Document | Document Title |
---|---|
US11405749B2 |
Reciprocal-basis authorization for proximate presence reveal with location privacy maintained
A networked information system reveals location information only to user contacts within a geographic range of the location-revealing user, and then only on a reciprocal authorization basis. Such a system provides a scalable, privacy-maintaining location-based service framework suitable for social networks and mobile users. |
US11405747B1 |
Technology for managing location-based functionalities for electronic devices
Systems and methods for managing and facilitating geofencing features associated with electronic devices are disclosed. According to certain aspects, an entity may own or manage a set of retail stores. A server associated with the entity may receive an estimated location of an electronic device, and may determine that the estimated location is in proximity to one of the set of retail stores. The server may further calculate a geofencing boundary for the retail store based on certain location-based data, and may determine whether the estimated location of the electronic device is within the geofencing boundary. The server may additionally facilitate certain geofencing features based on the determination. |
US11405743B2 |
Downloading data to a mobile device
Methods, systems comprising one or more computer systems including a combination of hardware and software, and computer program products provide at a first mobile device a user interface, the user interface displaying indications of a plurality of computer applications available for installation on the first mobile device and the user interface enabling selection by a user of the first mobile device of one or more of the computer applications for installation on the first mobile device. The method, system, and computer program product store, in a database associated with a user account, an inventory of the one or more of the computer applications selected by the user of the first mobile device, receive an indication from the first mobile device that program data associated with a first one of the computer applications included in the inventory may be stored on a second mobile device, and receive an identifier corresponding to the user account from the second mobile device. After receiving the indication from the first mobile device and receiving the identifier from the second mobile device, the program data associated with the first one of the computer applications is transmitted to the second mobile device so long as the first one of the computer applications is compatible with and installed on the second mobile device. |
US11405742B2 |
Digital assistant
The present invention relates to a method for a digital assistant to generate output data, said method being implemented by a computer. Additionally, the invention also relates to a computer program and an electronic device. |
US11405741B2 |
Method and system for handling global transitions between listening positions in a virtual reality environment
A method (900) for rendering audio in a virtual reality rendering environment (180) is described. The method (900) comprises rendering (901) an origin audio signal of an origin audio source (113) of an origin audio scene (111) from an origin source position on a sphere (114) around a listening position (201) of a listener (181). Furthermore, the method (900) comprises determining (902) that the listener (181) moves from the listening position (201) within the origin audio scene (111) to a listening position (202) within a different destination audio scene (112). In addition, the method (900) comprises applying (903) a fade-out gain to the origin audio signal to determine a modified origin audio signal, and rendering (903) the modified origin audio signal of the origin audio source (113) from the origin source position on the sphere (114) around the listening position (201, 202). |
US11405738B2 |
Apparatus and method for processing multi-channel audio signal
Disclosed is an apparatus and method for processing a multichannel audio signal. A multichannel audio signal processing method may include: generating an N-channel audio signal of N channels by down-mixing an M-channel audio signal of M channels; and generating a stereo audio signal by performing binaural rendering of the N-channel audio signal. |
US11405737B2 |
Method for manufacturing MEMS microphone
The invention provides a method for manufacturing a MEMS microphone, including the steps of: providing a base and preparing a first diaphragm on a first surface of the base; preparing a back plate on a surface of the first diaphragm opposite to the first surface; forming a first gap between the first diaphragm and the back plate; preparing a second diaphragm; forming a second gap between the second diaphragm and the back plate; preparing electrodes; forming a back cavity by etching the surface opposite to the first surface. |
US11405732B2 |
Hearing assistance device
A hearing assistance device which is worn by the user and which can suppress the voices produced by the user wearing the hearing assistance device is provided. When the user wears the hearing assistance device 1, a pair of microphones is separated and positioned on both sides of a head of the user and a pair of speakers is separated and positioned on both ears of the user or positioned near the ears and which emits sound. The hearing assistance device includes a noise canceller 96 which subtracts a signal processed by a mouth directivity sound processor 93 from the input signal from at least one of the microphones L and R, in which the mouth directivity sound processor 93 emphasizes voice produced from a sound source positioned at a mouth of the user. |
US11405730B2 |
Multichannel minimum distance chirp echo detection
One implementation of a sensing method includes: correlating a receive signal with a first channel waveform template to obtain a first channel correlation signal in which first channel echoes would be represented as peaks; correlating the receive signal with a second channel waveform template to obtain a second channel correlation signal in which second channel echoes would be represented as peaks; and varying the first channel waveform template and the second channel waveform template based on time elapsed from a measurement start time. A sensor array implementation includes: multiple acoustic transducers that operate concurrently to send acoustic bursts in different frequency channels, each of the multiple acoustic transducers configured to use the foregoing method. |
US11405723B2 |
Method and apparatus for processing an audio signal based on equalization filter
A method for processing an audio signal, the method including: processing the audio signal according to a pair of mouth to ear transfer functions to obtain a processed audio signal; filtering the processed audio signal, using a pair of equalization filters, to obtain a filtered audio signal, where a parameter of the equalization filter is depends on an acoustic impedance of a headphone; and outputting the filtered audio signal to the headphone. Accordingly, this method counteracts the occlusion effect and to provides a natural perceived sound pressure. |
US11405717B2 |
Pressure equalizing earphone
An earphone has a body housing a transducer that is capable of generating an acoustic signal and directing the acoustic signal to an outlet in the body, the body being positionable in, on, or near an ear of user so that the acoustic signal can be directed into the ear canal of the user. The earphone also has an ear coupling mechanism comprising a sealing mechanism with a sealing member that is adapted to contact a portion of the ear of the user to at least partially create a seal between the ear canal and the external environment and a venting mechanism capable of venting air between the ear canal and the external environment, the venting mechanism comprising an air conduit that is adapted to communicate on one end with the ear canal and at another end with the external environment so that air can flow through the conduit to equalize a pressure differential across the sealing mechanism. The air conduit is sized and shaped so as to provide an improved audio performance over an earphone without the air conduit. |
US11405715B2 |
Information processing apparatus
The present technology relates to an information processing apparatus configured to obtain high comfortability. The information processing apparatus includes a plurality of board portions, an acquisition unit placed on one of the board portions and configured to acquire information associated with a wearer, and a connection portion being flexible and configured to connect the board portion to another of the board portions. The present technology is applicable to wearable devices. |
US11405711B1 |
Hearing device housings that store energy and methods of making the same
Hearing device housing blanks and methods of making hearing device housings that store energy. |
US11405701B2 |
Instantaneous energy resource use monitoring and customer engagement server
A system for resource monitoring includes: a resource server that monitors use of a resource, the server including: a meter reading processor, that communicates with resource monitors disposed within radio range of resource meters, where the resource meters transmit radio signals indicative of meter identifiers and current readings, and where the each of the resource monitors receives and decodes one or more of the radio signals to obtain one or more of the meter identifiers and current readings, and where the each of the resource monitors transmits the one or more of the meter identifiers and current readings over the internet cloud, and where the meter reading processor updates corresponding records in a resource database that indicate resource consumption of corresponding facilities; and an engagement processor, that causes alerts to be transmitted to client devices based on analyses of resource consumption that notify users of the unusual patterns of consumption. |
US11405700B2 |
Method and apparatus for instantaneous energy resource use monitoring and customer engagement
A system for resource monitoring includes: resource monitors, each disposed within radio range of corresponding resource meters that transmit corresponding radio signals indicative of corresponding meter identifiers and current readings, where the each of the resource monitors receive and decode one or more of the corresponding radio signals to obtain one or more of the corresponding meter identifiers and current readings, and where the each of the resource monitors transmit the one or more of the corresponding meter identifiers and current readings over the internet cloud; and a resource server, operatively coupled to the resource monitors via the internet cloud, configured to receive the one or more of the corresponding meter identifiers and current readings from the each of the resource monitors, and configured to employ the corresponding current readings to detect unusual patterns of resource consumption, and configured to send alerts corresponding to the unusual patterns of resource consumption. |
US11405697B2 |
Time-based workflow for linear ad insertion
A programmable and universal video platform enabling digital ads from ad sales teams, online digital exchanges, demand side platforms or other digital video advertising aggregators, to be inserted into linear television cable programming feeds. Content programmers distribute a programming schedule file for each linear programming feed. This data is then combined in the traffic and billing system with the advertising insertion orders from the various sales channels to create a local ad insertion schedule file. This schedule file includes a planned ad spot, but a time-based approach to ad insertion allows the schedule file to be modified such that the planned ad spot can be replaced with a replacement ad selected using the VAST digital ad selection protocol. Detection of the standard cue message in the programming feed triggers insertion of the replacement ad from the modified schedule file. |
US11405687B1 |
Systems and methods for controlling transmission of live media streams
A computer-implemented is disclosed. The method includes: receiving video data of a live media stream; obtaining, while the live media stream is being streamed, audience reaction data associated with the live media stream, the audience reaction data indicating, at least, an amount of audience engagement activity in connection with video content of the live media stream; identifying an event-of-interest in the live media stream based on a determination that a rate of change of the amount of audience engagement activity exceeds a threshold level; and in response to identifying the event-of-interest, automatically initiating one or more defined actions. |
US11405685B2 |
Efficient insertion of media items in media streams
This document describes systems, methods, devices, and other techniques for determining media items to insert in a media stream. A first media client can play a primary media stream that is multicast to various media clients including the first media client and other media clients. The first media client identifies a start of a primary programming timeslot in the primary media stream, and in response, obtains and stores a secondary media item. After storing the secondary media item at the first media client, the first media client detects an insertion signal in the primary media stream that indicates a secondary programming timeslot is about to begin in the primary media stream. The first media client can then play the secondary media item in place of the primary media stream during the secondary programming timeslot. |
US11405681B2 |
Apparatus, systems and methods for trick function viewing of media content
Systems and methods provide presentation control of media content. An exemplary embodiment receives media content that is currently received in a broadcasted media content stream; presents on a display a first presentation area, wherein the first presentation area presents a video portion of the media content; receives a user command that initiates a video presentation trick function; and presents in response to the user command a second presentation area, wherein the second presentation area presents the video portion of the media content in accordance with the video presentation trick function, and wherein the first presentation area and the second presentation area are concurrently presented on the display. |
US11405675B1 |
Infrared remote control audiovisual device and playback method thereof
A playback method of infrared remote control audiovisual device comprises: utilizing a display interface and an audio output interface to output frames and an audio signal of a video; utilizing an infrared sensor to receive a first indication signal; pausing a playback of the display interface and an output of the audio output interface according to the first indication signal, so that the display interface displays a paused frame; utilizing the infrared sensor to receive a second indication signal; determining a target character pattern of a target block in the paused frame according to the second indication signal; extracting a determined audio track corresponding to the target character pattern from the audio signal according to a relation between the pre-processed character feature sets and pre-processed audio tracks; controlling the display interface to resume the playback and controlling the audio output interface to output the determined audio track. |
US11405673B2 |
Bounce rate measuring apparatus for broadcasting service
There is provided a bounce rate measuring apparatus for a broadcasting service. The bounce rate measuring apparatus includes programs that are stored in memories and executed by processors. The programs include a first instruction for generating service provision information on provision of channels of broadcasting service; a second instruction for analyzing the service provision information to determine a first number based on the number of times that each channel is provided for a time period longer than or equal to a first threshold during a predetermined period and a second number based on the number of times that each channel is provided for a time period longer than or equal to the first threshold and shorter than or equal to a second threshold during the predetermined period; and a third instruction for extracting bounce rate information of each channel based on the first number and the second number. |
US11405671B2 |
Capturing information using set-top box for advertising insertion and/or other purposes
Various embodiments of how information about viewers of content provided via a set-top box can be captured, used to identify one or more of the viewers, and insert advertising into content viewed using the set-top box. The captured information can be used for other purposes. |
US11405665B1 |
System and method for asynchronous uploading of live digital multimedia with resumable connections
A system for transcoding a media stream includes at least one network interface; at least one memory; and at least one processor each coupled to one or more of the at least one network interface and one or more of the at least one memory. The at least one processor is configured to publish, via a messaging bus, a segment transcode request in a segment transcode request queue, retrieve the segment transcode request by a transcode worker thread, wherein the first transcode worker thread monitors the segment transcode request queue, transcode by a second transcode worker thread a segment referenced by the segment transcode request, determine by the manifest processor whether the second transcode worker thread has completed transcoding the segment and is still operating, and, if not, transcode the segment by a third transcode worker thread, and store the transcoded segment. |
US11405663B2 |
Rendering a modeled scene
Techniques for rendering a scene are disclosed. In some embodiments, a local database is populated with received three-dimensional object definitions. A received specification of a scene comprising a specification of objects comprising the scene is rendered according to the received specification using one or more three-dimensional object definitions already available in the local database. |
US11405660B2 |
Uplink and downlink methods for efficient operation of live uplink streaming services
Systems, methods, and devices of the various aspects enable uplink delivery and downlink distribution of media content to users in live uplink streaming services. In various embodiments, media in a live uplink streaming service may be distributed by unicast and/or broadcast delivery methods. Various embodiments may include receiving, in a processor of a live uplink streaming sink computing device, assistance data for a live streaming session, selecting, by the processor, one or more delivery methods for processed media of the live streaming session based at least in part on the assistance data, and transmitting, by the processor, the processed media using the selected delivery methods. |
US11405655B2 |
Image decoding device and image encoding device
The present invention avoids waste caused by performing both a Secondary Transform and an Adaptive Multiple Core Transform. Provided is a device including: a core transform unit (1521) that can perform an Adaptive Multiple Core Transform on a Coding Tree Unit; and a Secondary Transform unit (1522) that can perform, before the Adaptive Multiple Core Transform, a Secondary Transform on at least any one of sub-blocks included in the Coding Tree Unit. The device omits any of the Adaptive Multiple Core Transform and the Secondary Transform in accordance with at least any of a flag associated with the Adaptive Multiple Core Transform and a flag associated with the Secondary Transform, or in accordance with a size of the Coding Tree Unit. |
