序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 Steam and water blending system for steam vaults US714744 1968-03-20 US3987130A 1976-10-19 Perry Arant
Apparatus for blending dry or slightly moist steam with water to produce wet steam of 20% to 70% moisture content by weight for treating logs or other objects in a closed steam treatment vat or vault. The apparatus includes a blender having a mixing chamber, to one end of which comparatively dry steam from a suitable source is supplied at constant pressure and flow rate through a pilot-operated pressure reducing main valve and a metering orifice. The blender also has a port through which water at a constant pressure and volume is supplied to the mixing chamber by a positive displacement pump maintained under a constant gravity head of water in an elevated supply tank. The outlet of the blender is connected to a back pressure regulator for controlling the outlet pressure of the blended mixture of water and steam to be supplied to the vault. The pilot valve is connected across the main steam valve and has a solenoid valve connected in the line supplying operating fluid to said main valve. The apparatus is controlled by a circuit including switches connected to the solenoid valve, and to an electric motor for driving the positive displacement water pump. The switches are connected in circuit with a sensing switch that is responsive to the temperature of the condensate within the vault, or to some other suitable criteria. The system functions automatically to blend water with relatively dry steam to continuously or intermittently supply wet steam having a substantially constant high moisture content at a substantially constant volume and pressure, as conditions in the vault require.
22 Steam conversion valve US86151359 1959-12-23 US3134827A 1964-05-26 WERNER PONTOW; RICHARD OERTEL
23 System combining power generator and desalination device JP2012204228 2012-09-18 JP2014058903A 2014-04-03 MATSUMURA MASAYOSHI
PROBLEM TO BE SOLVED: To provide a system, which combines a power generator and a desalination device, capable of producing freshwater without using a reverse osmosis membrane device.SOLUTION: In a system which combines a power generator (100) and a desalination device (200), the power generator (100) has: a circulation circuit (10) which serially connects a first heat exchanger (11), an expander (12), a second heat exchanger (13) with a space (13a) to produce steam (M) by evaporating seawater and a working medium pump (14); and a generator (15). The desalination device (200) has: a suction pump (21) to suction gas in the space (13a); control means (31) which drives the suction pump (21) so that pressure inside the space (13a) becomes saturated water vapor pressure; a condenser (22) which condenses the steam (M) introduced from the space (13a); and a freshwater tank (203) which stores freshwater (W) condensed by the condenser (22).
24 Low temperature steam generating device JP18984395 1995-07-03 JP2837644B2 1998-12-16 YASUGATA AKIHIKO
25 JPS60521B2 - JP3025975 1975-03-14 JPS60521B2 1985-01-08 KARURU HAINTSU KURYUUGERU; RAINHARUTO ARUTOFUERUDERU
26 Pressure reducing device of steam JP10498083 1983-06-14 JPS59231111A 1984-12-25 KUNISADA HIROSHI
PURPOSE:To enable to decrease the energy loss during the pressure reduction by a structure wherein a bypass piping is provided with respect to a main steam piping led to the demand side and a steam turbine is arranged in the bypass piping so as to reduce the steam pressure just before the demand down to the pressure required at the demand side by passing a part of steam through the steam turbine. CONSTITUTION:A pressure indicating controller 21 controls valves 2 and 3 so as to obtain steam pressure required at a demand 22 side. However, because the pressure reduction by a pressure reducing valve 2 causes energy loss, the degrees of priority of the valves 2 and 3 are determined in their controlling so as to pass steam as large as possible through a bypass piping 18 in order to reduce the pressure of the steam at a steam turbine 4. In this case, the valve 2 may be fully open, if the steam pressure used at the demand 22 side permits. On the other hand, a flow indicating controller 19 measures the steam flow rate in a main steam pipe 17 and leads the steam exceeding the maximum steam flow rate passing through the pressure reducing valve 2 into an accumulator 5 so as to back-up in response to the increase of the required steam amount. Thus, the energy loss during the pressure reduction can be decreased and yet can be recovered as effective energy.
