序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 HERMETIC COMPRESSOR US13113654 2011-05-23 US20110286865A1 2011-11-24 Jeongmin HAN; Jaechan AN; Hongseok SEO; Keunju LEE
A compressor has a rotation shaft in a hermetic container, and first and second bearings to support the shaft in the container. A tolerance between the second bearing and the rotation shaft and a tolerance between the first bearing and the rotation shaft are different, so as to cause hydrodynamic lubrication to occur at one of the first or second bearings.
62 ROTARY PUMP US13048085 2011-03-15 US20110229361A1 2011-09-22 Tomonobu KURODA; Kenichi Oishi
A housing includes a pump chamber, which rotatably receives an inner rotor and an outer rotor that define a pressure chamber therebetween. An inlet port of the housing is communicated with the pressure chamber to supply fluid into the pressure chamber. An outlet port of the housing is communicated with the pressure chamber to discharge the fluid from the pressure chamber. An axial size of an axial clearance, which is formed between an axial end surface of the pump chamber and an axial end surface of the inner rotor, differs from an axial size of an axial clearance, which is formed between the axial end surface of the pump chamber and an axial end surface of the outer rotor.
63 Progressive cavity apparatus with transducer and methods of forming and use US11967941 2007-12-31 US07941906B2 2011-05-17 Geoff Downton
The present invention relates to a stator (100-1000) with a profiled helical bore (106,206,306,606,706,806,906,1006) having a cast material layer (102;202;302;602;702;802;902;1002) with transducers (104A-104D;304;604A-604D;710;804;904A-904C;1010) disposed therein and describes the methods of forming such stators. Cast material can be fluidic during displacing of a transducer therein. Cast material layer 202 can include housings (218,222) disposed therein and/or a cavity 226 formed therein. Transducer can be a sensor (104A-104C) and/or an actuator 104D. Transducer 804 can extend axially along a length of the stator 800. Transducer or plurality of transducers (904A-904C) can extend along a helical path. Additionally or alternatively, sleeve 1008 can include a transducer 1010.
64 SCREW COMPRESSOR US12810951 2008-12-26 US20100284848A1 2010-11-11 Hideki Fujiwara; Hideyuki Gotou; Harunori Miyamura; Nozomi Gotou
A screw compressor includes a screw rotor having a plurality of helical grooves, a casing containing the screw rotor and a gate rotor. The casing includes a discharge port on an inner peripheral surface of the casing. The gate rotor has gates meshing with the helical grooves of the screw rotor to compress gas in compression chambers to discharge the gas from the discharge port after being compressed. The compression chambers are defined by the helical grooves, the casing, and the gates. The discharge port is divided into a first port and a second port when two adjacent helical grooves of the plurality of helical grooves is open to the discharge port as a result of rotation of the screw rotor, with one of the two adjacent helical grooves being open in the first port and the other of the two adjacent helical grooves being open in the second port.
65 SCROLL COMPRESSOR US12442579 2008-02-04 US20100021329A1 2010-01-28 Takayuki Kuwahara; Tetsuzou Ukai; Katsuhiro Fujita; Kazuhide Watanabe; Tomohisa Moro
A scroll compressor that suffers no decrease in compression performance due to leakage resulting from a twisting assembly error is provided. This scroll compressor includes a fixed scroll and an orbiting scroll, each including a spiral wrap protruding from an end plate and having the same tooth thickness (Tr) and the same base-circle radius (b) defining an involute surface. The fixed scroll and the orbiting scroll are offset from each other by an orbiting radius (ρ) and mesh such that the respective wraps face each other with a phase shift of 180°. The orbiting scroll revolves/orbits along a circular orbit with the orbiting radius (ρ) to compress a gas while a rotation-preventing mechanism prevents rotation of the orbiting scroll. The relationship between the involute surfaces of the spiral wraps of the two scrolls and the dimensions, dimensional tolerance, and assembly standards of the rotation-preventing mechanism are determined so that the median value of an allowable angle of rotation (φ) agrees with an upright position of the orbiting scroll.