US11405653B2 |
Restoration in video coding using filtering and subspace projection
A method includes generating, using first restoration parameters, a first guide tile for a degraded tile of the degraded frame, the degraded tile corresponding to a source tile of the source frame; generating, using second restoration parameters, a second guide tile for the degraded tile of the degraded frame, the second restoration parameters being different from the first restoration parameters; determining a first tile difference between the source tile and the first guide tile; determining a second tile difference between the source tile and the second guide tile; calculating projection parameters that minimize a difference between a restored tile of the degraded tile and the source tile; and encoding, in an encoded bitstream, the projection parameters. The difference between the restored tile of the degraded tile and the source tile is a linear combination, using the projection parameters, of the first tile difference and the second tile difference. |
US11405646B2 |
Efficient context model computation design in transform coefficient coding
A processor is configured to maintain, for encoding current values related to the transform coefficients a first line buffer and a second line buffer. The current values are arranged along a current scan-order anti-diagonal line. The first line buffer includes first values of a first scan-order anti-diagonal line. The second line buffer includes second values of a second scan-order anti-diagonal line. The processor is further configured to interleave the first values and the second values in a destination buffer; select, using the destination buffer, a probability distribution for coding a current value of the current values; entropy encode, in a compressed bitstream, the current value using the probability distribution; and replace, for coding values of an immediately subsequent scan-order anti-diagonal line to the current scan-order anti-diagonal line, one of the second line buffer or the first line buffer with the current scan-order anti-diagonal line. |
US11405645B2 |
Transform kernel selection and entropy coding
Transform kernel candidates including a vertical transform type associated with a vertical motion and a horizontal transform type associated with a horizontal motion can be encoded or decoded. During an encoding operation, a residual block of a current block is transformed according to a selected transform kernel candidate to produce a transform block. A probability model for encoding the selected transform kernel candidate is then identified based on neighbor transform blocks of the transform block. The selected transform kernel candidate is then encoded according to the probability model. During a decoding operation, the encoded transform kernel candidate is decoded using the probability model. The encoded transform block is then decoded by inverse transforming dequantized transform coefficients thereof according to the decoded transform kernel candidate. |
US11405644B2 |
Image processing apparatus and method
An image processing apparatus and a method comprises generating a video frame that includes a patch obtained by projecting, onto a two dimensional plane, a point cloud that represents an object having a three-dimensional shape as a group of points; generating a thumbnail two-dimensional image, the thumbnail two-dimensional image being generated independently from the patch; embedding the thumbnail two-dimensional image into the video frame; and encoding the video frame to generate a bitstream. |
US11405637B2 |
Image encoding method and apparatus and image decoding method and apparatus
Methods and apparatuses for image encoding and image decoding are provided. The image decoding method includes: obtaining deep neural network (DNN) update permission information indicating whether one or more pieces of DNN setting information are updated; based on the DNN update permission information indicating that the one or more pieces of the DNN setting information are updated, obtaining DNN update information necessary for determining one or more pieces of the DNN setting information that are updated; determining the one or more pieces of the updated DNN setting information according to the DNN update information; and obtaining a third image by performing artificial intelligence (AI) up-scaling on a second image according to the one or more pieces of the updated DNN setting information. |
US11405634B2 |
High efficiency video coding device and method based on reference picture type
The present technique relates to an image processing device and method capable of suppressing a decrease in encoding efficiency. The image processing device includes: a predictive vector generating unit that generates a predictive vector of a current parallax vector of a current block used in prediction using correlation in a parallax direction using a reference parallax vector referred when generating a predictive motion vector, when encoding the current parallax vector; and a difference vector generating unit that generates a difference vector between the current parallax vector and the predictive vector generated by the predictive vector generating unit. The present disclosure can be applied to an image processing device. |
US11405633B1 |
Usage of converted uni-prediction candidate
Techniques for implementing video processing techniques are described. In one example implementation, a method of video processing includes determining, for a conversion between a current block of a video and a bitstream representation of the video, a modified motion vector set; and performing the conversion based on the modified motion vector set. Due to the current block satisfying a condition, the modified motion vector set is a modified version of a motion vector set associated with the current block. |
US11405631B2 |
Constrained motion field estimation for hardware efficiency
Decoding a current frame includes identifying a first reference frame and a second reference frame for decoding the current frame; storing reference motion vectors of reference blocks of the first reference frame, where other reference frames are used to decode the first reference frame; identifying motion trajectories that pass through the current frame by projecting the reference motion vectors of the reference blocks of the first reference frame onto the current frame using at least a third reference frame of the other reference frames, where the projecting identifies, for a first current block of the current frame a corresponding first reference block in the first reference frame, and a corresponding reference motion vector of the reference motion vectors is associated with the corresponding first reference block; and projecting the corresponding reference motion vector onto the second reference frame to obtain a second reference block in the second reference frame. |
US11405630B2 |
Video decoding method for decoding part of bitstream to generate projection-based frame with constrained picture size and associated electronic device
A video decoding method includes decoding a part of a bitstream to generate a decoded frame, wherein the decoded frame is a projection-based frame that includes a plurality of projection faces packed in a projection layout with M projection face columns and N projection face rows, M and N are positive integers, and at least a portion of a 360-degree content of a sphere is mapped to the plurality of projection faces via projection. Regarding the decoded frame, a picture width excluding guard band samples is equal to an integer multiple of M, and a picture height excluding guard band samples is equal to an integer multiple of N. |
US11405629B2 |
Video decoding method for decoding part of bitstream to generate projection-based frame with constrained guard band size and/or constrained projection face size and associated electronic device
A video decoding method includes decoding a part of a bitstream to generate a decoded frame. The decoded frame is a projection-based frame that comprises at least one projection face and at least one guard band packed in a projection layout. At least a portion of a 360-degree content of a sphere is mapped to the at least one projection face via projection. The decoded frame is in a 4:2:0 chroma format or a 4:2:2 chroma format, and a guard band size of each of the at least one guard band is equal to an even number of luma samples. |
US11405619B2 |
Geometric partition mode with simplified motion field storage and motion compensation in video coding
A video decoder can be configured to determine, for a block of video data encoded in a geometric partition mode, an angle for the block for the geometric partition mode; determine a separation line displacement relative to a center of the block for the geometric partition mode; partition the block into first and second partitions based on the angle and the separation line displacement; determine first predictive samples for the block using a motion vector for the first partition and second predictive samples for the block using a motion vector for the second partition; determine a power-of-2 number based on the angle for the block; determine weighting values based on the power-of-2 number; perform a blending operation on the first predictive samples and the second predictive samples based on the weighting values to determine a prediction block for the block. |
US11405617B1 |
Method and system to enhance compression efficiency in encoded video by using dual pass entropy coding
Methods and systems for improving encoding of a picture or a frame are disclosed. According to one embodiment, a method for encoding video frames includes receiving for a frame, several binarized symbols that include a number of bins corresponding to one or more contexts. For each context from one or more contexts, the method includes entropy encoding in a first pass bins associated with the context using an initial probability distribution for the context; generating counts of zeros and ones in a set of bins associated with the context; updating the initial probability distribution using the respective counts of zeros and ones, to obtain an updated probability distribution; and entropy encoding in a second pass the bins associated with the context using the updated probability distribution, to provide at least a part of an encoded bitstream. |
US11405616B2 |
Coding of transform coefficients for video coding
This disclosure describes devices and methods for coding transform coefficients associated with a block of residual video data in a video coding process. Aspects of this disclosure include the selection of a scan order for both significance map coding and level coding, as well as the selection of contexts for entropy coding consistent with the selected scan order. This disclosure proposes a harmonization of the scan order to code both the significance map of the transform coefficients as well as to code the levels of the transform coefficient. It is proposed that the scan order for the significance map should be in the inverse direction (i.e., from the higher frequencies to the lower frequencies). This disclosure also proposes that transform coefficients be scanned in sub-sets as opposed to fixed sub-blocks. In particular, transform coefficients are scanned in a sub-set consisting of a number of consecutive coefficients according to the scan order. |
US11405615B2 |
Joint transform coding of multiple color components
There is included a method and apparatus comprising computer code configured to cause a processor or processors to perform receiving video data in an AOMedia Video 1 (AV1) format comprising data of at least two chroma prediction-residual signal blocks, a transformation between at least one signal block, having a size less than or equal to a combination of the chroma prediction-residual signal blocks, and the chroma prediction-residual signal blocks, and decoding the video data based on an output of the transformation comprising the at least one signal block having the size less than or equal to the combination of the chroma prediction-residual blocks. |
US11405613B2 |
Method for encoding/decoding image signal and device therefor
An image decoding method according to the present invention may comprise the steps of: dividing a coding block into a first prediction unit and a second prediction unit; deriving a merge candidate list for the coding block; deriving first motion information for the first prediction unit and second motion information for the second prediction unit by means of the merge candidate list; and on the basis of the first motion information and the second motion information, acquiring a prediction sample within the coding block. |
US11405611B2 |
Predicting filter coefficients from fixed filters for video coding
An example device for filtering a decoded block of video data includes one or more processing units configured to construct a plurality of filters for classes of blocks of a current picture of video data. To construct the plurality of filters for each of the classes, the processing units are configured to determine a value of a flag that indicates whether a fixed filter is used to predict a set of filter coefficients of the class, and in response to the fixed filter being used to predict the set of filter coefficients, determine an index value into a set of fixed filters and predict the set of filter coefficients of the class using a fixed filter of the set of fixed filters identified by the index value. |
US11405604B2 |
3D display device and manufacturing method thereof
A 3D display device and a manufacturing method thereof are provided. Metal nanowires perpendicular to each other are provided at the TFT glass substrate side and the CF glass substrate side. The metal nanowires can realize inherent function of polarizers at the TFT glass substrate side and the CF glass substrate side, and can also make the emitted light into stripe-shaped polarized light perpendicular to each other. Therefore, the polarizers, the λ/2 phase retarder with stripes, and the polarizers with stripes and perpendicular polarization that are originally at the TFT glass substrate side and the CF glass substrate side in a 3D polarizer display are excluded. The thickness of the 3D display device is made thinner. Moreover, according to the structural design, polarization effect is not limited by wavelength range of the light. Therefore, 3D stereoscopic display effect is greatly enhanced. |
US11405603B2 |
Imaging device, image processing device and image processing method
A third imaging unit including a pixel not having a polarization characteristic is interposed between a first imaging unit and a second imaging unit including a pixel having a polarization characteristic for each of a plurality of polarization directions. A depth map is generated from a viewpoint of the first imaging unit by matching processing using a first image generated by the first imaging unit and a second image generated by the second imaging unit. A normal map is generated on the basis of a polarization state of the first image. Integration processing of the depth map and the normal map is performed and a depth map with a high accuracy is generated. The depth map generated by the map integrating unit is converted into a map from a viewpoint of the third imaging unit, and an image free from deterioration can be generated. |
US11405598B2 |
Image processing apparatus, image processing method, and storage medium
An image processing apparatus includes a detection unit configured to detect two or more specific objects from a captured image, a first color estimation unit configured to estimate a first light source color from color information about a first specific object among the detected specific objects, a second color estimation unit configured to estimate a second light source color from color information about a second specific object among the detected specific objects, a third color estimation unit configured to estimate a third light source color from color information about an area including other than the detected specific objects, and a calculation unit configured to calculate a white balance correction value to be applied to the captured image by assigning a weight to at least one of the first, second, and third light source colors based on degrees of similarity between the first, second, and third light source colors. |
US11405595B2 |
Display panel control device, display device, and method for driving display panel
A method for driving a display panel displays a video image signal that includes a plurality of images having different frame periods. The method includes setting a frame period including one or more light emission periods, and one or more light extinction periods. The method also includes dividing at least one frame period into a plurality of light emission periods and a plurality of light extinction periods, and adjusting lengths of the plurality of light emission periods and lengths of the plurality of light extinction periods based on a ratio between a maximum frequency of the frame period and a currently set frequency of the frame period. The method further includes displaying the video image signal by causing light emitting elements of the display panel to emit light during the adjusted light emission periods, and to extinguish light during the adjusted light extinction periods. |
US11405594B2 |
Method for detecting event of object by using wearable device and management server operating same
A wearable device according to various embodiments of the present invention is a wearable device wearable on a user's body, and may include a short-range communication module that recognizes the user's body and an object positioned within a predetermined area, a camera module that photographs an area adjacent to the wearable device to generate an image or a video related to at least one of movement of the user's body or the object, a control unit that determines whether or not to activate the camera module based on object information recognized through the short-range communication module, and a communication module that transmits information on the object recognized through the short-range communication module and the image or the video generated through the camera module to a management server. |
US11405591B2 |
Remote test witnessing
A system may comprise a main host device; a first splitter having a first input port, a first output port, and a second output port, the first input port configured for electronic communication with the main host device; a first local display monitor configured for electronic communication with the first output port of the first splitter; a first video capture device configured for electronic communication with the second output port of the first splitter; a multi-cam switch having a plurality of input ports and an outlet port; a second splitter having a second input port, a third output port, and a fourth output port, the outlet port of the multi-cam switch configured for electronic communication with the second input port; and a second video capture device configured for electronic communication with the third output port. |
US11405588B2 |
Systems and methods for participant-controlled video conferencing
A conferencing device includes a power supply, a processor, a video out module, and a USB hub in communication with the processor and drawing power from the power supply. The conferencing device is configured to provide power from the power supply to an external host device in communication with the USB hub, receive control signals and video data from the external host device, and place video data from the external host device at a video out port of the conferencing device. Embodiments herein discuss the switching between and/or simultaneous presentation of video data for placement at the video out port as between two or more external host devices connected to the conferencing device based on the control signals sent from the external host devices. The conferencing device may be connected to another conferencing device to create a single logical conferencing device that can handle an expanded number of external host devices. |
