序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
121 THERMALLY ACTIVATED HIGH EFFICIENCY HEAT PUMP EP07811585.4 2007-08-28 EP2195587A1 2010-06-16 VAISMAN, Igor B.; TARAS, Michael F.; SANGIOVANNI, Joseph J.
A vapor compression cycle system is combined with a Rankine cycle system, with the two systems having a common suction accumulator from which the compressor draws refrigerant vapor for the vapor compression cycle system and from which a pump draws liquid refrigerant for circulation within the Rankine cycle system. The vapor from the Rankine cycle system expander is passed to the compressor discharge to provide a mixture which is circulated within the vapor compression cycle system to obtain improved performance. The heat exchangers are sized so as to obtain a non-complete evaporation, with the resulting two-phase fluid passing to the suction accumulator to provide liquid refrigerant to the Rankine cycle system and vapor refrigerant to the vapor compression cycle system.
122 KRAFTWERK ZUR KÄLTEERZEUGUNG EP03720193.6 2003-03-17 EP1488080B1 2006-10-11 STUHLMÜLLER, Franz
The invention relates to a power station (1) comprising at least one steam turbine (5) and/or gas turbine (52) which is connected to at least one absorption type refrigeration machine (10) in order to produce refrigeration, whereby the absorption type refrigeration machine (10) is operated by means of steam (12) which is taken from the steam turbine (5), or by means of waste heat (AH,AH') produced by the gas turbine (52).
123 Mehrstufige Einrichtung mit Arbeitsfluid- und Absorptionsmittel-Kreisläufen, und Verfahren zum Betrieb einer solchen Einrichtung EP94101668.5 1982-03-24 EP0597822A2 1994-05-18 Alefeld, Georg, Prof. Dr.

Es werden mehrstufige Einrichtungen beschrieben, die mit Absorberkreisläufen arbeiten, zur Nutzbarmachung von Wärmeenergie und/oder Arbeit verwendet werden können und sich durch einen hohen Wirkungsgrad und/oder eine hohe Anpassungsfähigkeit auszeichnen. Die Einrichtungen arbeiten mit einem Arbeitsfluid, welches in einem Absorptionsmittel absorbierbar ist und enthalten als Hauptkomponenten sogenannte Austauscheinheiten und gegebenenfalls zusätzlich auch mindestens eine Druckmaschine. Unter einer "Austauscheinheit" sollen Absorber, Kondensator, Resorber, Verdampfer, Desorber und Absorber, wie sie bei Absorber- und Resorber-Maschinen üblich sind, verstanden werden; der Begriff "Druckmaschinen" soll Kompressoren und Expansionsmaschinen umfassen. Bevorzugte Ausführungsformen der vorliegenden Einrichtung sind Wärmepumpen, die sich in weiten Bereichen an veränderliche Außentemperaturen und veränderlichen Wärmebedarf anpassen lassen.

124 A MODULAR DEVICE FOR THE EXPLOITATION OF THE HEAT IN FLUID MEANS AT LOW TEMPERATURE EP89901471.0 1989-01-11 EP0356470A1 1990-03-07 CONGIU, Ignazio
Le dispositif faisant l'objet de cette invention comprend un évaporateur (H) séparé ou inséré dans des capsules, permettant la transformation de l'énergie thermique contenue dans l'eau ou dans l'air, de manière à permettre la réalisation de systèmes fixes produisant de l'énergie électrique ou autre, et de propulseurs pour des véhicules marins, sous-marins, terrestres et aériens.
125 Mehrstufige Einrichtung mit Arbeitsfluid- und Absorptionsmittel-Kreisläufen, und Verfahren zum Betrieb einer solchen Einrichtung EP82102473.4 1982-03-24 EP0061721A1 1982-10-06 Alefeld, Georg, Prof. Dr.

Es werden mehrstufige Einrichtungen beschrieben, die mit Absorberkreisläufen arbeiten, zur Nutzbarmachung von Wärmeenergie und/oder Arbeit verwendet werden können und sich durch einen hohen Wirkungsgrad und/oder eine hohe Anpassungsfähigkeit auszeichnen. Die Einrichtungen arbeiten mit einem Arbeitsfluid, welches in einem Absorptionsmittel absorbierbar ist und enthalten als Hauptkomponenten sogenannte Austauscheinheiten und gegebenenfalls zusätzlich auch mindestens eine Druckmaschine. Unter einer "Austauscheinheit", sollen Absorber, Kondensator, Resorber, Verdampfer, Desorber und Absorber, wie sie bei Absorber- und Resorber-Maschinen üblich sind, verstanden werden; der Begriff "Druckmaschinen" soll Kompressoren und Expansionsmaschinen umfassen. Bevorzugte Ausführungsformen der vorliegenden Einrichtung sind Wärmepumpen, die sich in weiten Bereichen an veränderliche Außentemperaturen und veränderlichen Wärmebedarf anpassen lassen.