66 PROGRESSIVE CAVITY APPARATUS WITH TRANSDUCER AND METHODS OF FORMING AND USE US11967941 2007-12-31 US20090169364A1 2009-07-02 Geoff Downton
The present invention relates to a stator (100-1000) with a profiled helical bore (106,206,306,606,706,806,906,1006) having a cast material layer (102;202;302;602;702;802;902;1002) with transducers (104A-104D;304;604A-604D;710;804;904A-904C;1010) disposed therein and describes the methods of forming such stators. Cast material can be fluidic during displacing of a transducer therein. Cast material layer 202 can include housings (218,222) disposed therein and/or a cavity 226 formed therein. Transducer can be a sensor (104A-104C) and/or an actuator 104D. Transducer 804 can extend axially along a length of the stator 800. Transducer or plurality of transducers (904A-904C) can extend along a helical path. Additionally or alternatively, sleeve 1008 can include a transducer 1010.
67 Self compensating adjustable fit progressing cavity pump for oil-well applications with varying temperatures US09818059 2001-03-27 US06457958B1 2002-10-01 Lonnie Dunn
The present invention provides an adjustable rotor and/or stator, so that the interference fit and/or clearance can be adjusted. The rotor and/or stator are tapered to provide a difference in fit between the rotor and stator by longitudinal adjustment of their relative position. The relative longitudinal adjustment is achieved in response to a change in temperature and is matched to the taper angle of the stator/rotor to maintain a desired interference fit.
68 Gaging vane construction US3486460D 1968-09-25 US3486460A 1969-12-30 SMITH STANLEY K; RAMSTROM LEE W
69 Positive displacement pump assembly with movable end plate for rotor face clearance control US14398039 2013-04-29 US09845804B2 2017-12-19 Daniel R. Ouwenga; Brian T. Smith
A positive displacement pump assembly includes a rotor housing defining a rotor cavity, and an end plate configured to at least partially close one end of the rotor cavity. Rotors are supported on and fixed to rotor shafts and extend through the rotor cavity. A first pair of bearings fixing the rotor shafts to the end plate. A second pair of bearings fixes the rotor shafts to the rotor housing, preventing relative axial movement between the rotor shafts and the rotor housing. The end plate is axially movable with the rotor shafts when the rotor shafts vary in axial length due to thermal fluctuations so that changes in an axial clearance at end faces of the rotors are reduced.
70 GEAR PUMP AND PRINTING APPARATUS PROVIDED WITH SAME US15671496 2017-08-08 US20170334212A1 2017-11-23 Masaaki ANDO; Noritaka MITSUO; Norihiro MARUYAMA
A gear pump includes a pump casing and a gear assembly. The gear assembly includes a driving gear, a driven gear, a driving gear shaft, a driven gear shaft, and a bearing frame. The bearing frame includes a frame main body, a pair of driving side bearing portions, and a pair of driven side bearing portions. The frame main body has a pair of bearing support potions, in which the driving side bearing portion and the driven side bearing portion are provided, and a connecting portion which connects the bearing support portions. The bearing support portions and the connecting portion are integrated together as a one-piece member.
71 Two-spindle pump of single-flow construction US13754650 2013-01-30 US09624925B2 2017-04-18 Weshen Christov; Hans Jung
The invention relates to a two-spindle screw pump of single-flow construction, comprising a pump housing, which has a pump portion, a bearing portion and a gear portion with a gear chamber, wherein the bearing portion and the pump portion are realized separately from each other characterized in that the gearwheel and the fastening element (and thus the shaft) are mutually rotatable, so that a spacing of the flanks of the feed screws (the flank clearance of the feed screws) is adjustable, that an opening is provided on the gear portion of the pump housing, that the opening is provided with a detachable cover, that the opening is arranged such that the cover is detachable in the mounted state of the screw pump, and that the gear chamber, for the adjustment of the flank clearance of the feed screws, can be reached with the tool necessary for this purpose.