US11405579B2 |
Removable storage device with a virtual camera for video surveillance as a service
Systems, devices, and methods related to Video Surveillance as a Service (VSaaS) are described. For example, a removable storage device, such as a secure digital (SD) memory card or a micro SD card, can be configured to run a virtual camera agent. When the removable storage device is inserted into a digital camera to provide a storage capacity for the digital camera, the agent can convert the video captured by the digital camera into video captured by a virtual camera. The virtual camera can be configured to be in compliance with the camera requirements of a VSaaS platform. Thus, a digital camera not in compliance with the platform can still be used with the platform through the deployment of the virtual camera that is enabled by the removable storage device. |
US11405578B2 |
Transmission of audio streams
A system and method of transmitting respective audio streams to a plurality of end points, such as headphones, earphones, headsets, speakers, etc. is disclosed. Different audio streams are transmitted to each of the plurality of end points. The end points may be arranged to audibly output received audio streams, and so each end point may audibly output a respective different audio stream, i.e. the respective audio streams may be mutually different from each other. |
US11405577B2 |
Distance image measurement device and distance image measurement method
A distance image sensor includes a light source that generates pulsed light, a light source control means for controlling the light source, a pixel circuit including a photoelectric conversion region, charge readout regions, a charge discharge region, and control electrodes, a charge transfer control means for sequentially applying a control pulse to the control electrodes, and a distance calculation means for reading voltages of the charge readout regions as detection signals and repeatedly calculating a distance on the basis of the detection signals, and the charge transfer control means sets timings of the control pulses so that delay times of the control pulses with respect to a generation timing of the pulsed light is shifted to a time differing between the four types of subframe periods in one frame period. |
US11405575B2 |
Solid-state imaging element, comparator, and electronic device
A solid-state imaging element of the present disclosure includes: a pixel array in which a plurality of unit pixels is arranged in a matrix shape, the plurality of unit pixels each including a photoelectric conversion unit; and an analog-to-digital conversion unit that converts an analog pixel signal into a digital signal, the analog pixel signal being output from each of the plurality of unit pixels of the pixel array. Then, the analog-to-digital conversion unit includes a comparator that includes a differential input unit and an active load of the differential input unit, the differential input unit using, as an input, a prescribed reference signal and the analog pixel signal. At least one transistor that configures the active load includes a plurality of control terminals that controls current. The plurality of control terminals is electrically connected in common. |
US11405569B2 |
Solid-state imaging device
Provided is a solid-state imaging device that includes a first substrate that has one principal surface on which a pixel portion in which pixels are arranged is formed, a second substrate which is bonded to a surface of the first substrate opposed to the one principal surface and in which an opening is provided in a partial region in a surface opposed to a bonding surface to the first substrate is provided. The solid-state imaging device further includes at least one sub-chip inside the opening so as not to protrude from the opening and in which a circuit having a predetermined function is formed. |
US11405567B2 |
Dynamic vision sensors configured to calibrate event signals using optical black region and methods of operating the same
A dynamic vision sensor including a dynamic vision sensor pixel array including an active region and an optical black region, the active region configured to output a plurality of first signals corresponding to a plurality of first events indicating a change in an intensity of light, the optical black region configured to output a plurality of second signals corresponding to a plurality of second events not indicating the change in the intensity of light, and processing circuitry configured to, generate a plurality of event signals based on the plurality of first signals, generate a plurality of noise signals based on the plurality of second signals, calculate a value representing real events among the plurality of first events based on the plurality of event signals and the plurality of noise signals, and selectively output the plurality of event signals based on the value representing real events and a threshold value. |
US11405565B2 |
Information processing device and information processing method
To provide an information processing device and an information processing method that can further shorten a time taken to perform processes related to an output of a captured image. Provided is an information processing device including a processing unit configured to process each piece of first data transferred with a first data density and second data transferred with a second data density that is different from the first data density based on pixel signals output from each of a plurality of pixels. The processing unit executes at least one of processing of outputting an image based on the first data and image-processing on the second data based on the first data. |
US11405559B1 |
Systems and methods for live signal adjustment of a movable camera
System and methods for live signal adjustment of a moveable camera are provided. In one embodiment, a method includes receiving a raw image associated with the moveable camera associated with a vehicle mirror. The method includes receiving a rotation input to change a position of a reflective surface of the vehicle mirror. The method includes identifying a first component of the second position of the reflective surface based on a first component sensor. The method includes identifying a second component of the second position of the reflective surface based on a second component sensor. The method includes determining cropping parameters based on a shape of the reflective surface, the first component, and the second component. The method includes generating an adjusted cropped image by cropping the raw image based on the cropping parameters. The method includes displaying the adjusted cropped image on a display in response to the rotation input. |
US11405553B2 |
Optical device and its control method
A second optical device that can be mounted on a first optical device provided with an image blur correction unit comprising: at least one processor and memory holding a program which makes the processor function as: a correction unit configured to correct an image blur based on a shake signal output by a detection unit after the detection unit detects shaking of the second optical device; a control unit configured to control the correction unit by calculating signals respectively processed by first and second filters with respect to the shake signal; and a communication unit configured to receive third filter information to be used by an image blur correction unit of the first optical device from the first optical device, wherein a characteristic of the second filter is set based on the third filter information acquired by the communication unit. |
US11405550B2 |
Imaging device with battery prioritization
The imaging device 102, to which an extension device 103 for accommodating an external battery 202 can be detachably attached, comprises a main body 102a for accommodating an internal battery 201, a charge IC 231, an operation unit 160, and a charge microcomputer 232. The charge IC 231 charges the internal battery 201 or the external battery 202 with power input from outside. The operation unit 160 receives an input for setting a use order of the internal battery 201 and the external battery 202. The charge microcomputer 232 controls the charge IC 231 so as to charge the internal battery 201 or the external battery 202 according to the priority order. |
US11405549B2 |
Automated generation on mobile devices of panorama images for building locations and subsequent use
Techniques are described for using a smart phone or other mobile device to perform automated operations for generating panorama images of building environments and for subsequently using the generated panorama images in further automated manners. In at least some situations, the generation of a panorama image by a mobile device is based at least in part on automatically acquiring multiple constituent images on the mobile device in multiple directions from an acquisition location and on concurrently combining acquired constituent images on the mobile device, such as in a real-time manner relative to the constituent image capture, to generate a panorama image with 360° of horizontal coverage of the view from that acquisition location. Information about such identified building floor plans may be used in various automated manners, including for controlling navigation of devices (e.g., autonomous vehicles), for display on client devices in corresponding graphical user interfaces, etc. |
US11405543B2 |
Exploring construction site images by construction stages
Systems, methods and non-transitory computer readable media for exploring images of construction sites by construction stages are provided. For example, a plurality of images of a construction site may be accessed, each image of the plurality of images may correspond to a location in the construction site and a construction stage. In response to a received indication of location and a received indication of a construction stage, an image corresponding to the indicated location and to the indicated construction stage may be selected and presented. In response to a received indication of location and a received indication of a capturing time, an image corresponding to the indicated location and to the indicated capturing time may be selected and presented. |
US11405542B2 |
Image pickup control device, image pickup device, and image pickup control method
To simplify a configuration of an image pickup device that performs an output of an image signal and an audio signal in a partial area of an image pickup area. An image pickup control device includes a display area update unit and a localization audio signal generation unit. The display area update unit updates a position in a frame of a display area which is an area used for display among the frames including an image signal output from an image pickup element in accordance with a motion of an image pickup device in which the image pickup element is disposed. The localization audio signal generation unit generates a localization audio signal which is an audio signal for localizing an audio image in the updated display area on the basis of audio signals output from a plurality of microphones. |
US11405535B2 |
Quad color filter array camera sensor configurations
Examples of capturing and processing image data are described. A device may include a camera including a camera sensor that includes a plurality of tiles that each include four sub-tiles. The camera may also include a color filter array coupled to the camera sensor and including a plurality of red, blue, and green color filters. A first sub-tile of each tile may include a phase detection pixel coupled to a microlens shared with at least one other pixel of the tile and an imaging pixel not coupled to a second microlens different from the first microlens. The device may also include a processor coupled to the camera and configured to control one or more first exposure settings of the phase detection pixel and control one or more second exposure settings of the non-phase detection pixel. Control of the second exposure settings is independent from control of the first exposure settings. |
US11405532B2 |
Voice coil motor optical image stabilization wires
Some embodiments provide an apparatus for controlling the motion of a camera component. In some embodiments, the apparatus includes an actuator module. The actuator module includes a plurality of magnets. Each magnet of the plurality of magnets is poled with magnetic domains substantially aligned in the same direction throughout each magnet. The apparatus further includes a coil rigidly disposed around a lens. Each magnet of the plurality of magnets contributes to the forces to adjust focus of the lens based on Lorentz forces generated from the coil. |
US11405530B1 |
Methods and system for managing color management resources
A color printing system includes a color management server and one or more printing devices. The color management server manages color printing resources among the printing devices. A test chart is printed at a printing device and used to capture calibration measurement data. Calibration settings are defined for the calibration measurement data. A tone reproduction curve (TRC) is generated based on the calibration measurement data and the calibration settings. The TRC is stored with the TRC settings and calibration measurement data to be used at a printing device. The TRC settings are edited and the TRC associated with the measurement data is updated or regenerated to reflect the edited settings. More than one TRC is updated with the new settings if it uses the measurement data. |
US11405529B2 |
Color table generation
Target color table generated from source color tables. A first significance factor is assigned to a first node in a first source color table. The first node in the first source color table corresponds with a color input in a first color space and provides a first print substance formulation in a second color space. A second significance factor is assigned to a second node in a second source color table. The second node in the second source color table corresponds with the color input in the first color space and provides a second print substance formulation in the second color space. A third node in target color table is generated from the first and second nodes based on the first and second significance factors. The third node corresponds with the color input in the first color space and provides a third print substance formulation in the second color space. |
US11405512B2 |
Electronic device and image forming apparatus capable of editing document images forming document image sequence and converting document image sequence to moving image
An electronic device includes a storage device, a display device, and a control device. The storage device stores a document image sequence in which a plurality of document images of original documents are arranged in chronological order. The control device functions as an editor, a converter, and a display controller. The editor performs edition processing on the document images forming the document image sequence. The converter converts the document image sequence edited by the editor to a moving image. The display controller allows the display device to display the document images forming the document image sequence in an image display area of the display device. |
US11405509B2 |
Image processing apparatus and method evaluating print quality based on density difference data
There is provided with an information processing apparatus. A first obtaining unit obtains data of a reference image indicating a target of printing output to be performed by a printing apparatus. A second obtaining unit obtains data of an image printed by the printing apparatus. A correcting unit corrects a local image density difference or the reference image based on a global image density difference between the reference image and the printed image. An evaluating unit evaluates quality of the printed image based on the local image density difference between the corrected reference image and the printed image. |
US11405503B2 |
Translation method and electronic device
A method includes: a first electronic device establishes a call connection to a second electronic device and then displays a call interface; after receiving a first operation of a first user, in response to the first operation, the first electronic device switches from displaying the call interface to displaying a translation interface; the first electronic device receives a first speech of the first user in a first language and sends the first speech to the second electronic device; in response to the first speech, the translation interface sequentially displays at least a first text and a second text, where the first text is obtained by recognizing the first speech, and the second text is obtained by translating the first speech into a target language; and when the translation interface displays the second text, the first electronic device sends a machine speech in the target language to the second electronic device. |
US11405500B2 |
Key structure, key input method and electronic device using the same
The disclosure relates to a key structure, a key input method, and an electronic device using the same, and an operating method of an electronic device includes: identifying an input operation, by comparing output values of at least two sensors provided on a side surface of the electronic device and a threshold value; determining whether a function corresponding to the identified input operation exists; and, based on the corresponding function existing, executing the corresponding function. Accordingly, the electronic device can receive various input operations under a keyless structure. |
US11405498B2 |
Audiovisual safety system
An audiovisual safety system is provided comprising a personal electronic device having one or more processors and a memory storing instructions. When the instructions are executed by the one or more processors, the personal electronic device may initiate audio communication between the personal electronic device and one or more emergency services. The audio communication may be initiated via a first screen interaction with an emergency contact icon at a first location on a display screen of the personal electronic device. The personal electronic device may capture audio content data and video content data associated with an emergency event, may store the audio content data and the video content data, and may maintain the audio communication between the personal electronic device and the one or more emergency services while continuing to capture the audio content data and the video content data associated with the emergency event. |
US11405496B2 |
Electronic device including rotation camera
An electronic device includes a front part, a rear part including an opening, a camera module disposed in the opening and configured to rotate depending on a slide operation of the front part. The front part is configured to slide between a first position in which the front part and the rear part are aligned, a second position in which portion of the opening is exposed in a direction toward a front surface of the front part, or a third position in which the opening is exposed in the direction toward the front surface of the front part. The camera module is configured to face a direction away from a rear surface of the front part based on the front part being in the first position and to face the direction toward the front surface of the front part based on the front part being in the third position. |