27 Apparatus for commonly using steam JP9849781 1981-06-26 JPS5756613A 1982-04-05 JIYOOJI JIYOSEFU SHIRUBESUTORI
28 太陽熱発電システム JP2014525848 2013-07-17 JP5984935B2 2016-09-06 篠崎 康平; 丸本 隆弘; 四方 哲夫; 鹿島 淳; 多田隈 聡
29 太陽熱発電システム JP2014525848 2013-07-17 JPWO2014014027A1 2016-07-07 康平 篠崎; 丸本 隆弘; 隆弘 丸本; 哲夫 四方; 淳 鹿島; 聡 多田隈
低コストで簡素な太陽熱発電システムを提供する。本発明に係る太陽熱発電システムは、集熱装置(2,4)と、蒸気タービン(5)と、発電機(16)と、集熱装置で生成された過熱蒸気を蒸気タービンへ供給する過熱蒸気供給ラインと、蒸気タービンから排出された蒸気を復して集熱装置へ給水する給水ラインと、蓄熱媒体を有する蓄熱装置(8)と、過熱蒸気供給ラインから分岐し、過熱蒸気供給ラインを流れる過熱蒸気を蓄熱装置へ供給する第1ラインと、給水ラインから分岐し、給水ラインを流れる水を蓄熱装置へ供給する第2ラインと、蓄熱装置で生成された過熱蒸気を蒸気タービンへ供給する第3ラインと、を備える。蓄熱装置は、第1ラインを流れてきた過熱蒸気の熱を蓄熱媒体に蓄熱すると共に、第2ラインを流れてきた水を蓄熱媒体によって加熱して過熱蒸気を生成する。
30 Apparatus for generating low temperature steam JP18984395 1995-07-03 JPH0921501A 1997-01-21 YASUGATA AKIHIKO
PROBLEM TO BE SOLVED: To implement accurate control in heat insulation and heating by use of low temperature saturated steam as a heating medium by reducing deviation of steam pressure. SOLUTION: Low temperature steam is introduced into a user 7 through a pressure-reducing section 2 having a vacuum pressure reducing valve 3 for reducing pressure of steam to or below an atmospheric pressure and a cooling section 4 for changing the pressure-reduced steam into saturated steam by cooling the pressure-reduced steam. The vacuum pressure-reducing valve 3 is given a set pressure regardless of the atmospheric pressure, and the vacuum pressure-reducing valve 3 is controlled to set temperature of the low pressure steam to a required saturation temperature by detecting and feeding back pressure of the low pressure steam and detecting temperature of the low pressure steam. The cooling section 4 has a spray nozzle, which jets cooling water through a filter, provided in a passage 61 for introducing the low pressure steam into a main body 6 of a cooling device, and the main body 6 of the cooling device is composed of a cylindrical tube having a passage through which the low pressure steam flows and multiply-perforated choke plates arranged in a series of multiple steps in the passage.
31 Steam recovering method JP1264184 1984-01-25 JPS60156913A 1985-08-17 NAKAHARA YOSHIKI; MAEKAWA HIROSHI
PURPOSE:To aim at improvement in the utilization factor of steam, by installing a pressure regulating valve and a steam turbine in a piping system, leading the steam produced out of a converter boiler, interposingly in parallel. CONSTITUTION:A pressure regulating valve 17 and a steam turbine 10 are installed in a piping system 7, which leads steam to be produced out of a converter boiler, interposingly in parallel. An arithmetic unit 30 calculates output of the steam turbine 10 on the basis of each signal out of pressure gauges 23 and 25 at both inlet and outlet sides of the steam turbine and a flow meter 24. When the output is larger than an allowable maximum output value, an opening of the pressure regulating valve 17 is made larger, and when it is smaller than an allowable minimum output value, the opening of the pressure regulating valve 17 is made larger as well, while inflow of the steam into the steam turbine 10 is intercepted. With this constitution, improvements in the utilization factor of steam energy is well promoted.
32 Steam saturator for fabric finishing apparatus JP5071378 1978-04-27 JPS53134987A 1978-11-25 KURAUSU HAIDAN
33 JPS50127003A - JP3025975 1975-03-14 JPS50127003A 1975-10-06
34 SOLAR POWER SYSTEM EP13819708.2 2013-07-17 EP2894330A1 2015-07-15 SHINOZAKI Kohei; MARUMOTO Takahiro; SHIKATA Tetsuo; KASHIMA Jun; TADAKUMA Satoshi