72 Oil pump rotor US14236455 2012-12-13 US09574559B2 2017-02-21 Atsushi Shiotani; Eiichiro Niizuma
Provided is an oil pump rotor capable of improving a volume efficiency and a quietness. When a diameter of a base circle bi of an inner rotor is Φ bi; a diameter of a first outer rolling circle Di is Φ Di; a diameter of a first inner rolling circle di is Φ di; a diameter of a base circle bo of an outer rotor is Φ bo; a diameter of a second outer rolling circle Do is Φ Do; a diameter of a second inner rolling circle do is Φ do; and an eccentricity amount between the inner rotor and the outer rotor is e, Φ bi=n·(Φ Di+Φ di) and Φ bo=(n+1)·(Φ Do+Φ do) hold; either Φ Di+Φ di=2e or Φ Do+Φ do=2e holds; and Φ Do>Φ Di and Φ di>Φ do hold. When a clearance between the inner rotor and the outer rotor is t, 0.3≦((Φ Do+Φ do)−(Φ Di+Φ di))·(n+1)/t≦0.6 holds, provided that Φ Di+Φ di=2e; or 0.3≦((Φ Do+Φ do)−(Φ Di+Φ di))·n/t≦0.6 holds, provided that Φ Do+Φ do=2e.
73 GEAR PUMP AND PRINTING APPARATUS PROVIDED WITH SAME US15095250 2016-04-11 US20160303864A1 2016-10-20 Masaaki ANDO; Noritaka MITSUO; Norihiro MARUYAMA
A gear pump for transporting a fluid includes a pump casing; and a gear assembly which is accommodated in the pump casing. The gear assembly includes a driving gear, a driven gear that mashes with the driving gear, a driving gear shaft to which the driving gear is attached, a driven gear shaft to which the driven gear is attached, and a bearing frame that rotatably supports the driving gear shaft and rotatably supports the driven gear shaft.
74 Piston with replaceable and/or adjustable surfaces US14206016 2014-03-12 US09303641B2 2016-04-05 Lee Hilpert; Rolando Nico M. Ramos; William W. Blodgett
A piston for a pump a hub portion defining opposing outer portions, and inserts configured to provide an adjustable surface coupled to each of the opposing outer portions. The hub portion includes a first hub portion and a second hub portion configured to abut one another. Each of the inserts includes an outer shell and a base portion. The first hub portion includes a plurality of the opposing outer portions, and each of the base portions of the inserts is adjustably coupled to respective opposing outer portions of the first hub portion. A pump includes a housing having an inlet and an outlet, and at least two pistons having a hub portion and inserts. The pump may be a positive-displacement, rotary pump, and the pistons may be circumferential pistons.
75 TWO-SHAFT ROTARY PUMP US14782735 2014-05-29 US20160040669A1 2016-02-11 Yosuke YOSHIDA; Shingo HARAYAMA; Shun MIYAZAWA; Humihiko YAMADA
Provided is a two-shaft rotary pump which is capable of improving reliability and operation efficiency by preventing an exhaust gas from flowing backward into a pump as much as possible, preventing the interior of the pump form being excessively compressed as much as possible, and suppressing temperature rise in the pump. A two-shaft rotary pump in which two rotating shafts (20, 20) provided with rotors (30, 30) are supported by bearings, such that the two rotors (30, 30) are rotated in a noncontact manner with a small clearance kept therebetween and the two rotors (30, 30) are rotated in a noncontact manner with a small clearance between an inner surface of a cylinder (50) and the two rotors, and a gas sucked into the cylinder (50) and compressed is discharged from the cylinder (50), wherein an escape hole capable of letting a part of the compressed gas escape is provided in at least one of end wall portions (52) constituting both ends of the cylinder (50) and opened in the axial direction of the rotating shafts (20, 20).