US11405495B2 |
Electronic apparatus
An electronic apparatus includes a screen and a camera assembly. By disposing the camera assembly under the screen and setting the structural size of the light transmitting portion smaller than the minimum resolution threshold of the naked eyes, the light transmitting portion on the screen is invisible to the naked eyes. The camera includes a plurality of photographing sections, and collects partial image data in the scene to be photographed by cooperation of each of the photographing sections with a light transmitting hole. The main control integrates all the partial image data, and finally produces an overall image of the scene to be photographed. As such, a photographing function of the camera assembly of the electronic apparatus can be ensured, and the screen-to-body ratio of the screen can be increased, without interference of the camera assembly with display effects of the screen. |
US11405494B2 |
Mounting device for electronic device
Disclosed is a mounting device for an electronic device. The mounting device comprises a plate including a first surface and a second surface opposite to the first surface, the first surface configured to receive the electronic device; a hinge structure disposed on the second surface of the plate, the hinge structure including a rotary shaft extending from the second surface and a hinge shaft extending along the second surface; and a support member coupled to the hinge shaft, the support member including a first portion extending from the hinge shaft by a first length and a second portion extending from the hinge shaft by a second length smaller than the first length, wherein the hinge structure is configured to rotate about the rotary shaft, and wherein the support member is configured to rotated about the hinge shaft such that the first portion can make contact with the second surface of the plate and the second portion can make contact with the second surface of the plate. |
US11405488B2 |
Method, apparatus and system for processing access request of enterprise branch, and equipment and medium
An access request processing method includes Customer Premise Equipment (CPE) in an enterprise branch network receiving an access request in the enterprise branch network, determining whether the access request is for accessing an extranet and requires accelerated processing, forwarding the access request to an acceleration network in response to determining that the access request is for accessing the extranet and requires accelerated processing, receiving response data of the access request from the acceleration network, and sending the response data to a sender of the access request. |
US11405486B2 |
Method and apparatus for providing a recommended action for a venue via a network
A method and apparatus for providing a recommended action are disclosed. For example, the method receives first data that is measured via at least one sensor deployed at a venue, receives second data from at least one user endpoint device present at the venue, wherein the second data comprises data that is measured via a sensor associated with the at least one user endpoint device, applies a perception model of the venue to the first data and the second data that are received, generates at least one recommended action when a threshold is reached, wherein the threshold is established for generating the at least one recommended action, and provides an update to the perception model of the venue based on the at least one recommended action that is generated. |
US11405484B2 |
Variable-intensity immersion for extended reality media
An example method includes obtaining a profile of a user using a user device to present an immersive experience, wherein the profile specifies a user reaction indicator and a value that represents a baseline for the user reaction indicator, presenting the immersive experience on the user device, receiving user state data including a current value of the user reaction indicator, determining that the current value of the user reaction indicator deviates from the value that represents the baseline by more than a threshold, in response to the determining, selecting, from among a plurality of variants for a segment of the immersive experience, a variant that is expected to cause the current value of the user reaction indicator to adjust to a value that does not deviate from the value that represents the baseline by more than the threshold, and presenting the variant that is selected on the user device. |
US11405482B2 |
Method for linking identifiers to generate a unique entity identifier for deduplicating high-speed data streams in real time
A processor-implemented method for linking identifiers to generate a unique entity identifier for deduplicating high-speed data streams in real time, the method comprising (i) obtaining one or more data streams with an identifier from independently controlled entities, wherein the one or more data streams comprises timestamp data and location indexed data that partially characterizes an activity of an entity, (ii) determining home location or internet protocol address of the entity by analyzing data obtained from the one or more data streams, (iii) clustering entity devices based on an association between an internet protocol address, a real-time event, a period of time or a location, (iv) disambiguating the clusters of entity devices into sub-clusters that resolve to an entity by analyzing data streams until a candidate pair of identifiers is obtained, (v) generating score for the candidate pair using a machine learning classifier to discern the candidate pair of identifiers into to same or different entity, (vi) filtering the candidate pair of identifiers by comparing the score with a predetermined threshold value, (vii) evaluating filtered candidate pair of identifiers to generate a unique entity identifier for the entity, (viii) refining the unique entity identifier in real-time using a feedback loop based on a test engagement activity, and (ix) deduplicating one or more data streams that are associated with the unique entity identifier in real time by validating entity attributes linked with the unique entity identifier with the attributes observed in a first data stream and a second data stream of the test engagement activity. |
US11405478B2 |
System and method for providing redirections
A redirection of a URL page request may be performed by monitoring an upstream path from a subscriber to the internet through an ISP. When a URL page request is detected from a subscriber for whom a redirection is required, a redirection device generates a single TCP packet response that mimics a response from the intended destination server. The single TCP packet includes a set FIN bit that closes any active session with the destination server to prevent the subscriber from accepting packets from the destination server. |
US11405477B1 |
Systems and methods for providing updates in social networking systems
Systems, methods, and non-transitory computer-readable media can acquire content items in a content sharing system from a time a user last accessed the content sharing system. The content items can be ranked based on relevance of the content items. An update including at least one content item selected from the content items for access by the user can be generated. |
US11405476B2 |
Method and system for summarizing user activities of tasks into a single activity score using machine learning to predict probabilities of completeness of the tasks
Activity data of a set of tasks as a training set is obtained from a list of communication platforms associated with the tasks. For each of the tasks in the training set, a set of activity metrics is compiled according to a set of predetermined activity categories based on the activity data of each task. The activity metrics of all of the tasks in the training set are aggregated based on the activity categories to generate a data matrix. A principal component analysis is performed on the metrics of its covariance matrix to derive an activity dimension vector, where the activity dimension vector represents a distribution pattern of the activity metrics of the tasks. The activity dimension vector can be utilized to determine an activity score of a particular task, where the activity score of a task can be utilized to estimate a probability of completeness of the task. |
US11405475B2 |
System and method of content selection using selection activity in digital messaging
Information is collected about a user, e.g., the user's interests, from the user's interaction with digital messaging content. Information collected about the user can be used to identify an interest of the user. The identified interest(s) can be used to select content to be presented to the user. By way of a non-limiting example, information collected in response to the user clicking on a link in an electronic mail, email, message can be used to identify one or more content items to be presented to the user. By way of yet another non-limiting example, the identified content item(s) can comprise advertising content, news articles, etc. |
US11405474B2 |
Abstracting geographic location to a square block of pre-defined size
A client-side system detects a current location of a client device and a cloud interaction metric. The geographic area around the location of the client device is divided into grid sections. The client-side system identifies a pre-defined reference location corresponding to the grid section that the client device location resides in. The pre-defined reference location, corresponding to that grid section, and the cloud interaction metric are provided to a remote server computing system. |
US11405471B2 |
User-controlled session manager to provide remote disabling of session tokens
There are provided systems and methods for a user-controlled session manager to provide remote disabling of session tokens. An online service provider, such as a user-controlled session manager, may provide service to manage sessions between user's devices and other online service provider platforms, such as login and use sessions that exchange messages and data. The session manager may receive hashed values of session IDs from the service providers hosting the sessions, which may be used to securely identify the sessions without compromising the session IDs to malicious parties. The session manager may provide a functionality to allow the user to view session statuses, as well as change their statuses to indicate that the sessions can be terminated. The session manager may update the status so that when the service provider pings the session manager for the status, the session's status is updated to be inactive. |
US11405470B1 |
Methods and systems for exchange of equipment performance data
A method for exchange of equipment performance data includes the steps of: obtaining performance data of a communicatively-insulated device; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a communicatively-enabled device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; and initiating, by the communicatively-enabled device, a communications link with the remote server using the address string thereby to provide the performance data to the remote server. |
US11405468B2 |
Forming activity streams across heterogeneous applications
A user interface is configured to present a stream of activities that arise from operation of two or more heterogeneous applications that access shared content objects of a content management system. A first application of a first type among the heterogeneous applications interoperates with a second application of a second type. Application activity records that correspond to interactions by the second application over the shared content objects are stored. Additional interactions that are raised by the first application and that pertain to a common content object are also stored. When a user requests access to a content object of the content management system, recent application activity records are selected. Some of the selected activity records are filtered out based on permissions attributes corresponding to the content object and/or based on permissions attributes corresponding to the requesting user. An application activity stream is generated based on the selected application activity records. |
US11405465B2 |
Applications for controlling optically switchable devices
Software applications are used for controlling the optical state of one or more optically switchable windows or other optical products installed in a structure such as building. The applications permit users to send and/or receive data and/or commands for controlling the switchable optical products. In some embodiments, the applications provide an interface with a window network controller, which directly or indirectly controls windows in a structure. Relevant processing involving the application may include user authentication, commissioning, adaptive control, and decisions on whether to permit an action or change requested by a user. In some embodiments, the application allows users to directly control the tint state of one or more tintable windows. In some embodiments, the application allows users to change a rule or property associated with controlling a switchable optical product. |
US11405464B2 |
Policy controlled semi-autonomous infrastructure management
Embodiments of the present disclosure may relate to an apparatus for infrastructure management with an interface to receive a plurality of telemetry signals from first one or more infrastructure components of an infrastructure; and a policy controlled semi-autonomous (PCSA) infrastructure evaluator coupled with the interface, where the PCSA infrastructure evaluator includes a machine-learning (ML) model of service level metric (SLM) deviation by second one or more application or infrastructure components of the infrastructure and the PCSA infrastructure evaluator is to: determine a deviation from a SLM of third one or more infrastructure components based at least in part the ML model and one or more of the plurality of telemetry signals; and send a message, based at least in part on the deviation from the SLM. Other embodiments may be described and/or claimed. |
US11405463B2 |
Media content management
Embodiments include a system comprising a gateway that includes a processor coupled to sensors and/or network devices installed at a premises. The system includes a remote server coupled to the gateway and located remote to the premises. The gateway and/or the remote server includes data of the sensors and/or network devices. The system includes an application running on at least one of the gateway and the remote server. The application controls events corresponding to the data and/or the premises in response to content of the data. The system includes a client interface coupled to the gateway and/or the remote server. The client interface presents the data to client devices. |
US11405461B2 |
Smart aviation dynamic cookie
An information manager may include processing circuitry configured to receive dynamic aircraft information associated with operation of an in-flight aircraft, receive a message from a communication device on the in-flight aircraft for transmission to a ground based content server via a wireless communication network capable of communicating with in-flight assets, and generate an aviation cookie for communication to the content server along with the message. The aviation cookie may be generated based on the dynamic aircraft information and may enable the content server to generate content based at least in part on the dynamic aircraft information. |
US11405454B2 |
Optimization of a multi-channel system using a feedback loop
Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium, including a system that controls content distribution using a feedback loop. Content is distributed over multiple different online channels using a same initial selection value for distribution over each different online channel. An observed user actions required for distribution of the content over the multiple different online channels is received through a feedback loop and for multiple different distributions of the content. Based on the observed user actions received through the feedback loop, a predicted user action rate is determined for the multiple different distributions across the multiple different online channels. The selection value is adjusted based on a difference between the predicted user action rate and a reference distribution amount specified by a provider of the content. The content is distributed over the multiple different online channels using the adjusted selection value. |
US11405449B1 |
Optimizing response time by load sharing in edge computing
Methods, computer program products, and systems are presented. The methods include, for instance: analyzing resources of an edge device available for computing workloads of a cloud to which the edge device is operatively coupled various communication networks per locations of the edge device, wherein the edge device is mobile. A location of the edge device at an estimated time of delivery of an output of a cloud application is predicted prior to the estimated time of delivery. It is determined that the location of the edge device from the predicting is serviced by a communication network below a threshold connectivity. The cloud has the cloud application installed on the edge device at a current location according to an access permission on the edge device. The edge device continues processing the workloads of the cloud and the output of the cloud application generated. |
US11405447B2 |
Method, apparatus and system for presenting mobile media information
A solution for presenting mobile media information is provided, including: collecting audio data associated with mobile media information, transmitting the audio data to a mobile voice platform which stores the audio data and generates a tag corresponding to the audio data, obtaining the tag from the mobile voice platform, inserting the tag into a predetermined position in the mobile media information, presenting the mobile media information with the tag being inserted into, invoking the audio data corresponding to the tag from the mobile voice platform according to a trigger operation issued when a user browses the mobile media information. |
US11405446B2 |
Encoding and transmitting stream data without prior knowledge of data size
Implementations are provided herein for encoding and transmitting streaming data from a client application to a server for storage without prior knowledge of the size of the streaming data. A header can be sent that includes a batch size chunk size. Raw streaming data can be packaged into the chunk. Chunks can be packaged and sent at any time prior to filling up with streaming data, by padding the chunk and including a footer that delineates the amount of raw stream data in the chunk. Chunks that are full can have a footer that delineates the entire chunk is raw stream data. It can be appreciated that you do not need to buffer data on the client side as chunks do not need to be full to send. Latency on processing streaming data can also be reduced by limited or eliminated buffering. |
US11405441B1 |
Systems and methods for data pre-fetching
System and methods for pre-fetching data are provided. In one embodiment, an electronic device includes communications circuitry communicatively coupled to a data provider system over a network to obtain streaming data for completion of tasks. The electronic device also includes pre-fetch circuitry that identifies a dead zone in the network; calculates a pre-fetch data size amount based at least in part upon a size of the dead zone; and requests the pre-fetch data size amount of the data, to mitigate lost streaming ability in the dead zone. |