Provided is an inexpensive and simple solar power system. A solar power system according to the present invention includes: a heat collection apparatus (2, 4) ; a steam turbine (5), a power generator (16); a superheated steam supply line which supplies the steam turbine with superheated steam generated by the heat collection apparatus; a water supply line which condenses the steam expelled from the steam turbine into water and supplies the condensed water to the heat collection apparatus; a heat storage device (8) which has a heat storage medium; a first line which branches from the superheated steam supply line and which supplies the heat storage device with the superheated steam flowing through the superheated steam supply line; a second line which branches from the water supply line and which supplies the heat storage device with the water flowing through the water supply line; and a third line which supplies the steam turbine with superheated steam generated by the heat storage device. The heat storage device stores the heat of the superheated steam which has flowed through the first line in the heat storage medium, and heats the water which has flowed through the second line with the heat storage medium to thereby generate the superheated steam.

35 Steam-heating apparatus EP07006790.5 2000-12-15 EP1795845B1 2008-09-17 Kumamoto, Tadaaki
36 Desuperheater apparatus for steam lines EP06425745.4 2006-10-30 EP1918532A1 2008-05-07 Ruggeri, Salvatore

A desuperheater apparatus (1) for steam lines, which comprises a plurality of chambers (2, 3, 4) including a final chamber (4) whose upstream end is closed by a steam diffuser (11) having a plurality of holes (12) for the passage of steam. Spray nozzles (9) are associated to the final chamber (4) for generating respective spray cones therein. Advantageously, the steam diffuser (11) has a conical shape so that, at each spray nozzle (9), the perforated portions of the steam diffuser (11) are inclined in such a manner as to be substantially parallel to the lateral surface of the spray cones (C) generated by their corresponding spray nozzles.

37 Rohrleitungsanordnung EP07002890.7 2007-02-12 EP1903280A2 2008-03-26 Duttke, Christian; Fischbeck, Tino; Kappen, Martin; Kuschy, Torsten

Die Erfindung betrifft eine Rohrleitungsanordnung an einem Dampferzeuger mit Zwischenüberhitzerkreislauf, wobei die Rohrleitungsanordnung wenigstens Frischdampfleitungen und Zwischenüberhitzerleitungen umfasst, wobei die Frischdampfleitungen über schaltbare Ventile an den Zwischenüberhitzerkreislauf angeschlossen sind, so dass bedarfsweise Frischdampf in den Zwischenüberhitzerkreislauf abgelassen werden kann, wobei ein Rohrleitungsabschnitt von einer Ventile umfassenden Armatur in den Zwischenüberhitzerkreislauf als Abdampfstrecke ausgebildet ist, wobei die Abdampfstrecke n parallele Rohrleitungsabschnitte umfasst und vorzugsweise die Anzahl n der parallelen Rohrleitungsabschnitte der Anzahl der angeschlossenen Frischdampfleitungen (2) entspricht, und wenigstens ein Teil der parallelen Rohrleitungsabschnitte stromabwärts zusammengeführt sind.