126 COGENERATION ENERGY BALANCING SYSTEM EP81902210.0 1981-08-03 EP0057695A1 1982-08-18 WILKINSON, William H.
Un systeme permet d'ameliorer la capacite d'installations de co-generation a satisfaire une demande variable en energie electrique et en vapeur industrielle. Un ou plusieurs systemes de surgeneration thermique (30) ayant chacun un evaporateur a cycle Rankine (36) couple avec un cycle de pompe a chaleur a solution est integre avec les turbines (10, 16) de l'installation de co-generation pour maintenir un ecoulement total de vapeur au travers des turbines et assurer une partie des besoins en vapeur a usage industriel sur l'installation. Eventuellement, une turbine de finition (100) est ajoutee au systeme pour ameliorer sa souplesse dans le but de satisfaire les besoins variables.
127 Power generation-refrigeration system and method of operating the same EP79103686.6 1979-09-28 EP0010210A1 1980-04-30 Leonard, Louis H.

A power generation-refrigeration system (10) comprising a primary turbine (20), power genereating means (70), and a reversible turbomachine (26) having a compressor mode of operation and a turbine mode of operation. To produce power, the reversible turbomachine (20) operates as a turbine, and vapor is conducted along a first flow path (35) between the primary turbine (20), the reversible turbomachine (26), and a condenser (34). To produce a refrigeration effect, vapor is conducted along a second flow path (43) between the primary turbine (20), the reversible turbomachine (26), the condenser (34), and an evaporator (42).

128 Verfahren zur Erzeugung von Wärmeenergie durch Kombination der Kraft-Wärme-Kopplung mit der Wärmepumpe EP79102746.9 1979-08-01 EP0008680A2 1980-03-19 Schneider, August, Dr.; König, Wolfgang, Dr.; Eder, Roman

Die Erfindung betrifft ein Verfahren zur Erzeugung von Wärmeenergie für Heizzwecke durch Kombination der Kraft-Wärme-Kopplung mit der Wärmepumpe. Der Kompressor der Wärmepumpe wird erfindungsgemäß von einer Gegendruck-Dampfturbine oder einem Dampfmotor direkt angetrieben. Die Wärmepumpe pumpt Wärme aus einer äußeren Wärmequelle mit niedriger Temperatur in den Heizkreislauf, danach wird die Wärmeenergie des GegendruckDampfes über Wärmetauscher ebenfalls in den Heizkreislauf überführt. Das Verfahren ist unabhängig von der Art des Brennstoffs, vorzugsweise werden geringwertige Brennstoffe eingesetzt; es ermöglicht, Wärmeenergie für Heizzwecke auf wirtschaftliche, umweltfreundliche und brennstoffsparende Weise zu erzeugen. Mit dem Verfahren erreicht man einen Gesamtwirkungsgrad, der auch unter ungünstigen Verhältnissen deutlich über 100 % liegt. Das Verfahren ist bei sehr großen Leistungen anwendbar.