US11405439B2 |
Hybrid sniffing and rebroadcast for Bluetooth networks
Disclosed herein are playback devices, groups of playback devices, and methods of operating playback devices and groupings thereof configured for hybrid sniffing and rebroadcast for networks, including Bluetooth networks. |
US11405437B2 |
Media seek mechanisms
Mechanisms are provided for presenting a media location browsing interface to facilitate a media search and/or seek. A client device receives a media stream from a streaming server. This client device provides a media location browsing interface after receiving the media stream. This media location browsing interface includes a plurality of key frames representing locations along the media stream that are selectable at the client device. A seek request to play the media stream from a seek location corresponding to one of the plurality of key frames is captured. The client device begins playback of the media stream at the seek location. |
US11405435B1 |
Systems and methods to present views of records in chat sessions between users of a collaboration environment
Systems and methods for presenting views of work unit records in chat sessions between users of a collaboration environment are disclosed. Exemplary implementations may: obtain content information characterizing content of the chat sessions between the users of the collaboration environment; identify work unit records based on the content from the chat sessions; generate view of work unit pages in the chat sessions that correspond to the work unit records identified based on the content from the chat sessions so that the view of the work unit pages are made accessible to the users during synchronous communication facilitated by the chat sessions; and/or other perform other operations. |
US11405433B1 |
Collaborative browsing
Aspects of the technology described herein provide a collaborative browsing experience in which real-time browsing activity and saved browsing activity of session collaborators in a collaborative browsing session are shared with the collaborators. A collaborative session may be initiated, which may create a tab group associated with the session and linked to a collaborator. Other collaborators may be invited to join the session, and additional tab groups for each collaborator may be created. The tab groups of the collaborators may be included in a collective tab group, which may be updated in real-time with changes made by any of the collaborators. For example, client changes may be handled locally and communicated to a service to which each client is connected. The service may sequence and broadcast the ordered changes to the clients, which may each implement the changes according to the sequence to synchronize a shared state amongst clients. |
US11405431B2 |
Method, apparatus, and system for implementing a content switch
Some embodiments provide a novel content switching method that distributes requests for different types of content to different sets of content servers. In some embodiments, the method deploys a content switch in the ingress data path of a first content server that is part of a first set of servers that processes requests for a first type of content. This content switch receives each content request that is directed to the first content server, and determines whether the received request is for the first content type that is processed by the first content server. If so, the content switch directs the request to the first content server. On the other hand, if the request is for a second type of content that is processed by a second set of servers, the content switch identifies a second content server in the second set and forwards the request to the second content server. When the second set of servers includes two or more servers, the content switch in some embodiments performs a load balancing operation to distribute the load amongst the servers in the second set. For each request, the load balancing operation in some embodiments selects one server from the second server set based on a set of load balancing criteria that specifies one manner for distributing the requests among the servers of the second set, and then forwards the request to the selected server. |
US11405422B2 |
Transmitting multiple copies of an encrypted packet via multiple tunnels between a transmitting network device and a receiving network device
A network device may receive, from a transmitting network device, a packet, wherein the packet includes a first outer internet protocol (IP) header, a Generic Routing Encapsulation (GRE) header, a second outer IP header, an Encapsulating Security Payload (ESP) header, and an inner packet, wherein the inner packet is encapsulated by the ESP header, the ESP header is encapsulated by the second outer IP header, the second outer IP header is encapsulated by the GRE header, and the GRE header is encapsulated by the first outer IP header. The network device may decapsulate the packet to remove the first outer IP header and the GRE header from the packet. The network device may decrypt, after decapsulating the packet, the packet to identify the inner packet. The network device may cause one or more actions associated with the inner packet to be performed. |
US11405421B2 |
Electronic control apparatus, monitoring method, recording medium, and gateway apparatus
An electronic control apparatus includes: an obtaining unit configured to obtain data transmitted via a network in a system; and a judging unit configured to judge presence or absence of an anomaly in the data obtained by the obtaining unit, based on a transmission state of the data. The judging unit is configured to judge that an anomaly is present in the data, when the transmission state of the data is a transmission stopped state. |
US11405420B2 |
Distributed secure edge heterogeneous storage network with redundant storage and byzantine attack resilience
Distributed storage of a file in edge storage devices that is resilient to eavesdropping adversaries and Byzantine adversaries. Approaches include a cost-efficient approach in which an authorized user has access to the content of all edge storage nodes. In this approach, key blocks and file blocks that are masked with key blocks are saved in the edge storage nodes. Additionally, redundant data for purposes of error correction are also stored. In turn, upon retrieval of all blocks, errors introduced by a Byzantine adversary may be corrected. In a loss resilient approach, redundant data is stored along with masked file partitions. Upon retrieval of blocks from the edge storage nodes, a unique approach to solving for the unknown file partition values is applied with identification of corrupt nodes based on an average residual error value for each storage node. |
US11405417B2 |
Distributed denial of service (DDoS) defense techniques for applications hosted in cloud computing platforms
A defense platform for protecting a cloud-hosted application against distributed denial-of-services (DDoS) attacks, wherein the defense platform is deployed out-of-path of incoming traffic of the cloud-hosted application hosted in a plurality of cloud computing platforms, comprising: a detector; a mitigator; and a controller communicatively connected to the detector and the mitigator; wherein the detector is configured to: receive telemetries related to behavior of the cloud-hosted application from sources deployed in the plurality of cloud computing platforms; and detect, based on the telemetries, a potential DDoS attack; wherein, the controller, upon detection of a potential DDoS attack, is configured to: divert traffic directed to the cloud-hosted application to the mitigator; cause the mitigator to perform at least one mitigation action to remove malicious traffic from the diverted traffic; and cause injection of clean traffic to at least one of the plurality of cloud computing platforms hosting the cloud-hosted application. |
US11405410B2 |
System and method for detecting lateral movement and data exfiltration
A system configured to detect a threat activity on a network. The system including a digital device configured to detect a first order indicator of compromise on a network, detect a second order indicator of compromise on the network, generate a risk score based on correlating said first order indicator of compromise on the network with the second order indicator of compromise on said network, and generate at least one incident alert based on comparing the risk score to a threshold. |
US11405408B2 |
Method, apparatus and computer program for verifying the integrity of electronic messages
A method for verifying integrity of electronic messages, comprising the steps of: obtaining an input message digest for a source electronic message; adding the input message digest to an input accumulator that accumulates the input message digests over a predetermined period of time; obtaining an output message digest for a destination electronic message; adding the output message digest to an output accumulator that accumulates the output message digests over the predetermined period of time; comparing the value of the input accumulator with the value of the output accumulator at the expiration of the predetermined period of time; and verifying integrity in the source and destination electronic messages over the predetermined period of time when the value of the input accumulator is equivalent to the value of the output accumulator. |
US11405406B2 |
Fraudulent transmission data detection device, fraudulent transmission data detection method, and storage medium
A fraudulent transmission data detection device includes: a receiving unit that receives data that is transmitted in cycles; and plural determination units, each of which is configured to, based on whether or not a time from a reference timing until a predetermined number of data items are received by the receiving unit is less than a predetermined time, determine whether or not fraudulent transmission data is contained in the received data, and in which at least the reference timing, or the predetermined number of data items and the predetermined time, are different from those of the other determination units. |
US11405400B2 |
Hardening based on access capability exercise sufficiency
Cybersecurity is improved by automatically finding underutilized access capabilities. Some embodiments obtain an access capability specification, gather access attempt data, and computationally determine that the access capability has not been exercised sufficiently, based on an access capability exercise sufficiency criterion. Security is then enhanced by automatically producing a recommendation to harden a guarded computing system by reducing, disabling, or deleting the insufficiently exercised access capability. In some cases, security enhancement is performed by automatically hardening the guarded computing system. Access capability exercise sufficiency determination may be based on fixed, statistical, or learned time period thresholds or activity level thresholds, or on a combination thereof using confidence levels. Thresholds are compared to a detected time period value or a detected activity level value that is derived from the access attempt data, to determine exercise sufficiency. Vulnerability mitigation may include requesting different authentication, blocking access, logging, alerting, or notifying. |
US11405399B2 |
Method of protecting mobile devices from vulnerabilities like malware, enabling content filtering, screen time restrictions and other parental control rules while on public network by forwarding the internet traffic to a smart, secured home router
Embodiments of the present invention disclose systems and methods for controlled access to a website from a mobile device when the mobile device is connected with an external public or private network away from home. Certain embodiments provide for such protection and security through the use of smart and secure home router which is connected to the mobile device through a virtual private network, whether in a module form or as a standalone server. |
US11405396B2 |
Secure management and provisioning of interaction data using permissioned distributed ledgers
The disclosed exemplary embodiments include computer-implemented systems, apparatuses, and processes that securely track, manage, and provision elements of interaction data within a computing environment in accordance with encrypted permissioning data recorded onto a permissioned distributed ledger. For example, an apparatus may obtain query data that includes an identifier of a computing system and a query term, and access one or more ledger blocks of a permissioned distributed ledger that include encrypted permissioning data and interaction data. The apparatus may decrypt the encrypted permissioning data using a master cryptographic key of a centralized authority. Based on a portion of the decrypted permissioning data associated with the identifier, the apparatus may determine that a portion of the interaction data is associated with the query term and consistent with an access permission of the computing system, and transmit response data to the computing system that includes the portion of the interaction data. |
US11405389B2 |
Internet of Things system and control method thereof
A system includes first electronic devices and a digital signature carrier. Each of the first electronic devices has a network identifier distinct from another. The digital signature carrier is configured for recording a connective information list. The connective information list includes the network identifiers of all of the first electronic devices. A second electronic device includes a digital signature reader. The second electronic device is configured to read the digital signature carrier by the digital signature reader, extract the connective information list comprising the network identifiers and pair the second electronic device with each of the first electronic devices according to the network identifiers. |
US11405388B2 |
Biometric authentication device, biometric authentication system, biometric authentication method and recording medium
The present invention reduces the risk of user biometric information being leaked to a third party. A biometric authentication device (820) receives an echo signal (response signal) from a client device. The echo signal is formed as a result of an inspection signal being applied to an authentication subject by a client device, and the inspection signal being transmitted into the body or to the surface of the body of the authentication subject and changing into the echo signal. The biometric authentication device (820) comprises: an inspection signal generation unit (821) that generates the same inspection signal as the client device; a transmission characteristic calculation unit (823) that calculates, from the inspection signal and the echo signal, a transmission characteristic of the authentication subject; and an authentication unit (824) that authenticates the authentication subject by comparing a preregistered first transmission characteristic and a calculated second transmission characteristic. |
US11405384B2 |
Method and device of regulating website load
Provided in the present disclosure are method, device, and apparatus of regulating a website load. The method includes: determining, by a server, a current load level of a website according to a current load of the website and a target value of the website load; and adjusting, by the server, login time of a client to regulate the website load according to the determined current load level of the website. The present disclosure enables load regulation of a website at an entry point of a site or a key service, thus improving user experience. |
US11405374B2 |
System and method for automatic mitigation of leaked credentials in computer networks
Systems and methods of mitigating leakage of credentials of a user of a computer network, including monitoring at least one data source to scrape data that is compatible with credential data, applying a machine learning algorithm to the scraped data to identify at least one potential leaked credential, wherein the at least one potential leaked credential is identified using at least one neural network, authenticating the identified at least one potential leaked credential by a database of valid credentials of the computer network, and replacing credentials corresponding to the at least one leaked credential. |
US11405373B2 |
Blockchain-based secured multicast communications
A blockchain-based network arrangement includes member nodes joined by a multicast network including a trusted node configured for creating at least one cryptographic key and for distributing copies of the cryptographic key over the multicast network as a multicast blockchain transmission to other member nodes. A requesting node outside the member nodes is configured for initiating a smart contract containing its blockchain address and for sending the smart contract as a request for group access with an address of the trusted node. The trusted node is configured for receiving the smart contract and a decides to accept or reject the smart contract, and records the decision in the blockchain by updating the smart contract. An accept decision results in a member node sending the cryptographic key to the requesting node. |
US11405372B2 |
Retrieving access data for blockchain networks using highly available trusted execution environments
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for retrieving data from external data sources for processing within a blockchain network. One of the methods includes receiving a request for data that includes encrypted data, the encrypted data including access data that is encrypted using a service public key of a key management node; selecting a relay system node from a plurality of relay system nodes that share a service private key of the key management node; transmitting the request to the relay system node; receiving a response provided from the relay system node, the response including result data and a digital signature, wherein the digital signature is generated based on the result data and the service private key of the key management node; and transmitting the response to a client. |
US11405371B2 |
Methods and systems for biological sequence compression transfer and encryption
A device for compressing subject data. the device comprises a communication link, the communication link capable of receiving a set of subject data; a compression module, the compression module configured to apply a compression algorithm to the set of subject data, the compression algorithm compressing the set of subject data using a reference string of subject data; and a transmission module, the transmission module configured to transmit the compressed subject data. The device further comprising an encryption module for encrypting the subject data. |
US11405367B1 |
Secure computer peripheral devices
A method for improving security of peripheral devices is described. The method includes displaying, by a processor of a computing device, a code, receiving, by the processor, a user input after displaying the code, comparing, by the processor, the user input to the displayed code, and establishing, by the processor, secure communication between a peripheral device and a software application at the computing device based at least in part on a result of the comparing the user input to the displayed code. |
US11405366B2 |
Anonymous collection of data from a group of entitled members
