refrigeration circuit (4) which comprises in the direction of flow of the circulating refrigerant: at least one compressor (6a, 6b, 6c); a refrigeration circuit side (8a) of a coupling heat exchanger (8); at least one gas cooler (10); at least one expansion device (12, 14); and at least one evaporator (16); circulating a heating fluid through a heating circuit (20) which comprises a heating circuit side (8b) of the coupling heat exchanger (8) and at least one heat consumer (22); wherein the coupling heat exchanger (8) is configured for transferring heat from the circulating refrigerant to the circulating heating fluid. The method further includes increasing the temperature of the refrigerant entering the at least one gas cooler (10) in order to meet increased heating demands by allowing at least a portion of the heating fluid to flow directly from an outlet to an inlet of the heating circuit side (8b) of the coupling heat exchanger (8) bypassing the at least one heat consumer (22) or by allowing at least a portion of the refrigerant circulating through the refrigeration circuit (4) to bypass the coupling heat exchanger (8).
20 DE-SUPERHEATER SYSTEM AND COMPRESSION SYSTEM EMPLOYING SUCH DE-SUPERHEATER SYSTEM, AND METHOD OF PRODUCING A PRESSURIZED AND AT LEAST PARTIALLY CONDENSED MIXTURE OF HYDROCARBONS US15317810 2015-06-09 US20170122660A1 2017-05-04 Brian Reza Shaied Shehdjiet IMAMKHAN; Bas KESSELS
A compressed vaporous discharge stream is de-superheated in a de-superheater system. The de-superheater system comprises a de-superheater heat exchanger configured to bring at least a portion of the compressed vaporous discharge stream in indirect heat exchanging contact with an ambient stream. A de-superheater bypass line comprising an temperature-controlled valve is configured to selectively bypass the de-superheater heat exchanger. A combiner is configured downstream of the de-superheater heat exchanger for rejoining the bypass portion with the portion of the compressed vaporous discharge stream that has passed through the de-superheater heat exchanger. A mixer is configured downstream of said combiner, to receive and mix the rejoined stream, and discharge the rejoined stream into a de-superheater discharge conduit as a de-superheated stream.
QQ群二维码
意见反馈