129 ヒートポンプを備えたランキンサイクルを用いた、熱エネルギーを機械エネルギーに変換する方法 JP2016550960 2014-09-17 JP2016540929A 2016-12-28 クロード マビル、
本発明は、ヒートポンプを備えたランキンサイクルであって、ヒートポンプ(2)が組み込まれたランキンサイクルを用いた、熱エネルギーを機械エネルギーに変換する方法およびシステムに関する。
130 熱回収及び改良方法及び当該方法における使用のためのコンプレッサ JP2016525314 2014-07-01 JP2016531263A 2016-10-06 ベファーレン,ペトラス カロルス ファン
熱回収及び改良方法が、引き続き起こるステップ、即ち、作業流体ストリーム(11)内に液相を含む作業流体を提供するステップ、液相にある作業流体を気化させて液相及び気相にある二相作業流体ストリーム(12)を得るために作業流体ストリームに熱を移転する(20)ステップ、作業流体の温度及び圧を増大させ且つ液相にある作業流体を気化させるために二相作業流体ストリームを圧縮する(30)ステップ、及び作業流体の凝縮を用いて作業流体ストリーム(13,14,15)からの熱を移転する(40,60)ステップのサイクルを含む。第1のステップにおいて、熱が作業流体に移転されるとき、作業流体は主に液相にある単相作業流体ストリームであるのが好ましい。第3のステップにおいて、液相にある作業流体は、二相作業流体ストリームが維持されるよう、特に湿った気相作業流体が維持されるよう、気化させられるのが好ましい。
131 蒸気システム JP2011040768 2011-02-25 JP5742079B2 2015-07-01 金丸 真嘉; 越智 康夫; 川上 昭典; 田坂 美佳; 森田 昭生
132 発電プラント及び発電プラントの運転方法 JP2010530785 2009-01-30 JPWO2010086898A1 2012-07-26 孝次 難波; 重雄 幡宮; 高橋 文夫; 文夫 高橋; 西田 浩二; 浩二 西田; 晋 中野; 柴田 貴範; 貴範 柴田
発電プラント、例えば、沸騰原子発電プラントは、原子炉で発生した蒸気を高圧タービン及び低圧タービンに供給している。低圧タービンから排出された蒸気は、復水器で凝縮される。復水器で生成された水は、給水として、給水配管を通り、低圧給水加熱器及び高圧給水加熱器で加熱されて原子炉に供給される。高圧給水加熱器には、高圧タービンから抽気された抽気蒸気が供給される。低圧タービンから抽気された蒸気は、蒸気圧縮機で圧縮されて温度が上昇して高圧給水加熱器に供給される。原子炉に導かれる給水は、高圧給水加熱器で、高圧タービンからの抽気蒸気及び蒸気圧縮機で圧縮された蒸気によって加熱される。高圧給水加熱器で、抽気蒸気及び圧縮蒸気によって給水を加熱するので、蒸気圧縮機での所内電力の消費量を低減できる。このため、出力向上の際にプラントの熱効率を向上させることができる。
133 Integrated plant cooling system JP2008014342 2008-01-25 JP2008185031A 2008-08-14 CHILLAR RAHUL J; SMITH RAUB W
<P>PROBLEM TO BE SOLVED: To provide an integrated power plant cooling system for an electrical generating power plant driven by a gas turbine (105) to cool power plant components. <P>SOLUTION: The integrated cooling system includes a heat source (158) extracted from the power plant and an absorption chiller (160) utilizing energy from the heat source (158) to cool a chilling medium (170). An integrated cooling skid includes heat removal devices (110, 115, 120, 125, 140) for the plurality of power plant components. The chilling medium (170) output from the absorption chiller (160) is circulated to the heat removal devices (110, 115, 120, 125, 140) for the power plant components of the integrated cooling skid (150). Plant cooling water (145) may remove heat from the absorption chiller (160). <P>COPYRIGHT: (C)2008,JPO&INPIT
134 Multistage apparatus having working-fluid and absorption cycles and method of operation thereof JP34527395 1995-12-06 JPH08233389A 1996-09-13 GEORUKU AREFUERUTO
PROBLEM TO BE SOLVED: To provide a novel and advantageous multistage apparatus for thermal energy control by a method wherein working fluid in the absorbent circuit of one generator working at a high pressure has steam pressure characteristics having temperature higher than that of the steam pressure characteristics of working fluid in the other working fluid circuit of the other generator. SOLUTION: This device contains two working fluid circuits having seven containers. One container (A1 ×B1 ) thereof is common to the two working fluid circuits. The two containers work at a high pressure area, the two containers works at a low pressure area, the three containers work at an intermediate pressure rear, the container common to the two working fluid circuits works at the lowermost temperature area (a class A2 ×B2 ), and working fluid is circulated in a form of a heat pump. In this case, heat is transferred between at least the two containers. Working fluid in the absorbent circuit of one generator working at a high pressure of two generators working at a given pressure has steam characteristics having temperature higher than that of the steam pressure characteristics of working fluid in the other working fluid circuit of the other generator working at a further lower pressure.
135 Compound fluid turbine plant JP886589 1989-01-18 JPH02188605A 1990-07-24 NAKAMURA YOSHIHIDE
PURPOSE: To control a temperature in a condenser by constructing a device to recovery heat of condensation in the condenser by a heat pump system in a compound fluid turbine plant wherein water steam and steam of fluid heat of condensation of which is smaller than water are simultaneously used. CONSTITUTION: After liquidizing fluid flowed out a turbine 1 by a condenser 2, the fluid is pressurized by a condenser pump 3 and is introduced to a separator 4. Each fluid flowed out the separator 4 is pressurized by a liquid feed pump 5 and a water feed pump 6 and is heated by a water feed heater 7 and is evaporated by a evaporator 8. The steam generated thereby is supplied via auxiliary heaters 9, 10 and a steam mixer 11 to a turbine for working. In a heat pump system, cooling medium flowed out a first compressor 12 gives heat to a secondary compressor system through a heat exchanger 13, and is expanded by expansion valves 15, 16. Then it absorb heat at the condenser 2 and evaporators 17, 18 before returning to the first compressor 12, and heat of condensation at the condensor 2 is recovered by the heat pump system. COPYRIGHT: (C)1990,JPO&Japio
136 Double flow turbine plant JP7289 1989-01-05 JPH02181002A 1990-07-13 NAKAMURA YOSHIHIDE