A method for collecting data from a group of entitled members. The method may include receiving, by a collection unit, a message and a message signature; validating, by the collection unit, whether the message was received from any of the entitled members of the group, without identifying the entitled member that sent the message; wherein the validating comprises applying a second plurality of mathematical operations on first group secrets, second group secrets and a first part of the message signature; and rejecting, by the collection unit, the message when validating that the message was not received from any entitled member of the group. |
US11405364B1 |
Privacy-preserving endorsements in blockchain transactions
Described are techniques for privacy-preserving endorsements in blockchain transactions. The techniques include a method comprising associating a ledger key in a local collection with an ephemeral key, where the ephemeral key is a re-randomization of a key associated with a first organization. The method further comprises generating, by a first peer associated with the first organization, an anonymous endorsement of a transaction in a blockchain using the ephemeral key. The method further comprises determining, by a second peer associated with the first organization, that the first peer endorsed the transaction. The method further comprises retrieving, by the second peer, a preimage from the first peer. The method further comprises providing information including the anonymous endorsement and the transaction to a second organization associated with the blockchain, where the anonymous endorsement is anonymous to peers associated with the second organization. |
US11405363B2 |
File upload control for client-side applications in proxy solutions
A computer-implemented method includes receiving, by a proxy device, a document from a service provider in response to a request to the service provider from a client device. The proxy device injects into the document event monitoring code for monitoring user actions on the client device. The proxy device sends the document with the event monitoring code to the client device. The event monitoring code intercepts a user request for a file upload event using a client-side application on the client device. The proxy device receives a client request including file information regarding the file upload event from the event monitoring code. The proxy device determines whether the file upload event should be allowed or blocked based on the received file information and stored policy data. |
US11405359B2 |
Network firewall for mitigating against persistent low volume attacks
A network firewall detects and protects against persistent low volume attacks based on a sequence of network data having a pattern that matches by some threshold or percentage a sequence of network data from an earlier iteration of the same persistent low volume attack. The attack patterns are derived from tokenizing one or more elements from a captured sequence of network data that is representative of an attack iteration. Counts for different resulting tokens may be stored in a feature vector that represents the attack pattern. If subsequent sequences of network data have a sufficient number of similar token, a pattern match can be identified and the firewall can take protective action including blacklisting the sending clients, blocking the traffic, redirecting the traffic, sending a problem to verify the sender is an actual user, or other actions. |
US11405356B2 |
Resolving media deadlocks using stun
In one embodiment, a device in communication with a service provider network obtains first information regarding a first call leg of a media session associated with a first endpoint. The device also obtains second information regarding a second call leg of the media session associated with a second endpoint. Both of the first and second endpoints are anchored in the service provider network. The device makes a determination that the media session is being hairpinned, based on the first and second information. The device sends, based on the determination, an indication message using Session Traversal Utilities for Network Address Translators (STUN) along the first call leg that causes the first endpoint to begin sending a flow of media packets. |
US11405351B2 |
Source-aware technique for facilitating LISP host mobility
A method is provided in one example embodiment and includes detecting by a first network element at a first data center site a local connection of an endpoint identifier (“EID”), in which the EID was previously locally connected to a second network element at a second data center site and notifying a mapping server of the local connection of the EID to the first network element. The method further includes receiving from the mapping server identifying information for the second network element and communicating with the second network element using the identifying information to obtain service information for traffic associated with the EID. The method may also include applying a service identified by the service information to outgoing traffic from the EID as well as applying a service identified by the service information to incoming traffic for the EID. |
US11405348B2 |
Managing an ephemeral post in a social networking system
A method of posting ephemeral posts is disclosed. The method starts with receiving, from a user of a social network, a request to post an ephemeral post, the request including an ephemeral variable associated with a threshold event. The ephemeral post is posted on behalf of the user. Then an occurrence of the threshold event is monitored. When the threshold event has not occurred, the post is allowed to be accessible to at least one viewer other than the user. When the threshold event has occurred, the post is blocked from being accessible by the at least one view other than the user. |
US11405347B1 |
Systems and methods for providing game-related content
Systems, methods, and non-transitory computer-readable media can receive gameplay information associated with a first user playing a game on a computing device. Game-related content is generated based on the gameplay information. The game-related content is published to an ephemeral content feed on a social networking system. |
US11405346B2 |
Verified hypermedia communications
A verified method of high-value, person-to-person communication is provided. The method comprises creating a unique dynamic messaging link recognizable to a selected intended recipient; creating a transmissible personal hypermedia message to which the link is assigned; and storing the hypermedia message on a device accessible to a network. The link comprises a recognizable proprietary domain name and a random hash code. The individual is sent a direct message and the device is monitored for transmission thereto of the link, analyzing and storing accompanying metadata. The direct message contains an invitation to click on the link over the imprimatur of a person known to the recipient. The invitation contains descriptive material relating to the hypermedia message. Upon activation of the link, without redirection, the hypermedia message is transmitted to the recipient and the sender is notified. The sender is alerted if the link has not been activated within a predetermined period. |
US11405344B2 |
Social media influence of geographic locations
The present disclosure relates generally to internet social media, and more specifically to techniques for determining location-related information about internet social media content. In some embodiments, a system accesses data representing a first social media post, the data including geographic location data identifying a first geographic location. The system identifies a second social media post related to the first post. The system accesses data representing the second social media post, wherein the data representing the second post does not include geographic location data identifying the first geographic location. The system analyzes the data representing the second social media post and determines a location score based at least in part on the analysis of the data representing the second social media post. If the location score exceeds a threshold location score, the system associates the second social media post with the first geographic location. |
US11405343B2 |
Techniques for extensible message indexing
Techniques for extensible message indexing are described. In one embodiment, an apparatus may comprise a client front-end component of a messaging system operative to receive an incoming message from a client device; identify a sending client service for the incoming message at the client front-end component; determine a service identifier index value for the sending client service at the client front-end component; and store the incoming message in a message queue using the service identifier index value. Other embodiments are described and claimed. |
US11405341B1 |
Audience-based content optimization in a messaging system
Aspects of the present disclosure involve a system and method for optimizing a content shared via a messaging system based on an expected audience for the content. A content is received from a publisher client device associated with a publisher. A list of content versions associated with the publisher is accessed form a database, each content version being associated with an associated set of content parameters. The one or more content versions of the content are generated. When an access request is received from a viewer client device, an optimal content version is identified for the viewer client device based on the device capabilities of the viewer client device. An updated list of content versions is associated with the publisher by aggregating the optimal content versions identified for a plurality of viewer client devices, and the database is updated with the updated list of content versions associated with the publisher. |
US11405338B2 |
Virtual-assistant-based resolution of user inquiries via failure-triggered document presentation
In certain embodiments, document-based resolution of user inquiries may be facilitated. A predicted intent of the user is determined based on chat activity information associated with the user. A response to a user inquiry may be provided to the user via a chat interface based on the predicted intent. User response may be obtained for the response, which may indicate a failure in providing a resolution to the user (e.g., regarding a user inquiry). Upon detecting a failure in providing the resolution, a document associated with the user and matching the predicted intent may be obtained and presented to via the chat interface. The document may have content related to the predicted intent. The document may be presented as a response to the user response to seek a confirmation from the user regarding its relevance to the user inquiry. |
US11405334B2 |
Selection of member ports in a link aggregation group
This disclosure describes techniques that include selecting a member port of an aggregation bundle by evaluating utilization of paths, within a router, to member ports of an aggregation bundle. In one example, this disclosure describes a method that includes receiving network data to be output through an aggregation bundle having a plurality of member ports; identifying local member ports; identifying non-local member ports, each of the non-local member ports being reachable from the receiving line card over a path through the switch fabric to a different one of the plurality of line cards; identifying available non-local member ports by determining, for each non-local member port, whether the path through the switch fabric has low utilization; and selecting a member port by applying a hashing algorithm to a group that includes each of the identified available non-local member ports. |
US11405333B2 |
Switched fabric network routing mode support
Embodiments include methods, systems, and computer program products for routing mode support in a switched fabric network. A fabric login payload is built at a device to establish a plurality of communication parameters with a switched fabric network. A routing mode capability of the device is determined. One or more routing support bits are configured in the fabric login payload based on the routing mode capability of the device. The fabric login payload is sent to the switched fabric network to establish communication between the device and a network device of the switched fabric network. |
US11405332B1 |
Fast scheduling and optimization of multi-stage hierarchical networks
Significantly optimized multi-stage networks including scheduling methods for faster scheduling of connections, useful in wide target applications, with VLSI layouts using only horizontal wires and vertical wires to route large scale partial multi-stage hierarchical networks having inlet and outlet links, and laid out in an integrated circuit device in a two-dimensional grid arrangement of blocks are disclosed. The optimized multi-stage networks in each block employ one or more slices of rings of stages of switches with inlet and outlet links of partial multi-stage hierarchical networks connecting to rings from either left-hand side or right-hand side; and employ hop wires or multi-drop hop wires wherein hop wires or multi-drop wires are connected from switches of stages of rings of slices of a first partial multi-stage hierarchical network to switches of stages of rings of slices of the first or a second partial multi-stage hierarchical network. |
US11405330B2 |
System and method for bandwidth optimization with support for multiple links
A link management engine aggregates multiple links into a single link, and presents the single link to a bandwidth optimizer for a recommendation based on priorities assigned to applications. The engine may evaluate the recommendation for bandwidth optimization based on a current pipeline status, direct a packet to one of the multiple links based on the evaluation of the recommendation for bandwidth optimization, and generate a health report associated with the multiple links. |
US11405328B2 |
Providing on-demand production of graph-based relationships in a cloud computing environment
Described herein is a system for automatically capturing configuration changes to the cloud computing resources. The system for automatically capturing configuration changes may detect changes to configurations of cloud computing resources across the geographic regions, in real-time. The changes may be stored in a central data storage device instantiated by a central cloud computing account. Furthermore, a relationship graph indicating the relationships between the different cloud computing resources may be generated. |
US11405327B2 |
Network device having reduced latency
A network device includes a transmit buffer from which data is transmitted to a network, and a packet buffer from which data chunks are transmitted to the transmit buffer in response to read requests. The packet buffer has a maximum read latency from receipt of a read request to transmission of a responsive data chunk, and receives read requests including a read request for a first data chunk of a network packet and a plurality of additional read requests for additional data chunks of the network packet. A latency timer monitors elapsed time from receipt of the first read request, and outputs a latency signal when the elapsed time reaches the first maximum read latency. Transmission logic waits until the elapsed time equals the first maximum read latency, and then transmits the first data chunk from the transmit buffer, without regard to a fill level of the transmit buffer. |
US11405326B2 |
Application and network aware adaptive compression for better QoE of latency sensitive applications
This disclosure is directed to embodiments of systems and methods for performing compression of data in a queue. A device intermediary between a client and a server may determine that a length of time to move existing data maintained in a queue from the queue exceeds a predefined threshold. The device may identify, responsive to the determination, a first quantity of the existing data to undergo compression, and a second quantity of the existing data according to a compression ratio of the compression. The device may reserve, according to the second quantity, a first portion of the queue that maintained the first quantity of the existing data, to place compressed data obtained from applying the compression on the first quantity of the existing. The device may place incoming data into the queue beyond the reserved first portion of the queue. |
US11405324B1 |
Packet serial number validation
A technique for packet processing may include maintaining a data structure representing transport status information associated with a sliding window of sequential packets for a host system. When a packet targeted for the host system is received, a packet validation process can be performed on the packet. The packet validation process may include validating that the packet belongs to the sliding window of the sequential packets by comparing the packet serial number of the packet against the packets being expected in the sliding window. The packet validation process may also include validating that the packet is being received for the first time and is not a duplicate packet. Upon validating the packet, the packet can be placed into the host system, and the status information can be updated to indicate that the packet has been received. |
US11405320B2 |
Systems and methods for scalable validation of multiple paths in a network using segment routing
Systems, methods, and computer-readable media are disclosed for a scalable process for validating multiple paths used for routing network traffic in a network using segment routing. In one aspect, a method includes identifying, by a first network hop, one or more second network hops, for each of the one or more second network hops, determining a corresponding flow label, the corresponding flow label including a corresponding test packet for validating packet forwarding between the first network hop and a corresponding second network hop, and performing a validation process for validating packet forwarding from the first network hop to the corresponding second network hop using at least the corresponding flow label. The method further includes determining a queue of additional network hops to be validated based on a result of the validation process, and iteratively validating packet forwarding for each additional network hop in the queue. |
US11405318B2 |
Collaborative traffic balancer
This disclosure describes techniques for employing a collaborate traffic balancer in communications among network devices. The techniques include dynamic traffic engineering concepts to improve network communications. The techniques may include causing a headend device to establish a secure communication session between a client device and a server in a resource infrastructure supporting the service. The techniques may include selecting a tunnel for the secure communication session to reach the resource infrastructure. The techniques may further include migrating the secure communication session from a current tunnel to a new tunnel where a degradation in quality of the secure communication session is predicted. |
US11405314B2 |
Packet processing method and apparatus
This application provides a packet processing method, which helps resolve a problem that a network node between a user terminal and a DHCP server is relatively complex. In the method, a network node of an access network receives a first packet sent by a user terminal, where the first packet is used to request an Internet Protocol IP address from a Dynamic Host Configuration Protocol DHCP server and the network node obtains a second packet, where the second packet includes the first packet, information about a port, and a Media Access Control MAC address of the user terminal, the port is a port through which the network node receives the first packet, and the second packet is a packet except a DHCP packet. Additionally the network node sends the second packet to a controller. |