38 Steam-heating apparatus EP07006789.7 2000-12-15 EP1795844A3 2007-06-27 Kumamoto, Tadaaki

In a steam-heating apparatus in which a heating section (2) formed in a heat exchanger (1) is connected to a steam supply pipe (3) for receiving supply of heating steam and connected also to a condensate recovering unit for collecting condensate from the heating section (2) produced as a result of heating the heat exchange vessel, wherein said condensate recovering unit (6) includes a high-pressure control fluid inlet (10) for receiving high-pressure control fluid for pressure-transporting and discharging the condensate; and

the apparatus further comprises:

an ejector (5) including a suction chamber (13) connected to the heating section (2) for evacuating the heating section (2), said ejector (5) having an inlet for receiving supply of the high-pressure control fluid and an outlet connected to the high-pressure control fluid inlet (10) of the condensate unit,

and a valve means for connecting the heating section (2) and the suction chamber (13) of the steam ejector (5) when air has accumulated in the heating section (2) wherein the valve means comprises a temperature-responsive valve (12) which is opened in response to a drop in the temperature by a predetermined value in the heating section (2) so as to allow suction of gas from the heating section (2) into the suction chamber (13) of the ejector (5).

39 VERFAHREN UND EINRICHTUNG ZUR ERZEUGUNG VON ÜBERHITZTEM DAMPF AUS SATTDAMPF SOWIE DAMPFKRAFTANLAGE EP96945485.0 1996-10-08 EP0856126A2 1998-08-05 NEUBERT, Wolfgang
To ensure reliable production of superheated steam from saturated steam using simple means, a first subsidiary stream t1 of the saturated steam is throttled before being superheated by heat exchange with a second subsidiary stream t2 of saturated steam. A steam turbine (2), when supplied with this superheated reserve steam (SD) taken from a steam collecting drum (24) of its water-steam circulation (34), is exposed to a particularly low corrosion risk even during start up following a night stoppage.
40 Dampfumformverfahren EP89122642.5 1989-12-08 EP0373524A1 1990-06-20 Von Nordheim, Günther, Dr. Dipl.Ing.; Sass, Jochen, Dipl-.Ing.

Ein Dampfumformverfahren, bei dem Frischdampf eines durch Temperatur TFD und Druck pFD gegebenen thermodynamischen Zustand 1 in Abdampf eines durch Temperatur TAD und Druck pAD gegebenen thermodynamischen Zustand 2 mittels eines Dampfumformventil mit Kühlwassereinspritzung überführt wird, dessen Frischdampfdurchlaß (Massenstrom ṁFD) und dessen Kühlwasserdurchsatz (Massenstrom ṁKW) mit dem einstellbaren Hub eines Ventilkörpers im Dampfumform- bzw. im Kühlwasserventil veränderbar sind, wobei das Dampfumformventil mit mindestens einem Regler zusammenwirkt, der zumindest eine von Temperatur und/oder Druck des Abdampfes (TAD; pAD) abhängige Regelgröße erzeugt, die zumindest auf den Kühlwasserdurchsatz über vom Regler an den Hilfsantrieb abgegebene Stellgröße einwirkt, soll so weitergebildet werden, daß ein sicherer Betrieb derartiger Ventile erreicht wird, wobei insbesondere auch eine Anpassung des Reglerverhaltens an fertigungs- bzw. verschleißbedingte Abweichungen des Ventils von seiner idealen Kennlinie möglich sein soll. Dazu wird der Hub des Ventilkörpers des Dampfumformventils abgenommen, sein Wert dem Rechner zugeführt, der daraus den das Dampfumformventil durchsetzenden Frischdampf-Massenstrom ṁFD und den dazu gehörenden Wärmestrom berechnet, ebenso der Hub des Ventilkörpers des Kühlwasserventils, aus dem dieser den das Kühlwasserventil durchsetzenden Kühlwasser-Massenstrom ṁKW berechnet und weiter aus den Massenströmen von Frischdampf und Kühlwasser unter Berücksichtigung der Wärmebilanz die zu erwartenden Werte für Temperatur T'AD und Druck p'AD, die dieser dann mit den den Meßwerten TAD und pAD vergelicht und daraus in an sich bekannter Weise die Stellgrößen für die Regelung der Kühlwassereinspritzung ableitet.

QQ群二维码
意见反馈