PURPOSE: To reduce variation in turbine inputs and eliminate also the drain of cooling water in the title turbine wherein the fluid steam having heat of condensation smaller than that of a water steam is used together with the water steam by recovering the heat of condensation in a condenser through a heat pump system. CONSTITUTION: Each fluid fed from a turbine 1 is condensated in liquid in a condenser 2, then being pressurized in a condensate pump 3, to be thus led in a separator 4. The fluid fed from the separator 4 is pressurized in a liquid feed pump 5 and a water feed pump 6, followed by heating in a fed liquid heater 7 to be evaporated in steam in an evaporator 8. The resultant steam is made to pass through plural auxiliary heaters 9, 10 and then returned to the turbine 1 through a steam mixer 11. Besides, refrigerant fed from a compressor 12 passes through an auxiliary heater 13 and then heats the liquid in the evaporator 8 while being expanded in respective expansion valves 15, 16 to absorb heat in the condenser 2 and respective evaporators 17, 18, followed by returning to the compressor 12 through the auxiliary heater 19. The turbine 1 is directly connected with the compressor 12 by means of an electric motor serving as a generator 20. COPYRIGHT: (C)1990,JPO&Japio
137 Heat and electricity feeding system JP19979787 1987-08-12 JPS6445908A 1989-02-20 TATEISHI AKITAKA; ARAKAWA TADAO; KUROSAWA MASARU; KUBO YOSHIFUMI; NAGAI HIROTSUGU
PURPOSE:To maintain the comprehensive efficiency of a system at a high value even when a seasonal fluctuation in an equipment load on the heat side is produced, by a method wherein, in a system to generate an electric output and a thermal output through utilization of steam, a generator and a compressor are respectively driven with the aid of a steam turbine. CONSTITUTION:A gas turbine 1 drives a generator 9 to generate an electric output. Exhaust gas 30 from the gas turbine 1 is guided to an exhaust heat recovery boiler 2, where feed water 32 from a water feed pump 31 is heated to generate steam 33. After the steam 33 is fed to a steam turbine 3, the steam produces the feed water 32 by means of a condenser 34 to return it to the boiler 2. Extraction steam 35 from the steam turbine 3 and the steam 33 from a steam feed valve 36 are fed to a thermal load 37 for heating. In this case, a generator 5 is coupled to the steam turbine 3 through a clutch 4 with a speed change gear, and a compressor 7 is coupled to the generator 5 through a clutch 6 with a speed increasing gear. The generator 5 and the compressor 7 are respectively driven by means of the steam turbine 3.
138 Steam power plant coupling reverse brayton cycle with rankine cycle JP10214885 1985-05-13 JPS61258904A 1986-11-17 FUJINO TAKUZO
PURPOSE:To aim at improvement in thermal efficiency, by making pressure gas turn to a coolant for a condenser, while adding a device of a deformed reverse Brayton cycle to the heat obtained upon heat exchange in a counter-flow way hereat, and heating and evaporating feed water with a steam generator. CONSTITUTION:As shown in a full line (thick line), pressure gas entered in a cooling pipe group of a condenser 12 is heat-exchanged with exhaust steam out of a steam turbine 11 in a counter-flow way and heated in uniform pressure. After the said pressure gas is further heated by boiler exhaust gas with a pressure gas heater 21, it passes through an intermediate pressure steam generator 18 as heated gas, and intermediate pressure feed water out of a feed water pump 13 is evaporated as saturated steam. This saturated steam is superheated with a superheater part 16 of a boiler, while a sufficient heat drop is given to it hereat, leading it into an intermediate pressure part of the steam turbine 11, and it is made to do work at the outside. With this constitution, such thermal efficiency as being almost nearly doubled over the past is attainable.
139 Energy conversion system JP5337885 1985-03-19 JPS61212609A 1986-09-20 TOMITA TSUTOMU
PURPOSE:To provide for oneself a considerable part of the enthalpy increase in a Rankine cycle heating vaporization process by the heat transfer between Rankine cycle and the cooling and heating cycles installed outside the Rankine cycle. CONSTITUTION:In cooling and temperature raising cycle, the fluid which flows in a circulation passage is pressurized by a compressing pump P-2 and jetted out form the nozzle of a jet pump JP-1. Therefore, the low-pressure gas which recovers heat from the fluid on a Rankine cycle side by a low-pressure heat exchanger E-1 is inhaled through a conduit connected to the low pressure side, and mixed with the high-pressure liquid jetted out from the nozzle and forms high-pressure liquid. Since heat is transferred to the Rankine cycle side fluid by the high-pressure heat exchangers E-3 and E-2, the input calorific heat of the external energy by a heat exchanger E-4 for temperature rise can be reduced.
140 JPS6033281Y2 - JP5833382 1982-04-21 JPS6033281Y2 1985-10-04
QQ群二维码
意见反馈