US11405313B2 |
Simulation design method for bay layer devices of smart substation
Disclosed is a simulation design method for bay layer devices of a smart substation. Application layer modules of two network structures store identity tags of each other's application layer modules respectively, so that a simulation model of the bay layer devices has ports of both network structures and can realize data sharing. The simulation model of the bay layer devices can process SV messages, GOOSE messages and MMS messages simultaneously. An interface layer is additionally configured between an application layer and a data link layer to allow data to be directly mapped to the data link layer from the application layer, so that received or transmitted messages contain actual electrical quantity information. The invention provides model establishment methods of two network structures, thus not only suitable for simulation of the bay layer devices, but also suitable for simulation of station control layer devices and process layer devices. |
US11405309B2 |
Systems and methods for selecting communication paths for applications sensitive to bursty packet drops
Described embodiments provide systems and methods for selecting communication paths for applications sensitive to bursty packet drops. A device intermediary to a client and a server may identify an application for which packets are to be communicated between the client and the server. The device may determine a sensitivity level of the application to a network disruption affecting the packets. The device may estimate, for each path between the client and the server for communicating the one or more packets, a path quality for the path indicating a likelihood that the network disruption affects the one or more packets. The device may select path for communicating the packets based on the sensitivity level of the application and the path quality. The device may communicate the packets between the client and the server via the path. |
US11405307B2 |
Information transfer method and device
Disclosed in the present application are an information transfer method and device. When a user side node sends a traffic request through a MLD, IGMP or PIM protocol or sends prefix information through routing protocols such as Babel, BGP, OSPF, ISIS and the like, a forwarding side node can clearly know by a manner of adding a user side mark whether the user side node is connected to the forwarding node. When performing forwarding according to a BIER rule, the forwarding side node can identify the user side node and encapsulate a packet to have a correct destination address to be sent, so as to ensure that the user side node can correctly receive a traffic message. |
US11405302B1 |
Methods, systems, and computer readable media for network testing using configurable test infrastructure
According to one method, the method occurs at a test system implemented using at least one processor. The method includes receiving test configuration information associated with a test session for configuring a test infrastructure connecting at least one test application and a system under test (SUT), wherein the test infrastructure includes at least two CTI devices that are dynamically configurable to perform one or more test related functions; configuring, using test configuration information, the test infrastructure to handle traffic for the test session; initiating the test session, wherein the test session involves using the at least two CTI devices and the at least one test application to test the SUT; and obtaining and reporting test results associated with the test session. |
US11405298B2 |
Traceroute for overlays using dynamic filters
The disclosure describes processing packets in connection with a traceroute session in an overlay network that includes detecting traceroute probes using static and dynamic rules and using the time to live (TTL) value in a received traceroute probe to compute an outer TTL value. The TTL value (inner TTL) of the received probe is updated based on the number of underlay routers (hops) comprising the underlay network that are detected during the traceroute session. The received probe with its updated TTL value is encapsulated in an outer frame that includes the computed outer TTL value. The number of hops is updated each time an underlay router sends an ICMP time exceeded message. |
US11405295B2 |
Scalable distributed end-to-end performance delay measurement for segment routing policies
The present technology is directed to a scalable solution for end-to-end performance delay measurement for Segment Routing Policies on both SR-MPLS and SRv6 data planes. The scalability of the solution stems from the use of distributed PM sessions along SR Policy ECMP paths. This is achieved by dividing the SR policy into smaller sections comprised of SPT trees or sub-paths, each of which is associated with a Root-Node. Downstream SID List TLVs may be used in Probe query messages for signaling SPT information to the Root-Nodes Alternatively, this SPT signaling may be accomplished by using a centralized controller. Root-Nodes are responsible for dynamically creating PM sessions and measuring delay metrics for their associated SPT tree section. The root-nodes then send the delay metrics for their local section to an ingress PE node or to a centralized controller using delay metric TLV field of the response message. |
US11405293B2 |
System and method for managing IT asset inventories using low power, short range network technologies
A method of information technology (IT) asset management includes using a mesh network to report IT asset management data and receiving the IT asset management data from the mesh network at a collection server. |
US11405280B2 |
AI-driven capacity forecasting and planning for microservices apps
In one embodiment, a resource allocation process determines a plurality of service levels of applications (e.g., business transactions) during a monitored period, and examines infrastructure performance data (utilization of a plurality of resources and a plurality of performance metrics) of a plurality of services in a microservices architecture in relation to each of the plurality of service levels of the applications. Accordingly, a resource capacity model can be generated for the microservices architecture based on the service dependency and the infrastructure performance data across the plurality of service levels, the resource capacity model defining a required capacity of resources to satisfy specified performance metric constraints during operation of the applications at given service levels. As such, the resource allocation process can effectuate, based on the resource capacity model, a specific capacity of resources required for a particular time of operation of the applications at a particular service level. |
US11405277B2 |
Information processing device, information processing system, and network communication confirmation method
An information processing device, includes a memory; and a processor coupled to the memory and configured to: store, in the memory, a confirmation program for performing communication confirmation of a network, transmit the confirmation program to a server in the network, collect an execution result of the communication confirmation transmitted from the server by causing the server to execute the communication confirmation, and perform correctness determination of the execution result. |
US11405276B2 |
Device configuration management apparatus, system, and program
A device configuration management apparatus includes a logical node information storage storing logical node information about a logical node that can be associated with a particular device and a particular location, the logical node information including for each of logical nodes a device ID for identifying the particular device and location information which is information for identifying the location, a network information storage storing network information as a set of information about an edge connecting two logical nodes, and a node update processer configured to perform processing for updating at least one of the device ID and the location information with regard to the particular logical node in the logical node information stored in the logical node information storage. |
US11405274B2 |
Managing virtual network functions
Examples disclosed herein include a method of managing virtual network functions of a network functions virtualization (NFV) network environment includes generating an integration virtual network function (integration VNF) to allow a user to perform tasks related to integration and deployment of a first virtual network function (first VNF), and generating an orchestration template for a first virtual network function (first VNF) with an NFV orchestrator of the NFV environment. The method further includes reviewing the orchestration template with the integration VNF, and orchestrating deployment of the first VNF with a virtual infrastructure manager (VIM) of the NFV environment based on the orchestration template. |
US11405273B1 |
Network device data erasure
A method includes determining, by a computer device, device information for a network device communicatively coupled to the computer device. The method includes retrieving, from a server device, a configuration file corresponding to the device information as determined. The method includes resetting the network device using the configuration file as retrieved. The method includes clearing user-addressable storage locations of the network device. The method includes outputting an indication of whether resetting the network device was successful and whether clearing the user-addressable storage locations of the network device was successful. |
US11405266B2 |
Automatic configuration of virtual network functions
A device can receive virtual network function (VNF) data associated with multiple VNFs. The device can generate multiple configuration templates that are to be used by a network design tool that is capable of creating a design of a network for an organization. The device can receive, from a user device, object data associated with network design objects that have been added to or removed from the interface of the network design tool. The device can generate multiple VNF configuration files that allow two or more of the multiple VNFs to be supported by network devices associated with the organization. The device can perform actions associated with configuring two or more of the multiple VNFs onto the network devices to permit the network devices to utilize virtual resources while executing the two or more of the multiple VNFs. |
US11405265B2 |
Methods and systems for detecting path break conditions while minimizing network overhead
Disclosed herein are systems and methods for detection of a path break in a communication network by one network appliance of a plurality of network appliance. A communication path that is transitioning from active to idle state can be quickly determined by evaluating network data traffic within a predetermined time interval after the end of a data transmission. By strategically utilizing health probes at only a set predetermined time interval after a data transmission, a path break condition can be quickly determined without significant use of network bandwidth. Further, the path break condition can be determined unilaterally by one network appliance. |
US11405262B2 |
Redirection service resource locator mechanism
A system can include circuitry that processes a URL for information; circuitry that transmits at least a portion of the information via a network interface; circuitry that receives metadata via the network interface responsive to the transmission of at least a portion of the information; circuitry that associates at least a portion of the metadata with a short URL; and circuitry that transmits the short URL. Various other apparatuses, systems, methods, etc., are also disclosed. |
US11405261B1 |
Optimizing bandwidth utilization when exporting telemetry data from a network device
A network device may receive, from a collector device, a request for telemetry data associated with service interfaces and counters of the network device. The network device may determine, based on the request, a first quantity of the service interfaces and a second quantity of the counters. The network device may determine a first time interval to send delta values of the telemetry data associated with the service interfaces and the counters, and a second time interval to send absolute values of the telemetry data, based on the first time interval, the first quantity of the service interfaces, and the second quantity of the counters. The network device may provide, to the collector device, the absolute values of the telemetry data based on the second time interval and may provide, to the collector device, the delta values of the telemetry data based on the first time interval. |
US11405259B2 |
Cloud service transaction capsulation
A framework to handle monitoring and automatic fault manifestation in cloud networks. Multiple techniques correlate the logs of different cloud services or generate independent capsules for each component, VM, storage, or transaction. In a first exemplary technique, an authentication token is provided by an authentication service for logs during a period of an event. In a second exemplary technique, a unique instance ID for multiple distinct processes may be created in a data model of notification logs or service logs. |
US11405257B2 |
System for centralized monitoring and control of IoT devices
A system for centralized monitoring and control of Internet of Things (IoT) devices comprises an abstraction module development utility and an IoT device management system. The abstraction module development utility determines one or more device-specific user interface (UI) interactions for performing an action for each of a plurality of different IoT device types and generates an abstraction module for each of the different IoT device types. The IoT device management system is configured to generate one or more non-device-specific API calls for performing the action with respect to a particular IoT device, determine an IoT device type from among the plurality of different IoT device types for the particular IoT device, and direct the one or more non-device-specific API calls for performing the action to the abstraction module for the determined IoT device type for execution against the particular IoT device. |
US11405253B2 |
Transmitter, receiver and controlling method thereof
A transmitter includes: a frame generator configured to generate a frame including a frame starting symbol, at least one data symbol and a frame closing symbol; a pilot and reserved tone inserter configured to insert pilots and reserved tones in at least one of the frame starting symbol, the data symbol and the frame closing symbol such that positions of the reserved tones do not overlap positions of the pilots in the at least one of the frame starting symbol, the data symbol and the frame closing symbol; and a transmitter configured to transmit the frame in which the pilots and the reserved tones are inserted, wherein the reserved tones are not used to transmit data in the frame. |
US11405250B2 |
Automatically select guard interval value
In one example in accordance with the present disclosure, a device may include a processor to detect a distance between a first location of the device and a second location of a peer device, automatically select one value for GI from at least two available values based on the detected distance, and update the value of GI using the selected value. A method may include detecting a distance between a first location of the AP and a second location of a peer device, selecting one value for GI from at least two available values based on the detected distance, and updating the value of GI using the selected value. |
US11405249B2 |
Systems and methods for modifying modulated signals for transmission
Systems and methods are disclosed herein for modifying modulated signals for transmission. The system receives a modulated signal comprising a speech signal and a carrier wave and generates first and second spectral signals by converting the modulation signal and carrier wave from the time domain to the frequency domain respectively. The system then determines spectral bands for the first and second spectral signals. For each spectral band, the system calculates a weighted spectral band value based on a magnitude of the first spectral signal within the spectral band and generates a modified spectral signal by modifying the second spectral signal with the weighted spectral band value. The system then converts the modified spectral signal from the frequency domain to the time domain and transmits the converted modified spectral signal to a server. |
US11405248B2 |
FPGA based system for decoding PAM-3 signals
An FPGA based system for decoding PAM-3 signals is disclosed, wherein the system comprises a directional coupler for separating 100BASE-T1 and 1000BASE-T1 master and slave signals, DVGAs for amplifying the master and slave signals, ADCs for sampling the amplified signals, and a FPGA module, wherein the FPGA module is configured for decoding the PAM-3 symbols, in real-time, from oversampled ADCs data using fully pipelined Register Transfer Level (RTL) architecture. |
US11405246B2 |
Uplink operation for LTE in an unlicensed band
Systems, methods, and instrumentalities are disclosed for Uplink operation in LTE unlicensed spectrum (LTE-U). A wireless transmit/receive unit (WTRU) may receive licensed assisted access (LAA) configuration information, e.g., for a first cell from a second cell. The first cell may be associated with operation in an unlicensed band, and the second cell may be associated with operation in a licensed band. The WTRU may determine whether a first subframe is a sounding reference signal (SRS) subframe for the first cell. If the first subframe is an SRS subframe for the first cell, the WTRU may determine SRS resources for the first subframe and determine whether the WTRU is triggered to transmit an SRS transmission in the first subframe. If it is determined the WTRU is triggered to transmit the SRS transmission in the first subframe, the WTRU may transmit the SRS transmission on the SRS resources for the first subframe. |
US11405245B2 |
Scrambling sequence design for multi-mode block discrimination on DCI blind detection
Methods and devices are described for polar encoding and decoding control information that has been modulated based on one or more identifiers of the transmitter and/or receiver. Some embodiments describe scrambling sequence design for multi-mode block discrimination on control information blind detection and decoding. Separate scrambling masks may be applied to disparate bit fields within a coded DCI message, wherein each of the scrambling masks is derived from a user equipment (UE)-specific identifier, a UE group identifier, or a base station identifier. Frozen bits of the polar code may be used to encode and transmit hybrid automatic repeat request (HARQ) acknowledgment messaging for early retransmission of unsuccessful downlink messages. A tiered process of UE identification may be employed to improve a balance between early termination of the decoding process and success of the UE identification process. |
US11405234B2 |
Extensible mapping for vehicle system buses