76 ROTARY COMPRESSOR AND REFRIGERATING CYCLE APPARATUS US14553585 2014-11-25 US20150078933A1 2015-03-19 Kazu TAKASHIMA; Hisataka KATO; Keiichi HASEGAWA; Masahiro HATAYAMA
According to one embodiment, a rotary compressor accommodating an electric motor portion and a compression mechanism portion in a sealed case, wherein the compression mechanism portion comprises a cylinder, a roller, and a vane. The vane is disposed by stacking two divided vanes in a height direction of the cylinder, which is an axis direction of the rotation axis, and where a height dimension of one divided vane is H, and a minute gap between a height dimension of the cylinder and a height dimension of the two stacked divided vanes is L, a proportion of the minute gap L to the vane height dimension H per one divided vane is 0.001
77 PISTON WITH REPLACEABLE AND/OR ADJUSTABLE SURFACES US14206016 2014-03-12 US20140271312A1 2014-09-18 Lee Hilpert; Rolando Nico M. Ramos; William W. Blodgett
A piston for a pump a hub portion defining opposing outer portions, and inserts configured to provide an adjustable surface coupled to each of the opposing outer portions. The hub portion includes a first hub portion and a second hub portion configured to abut one another. Each of the inserts includes an outer shell and a base portion. The first hub portion includes a plurality of the opposing outer portions, and each of the base portions of the inserts is adjustably coupled to respective opposing outer portions of the first hub portion. A pump includes a housing having an inlet and an outlet, and at least two pistons having a hub portion and inserts. The pump may be a positive-displacement, rotary pump, and the pistons may be circumferential pistons.
78 Rotary pump including inner rotor and outer rotor having different axial size of an axial clearance US13048085 2011-03-15 US08585384B2 2013-11-19 Tomonobu Kuroda; Kenichi Oishi
A housing includes a pump chamber, which rotatably receives an inner rotor and an outer rotor that define a pressure chamber therebetween. An inlet port of the housing is communicated with the pressure chamber to supply fluid into the pressure chamber. An outlet port of the housing is communicated with the pressure chamber to discharge the fluid from the pressure chamber. An axial size of an axial clearance, which is formed between an axial end surface of the pump chamber and an axial end surface of the inner rotor, differs from an axial size of an axial clearance, which is formed between the axial end surface of the pump chamber and an axial end surface of the outer rotor.
79 Two-Spindle Pump of Single-Flow Construction US13754650 2013-01-30 US20130251581A1 2013-09-26 Weshen Christov; Hans Jung
The invention relates to a two-spindle screw pump of single-flow construction, comprising a pump housing, which has a pump portion, a bearing portion and a gear portion with a gear chamber, wherein the bearing portion and the pump portion are realized separately from each other characterized in that the gearwheel and the fastening element (and thus the shaft) are mutually rotatable, so that a spacing of the flanks of the feed screws (the flank clearance of the feed screws) is adjustable, that an opening is provided on the gear portion of the pump housing, that the opening is provided with a detachable cover, that the opening is arranged such that the cover is detachable in the mounted state of the screw pump, and that the gear chamber, for the adjustment of the flank clearance of the feed screws, can be reached with the tool necessary for this purpose.
80 Scroll compressor having an allowable angle of rotation US13170364 2011-06-28 US08403655B2 2013-03-26 Takayuki Kuwahara; Tetsuzou Ukai; Katsuhiro Fujita; Kazuhide Watanabe; Tomohisa Moro
A scroll compressor that suffers no decrease in compression performance due to leakage resulting from a twisting assembly error is provided. This scroll compressor includes a fixed scroll and an orbiting scroll, each including a spiral wrap protruding from an end plate and having the same tooth thickness (Tr) and the same base-circle radius (b) defining an involute surface. The fixed scroll and the orbiting scroll are offset from each other by an orbiting radius (ρ) and mesh such that the respective wraps face each other with a phase shift of 180°. The orbiting scroll revolves/orbits along a circular orbit with the orbiting radius (ρ) to compress a gas while a rotation-preventing mechanism prevents rotation of the orbiting scroll.
QQ群二维码
意见反馈