In general, techniques are described for extensible mappings for vehicle system busses. A device configured to interact with a vehicle may perform the techniques. The device may comprise a memory that stores an extensible mapping between a local control message and a standard control message. The device may also include a processor configured to execute an operating system to control a system of the vehicle. The operating system may generate the standard control message, where the standard control message includes a first representation of a command set. The processor may translate, based on the extensible mapping, the standard control message to obtain the local control message, the local control message including a second representation of the command set. The processor may transmit, via a control bus coupled to the processor and the system, the local control message to initiate an operational state change of the system. |
US11405230B2 |
Internet of things (IoT) apparatuses, systems and methods
An IoT-based system and method are described having an IoT hub including an accelerometer. For example, one embodiment of a system comprises: an Internet of Things (IoT) service, a plurality of IoT devices, each IoT device comprising a first secure communication module, and an IoT hub in communication with the plurality of IoT devices. The IoT hub comprising: a microcontroller unit to execute application-specific program code, a second secure communication module to establish a first secure communication channel with the IoT service and a plurality of second secure communication channels with the plurality of IoT devices, and a sensor to detect physical movements of the IoT hub and to change an operating mode of the IoT hub from a first operating mode to a second operating mode based on the physical movements. |
US11405229B2 |
System and method to provide explicit multicast local identifier assignment for per-partition default multicast local identifiers defined as subnet manager policy input in a high performance computing environment
Systems and methods for providing explicit multicast local identifier assignment for per-partition default multicast local identifiers defined as subnet manager policy input in a high performance computing environment. In accordance with an embodiment, an explicit multicast local identifier (MLID) assignment policy can be provided (as, e.g., administrative input) that explicitly defines which MLIDs will be used for which partitions in a subnet. Further, an MLID assignment policy can also define which dedicated MLIDs will be associated with given multicast group identifiers (for example, partition independent MLIDs). By employing such an MLID assignment policy, a new or restarted master subnet manger can observe and verify the MLIDs used for existing partitions, instead of generating new MGID to MLID mappings. In this way, changes in MLID associations for any corresponding MGID can be avoided as a result of master SM restarts or failovers, or any subnet-merge operations. |
US11405227B2 |
Smart query buffering mechanism
A method, apparatus and computer program product for controlling a web-based presentation is described. In an embodiment of the invention, the already presented content and future content of the presentation is analyzed. When a user question is received from a user terminal communicatively coupled to the web-based presentation, the user question is buffered so that the system can determine whether content answering the user question has been or will be presented in the presentation based on the analyzed content. Responsive to the determination, the system will perform an action. In embodiments, the system will provide the user one of the following: 1) the system will provide a notification related to the answering content in a user interface, if the answering content has been, or will be, presented in the presentation, and maintaining the user question in a buffer state; or 2) the system will release the user question from the buffer state to allow the user question to be forwarded to a presenter of the presentation if the content has not been, and will not be, presented. |
US11405221B2 |
Retention and revocation of operation keys by a control unit
An electronic key fob device, in one embodiment, includes a transmitter, a counter configured to provide a current counter value indicated by a plurality of bits, a memory configured to store an operation key, and a processor coupled to the transmitter and memory. The processor is configured to encrypt the current counter value using the operation key to produce an encrypted counter value, select a subset of the plurality of bits of the current counter value, transmit a message the includes the encrypted counter value and the subset of plurality of bits of the current counter value. |
US11405219B2 |
Shared blockchain data storage
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for communicating and sharing blockchain data. One of the methods includes sending current state information associated with a current block of a blockchain to one or more shared storage nodes of the blockchain network; sending a hash value to the one of the one or more shared storage nodes for retrieving an account state stored in the historic state tree; receiving the account state in response to sending the hash value; and verifying, by the consensus node, that the account state is part of the blockchain based on the hash value. |
US11405216B2 |
System for authenticating verified personal credentials
A method, apparatus, system, and computer program product are provided for managing the usage of verified credentials. An issuer of credentials receives a request from a person for a credential. The issuer identifies the credential from information that is controlled by the issuer. The issuer identifies a decentralized identifier (DID) record for an audit engine from a blockchain network. The DID record for the audit engine includes a public key of that is associated with the audit engine. The issuer identifies a DID record for the person from the blockchain network. The DID record for the person includes a public key that is associated with the person. The issuer generates an encrypted credential by encrypting the credential and the DID record for the person based on the public key associated with the audit engine. The issuer sends the encrypted credential to the person. |
US11405211B2 |
Biometric session tokens for secure user authentication
Communications between a client and an application server can be authenticated based on biometrics information about a user. After basic client authentication by the application server, the application server queries a biometrics server that has user biometrics information. The biometrics server provides the biometrics information to the application server in the form of a hash and the application server stores it in an application database for future comparison. The application server sends an unencrypted token to the client. The client queries biometrics information from the biometrics servers, which is provided in a hash. The client uses the biometrics information to encrypt the unencrypted token received from the application server and sends the encrypted token to the application server for validation. The application server hashes the encrypted token received from the client and compares it to the hash stored in the application database. If the hashes match, the communications are authenticated. The process can be repeated for subsequent tokens until the customer logs out. |
US11405209B2 |
Apparatus for controlling authentication and method of operating same
Disclosed are an apparatus for controlling authentication and a method of operating the same capable of increasing security and convenience in user authentication by authenticating a user through an authentication scheme that is determined differently according to space reliability of an authentication-processing space in which user authentication is processed. |
US11405206B2 |
Systems and methods for managing a compromised autonomous vehicle server
Systems and methods for managing a compromised autonomous vehicle server are described herein. A processor may obtain an indication of a first server configured to control an autonomous vehicle being compromised. The autonomous vehicle may have previously been provisioned with a first public key. The first public key may be paired with a first private key. A processor may compile command information. The command information may include a command for the autonomous vehicle and a digital certificate of a second server configured to control the autonomous vehicle in the event of the first server being compromised. The digital certificate may include a second public key and may be signed with the first private key. The command may be signed with a second private key associated with the second server. The second private key may be paired with the second public key. |
US11405204B2 |
Scalable, secure, efficient, and adaptable distributed digital ledger transaction network
The present disclosure relates to systems, methods, and non-transitory computer readable storage media for implementing a scalable, secure, efficient, and adaptable distributed digital ledger transaction network. Indeed, the disclosed systems can reduce storage and processing requirements, improve security of implementing computing devices and underlying digital assets, accommodate a wide variety of different digital programs (or “smart contracts”), and scale to accommodate billions of users and associated digital transactions. For example, the disclosed systems can utilize a host of features that improve storage, account/address management, digital transaction execution, consensus, and synchronization processes. The disclosed systems can also utilize a new programming language that improves efficiency and security of the distributed digital ledger transaction network. |
US11405187B2 |
Extended-life asymmetric cryptographic key scheme
Extending the useful life of finite lifetime asymmetric cryptographic keys by referencing the number of uses of the keys in conjunction with or instead of the elapsed time since generation of the finite lifetime keys. By integrating asymmetric cryptographic keys into a limited use security scheme, the lifetime of finite lifetime asymmetric cryptographic keys is based on the practical risk of security breach during use rather than an arbitrary duration in which the keys are valid. |
US11405184B2 |
Systems and methods for securely processing environmental exposure information
A wearable computing device is provided that comprises one or more environmental sensors, one or more positioning sensors, and a communication interface. In some embodiments, the wearable computing device is configured to activate at least one environmental sensor of the one or more environmental sensors to obtain at least one environmental condition value; activate at least one positioning sensor of the one or more positioning sensors to determine a position of the wearable computing device; activate the communication interface; and transmit the at least one environmental condition value and the position for storage in a blockchain storage system. |
US11405175B2 |
Dual fallback hardened VoIP system with signal quality measurement
A hardened VoIP system is presented that includes secure push-to-talk voice functionality. Through the addition of encryption, authentication, user filtering, and integration with new and existing LMR systems, a secure voice platform ensures malicious software, unauthorized access and brute force security attacks will not compromise the voice communications of the system. The VoIP system is engineered to ensure graceful system degradation in the event of maintenance activities, natural disasters and failure modes. The hardened VoIP system offers the functions a LMR trunking system while utilizing broadband connections. Private calls, group calls, Emergency Alarms with covert monitoring capability, scanning and priority scanning may be incorporated into the system. The system includes a VoIP controller that serves as a trunking controller, manages available VoIP based conference bridges, and assigns them as needed to the parties involved in each voice call. The system includes multiple fallback methods that may be prioritized based on pre-failure analytics. |
US11405172B2 |
Full duplex interference measurement and reporting
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for interference measurement and reporting by a UE. The interference measurement can be self-initiated by the UE or based on a request received from a BS. To measure the interference, the UE transmits a first signal in UL resources to a first BS concurrently with receiving a second signal in DL resources from one of the first BS or a second BS. The received second signal includes interference associated with the transmitted first signal. Based on the received second signal, the UE determines a level of the interference that is associated with the transmitted first signal. Information associated with the level of the interference is then transmitted to the first BS, such as an indication of a guard band that is to be incorporated between the UL resources and the DL resources. |
US11405171B2 |
System and method for controlling full duplex communications at an access point
A method for controlling communication of information includes selecting a group of stations within range of an access point, transmitting a first signal from the access point to a first station in the group, and receiving at the access point a second signal from a second station in the group. The first signal is transmitted to the first station through a downlink channel. The second signal is received from the second station through an uplink channel. Transmission of the first signal takes place during a first period and reception of the second signal takes place during a second period overlapping the first period, in order to perform full-duplex different-frequency communications based on an 802.11 standard between the access point and the first station and the second station. |
US11405170B2 |
Terminal, radio communication method, and base station
A terminal is disclosed including a receiver that receives a command to command at least one of activation and deactivation for a first cell that is configured with a short TTI having a shorter TTI length than a subframe and a processor that controls at least one of an activation operation and a deactivation operation of the first cell in units of a subframe based on the command. In other aspects, a radio communication method and base station are also disclosed. |
US11405163B2 |
Channel quality information reporting method, terminal device, and network device
This application provides a channel quality information reporting method, a terminal device, and a network device. The reporting method includes: receiving, by a terminal device, a first reference signal and a second reference signal that are sent by a network device; receiving, by the terminal device, first indication information sent by the network device, where the first indication information includes a quasi co-location (QCL) assumption relationship between the second reference signal and the first reference signal; and reporting, by the terminal device, second channel quality information to the network device based on the QCL assumption relationship, where the second channel quality information is channel quality information for the second reference signal. According to this application, resource overheads for reporting channel quality information can be reduced. |
US11405159B2 |
Method for transmitting feedback information, terminal device and network device
A method for transmitting feedback information, a terminal device, and a network device are provided. The method includes: a terminal device determines a target feedback mode used for transmitting feedback information, wherein the feedback information is feedback information for a transport block (TB) sent by a network device and received by the terminal device; and the terminal device uses the target feedback mode to transmit the feedback information. |
US11405158B2 |
Signature-domain multiplexing for non-orthogonal multiple access
A user equipment for operating in a wireless network, wherein the wireless network utilizes a first number of resources for serving communicating UEs, comprises a wireless interface for communicating in the wireless network; and a controller configured for selecting, for communicating in the wireless network, from a second number of predefined subsets of the first number of resources, at least one subset. The second number is larger than the first number and the second number of predefined subsets is based on a mapping of the first number of resources into the second number of subsets using an Euler-square mapping. |
US11405154B2 |
Reference signal configuration method and apparatus
This application relates to the communications field and discloses a reference signal configuration method and apparatus, to improve accuracy of a channel estimation result in a complex and changeable scenario. The method may include: determining configuration information of a first reference signal, where the first reference signal is a reference signal corresponding to a first port that is used in one transmission process, a second port can also be used in the transmission process, and configuration information of a reference signal corresponding to the second port is different from the configuration information of the first reference signal; and configuring the first reference signal based on the configuration information of the first reference signal. |
US11405152B2 |
QCL relationship and/or DMRS port identification
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a first transmit receive point in a multi-TRP configuration, a downlink control information (DCI) communication. The UE may identify one or more quasi-co-location (QCL) relationships associated with a control resource set (CORESET) or a search space set in which the DCI communication is received. A QCL relationship, of the one or more QCL relationships, is associated with one or more physical downlink shared channel (PDSCH) layers that are transmitted from a second TRP in the multi-TRP configuration. Numerous other aspects are provided. |
US11405150B2 |
Method by which terminal transmits data in unlicensed band, and apparatus for using method
A method by which terminal transmits data in an unlicensed band, and an apparatus using the method are provided. The method comprises: transmitting codeblock groups (CBGs) to a base station by using a first resource within the unlicensed band; and re-transmitting at least one CBG, in which a negative acknowledgement (NACK) is received, of the CBGs to the base station by using a second resource within the unlicensed band, wherein the second resource is determined on the basis of the proportion of the CBGs to the at least one CBG in which the NACK is received. |
US11405147B2 |
Enhanced wireless device and wireless network processes
A wireless device may receive, in a first timing, a TB associated with a semi-persistent scheduling configuration. The wireless device may start a DRX retransmission timer in a first symbol after the first timing in response to determining to defer a HARQ feedback, associated with the TB, from a second timing to a later timing based on the second timing not being valid for transmission of the HARQ feedback. |
US11405145B2 |
Method and apparatus for transmitting and receiving signal in a communication system
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A downlink transmission method performed by user equipment and user equipment are provided. The downlink transmission method performed by the user equipment includes: receiving a predefined downlink signal in a predefined downlink resource, and performing ACK feedback according to the received downlink signal, thereby implementing the performing of downlink data transmission in an RRC idling or inactive state, or establishing RRC connection more rapidly. |
US11405144B2 |
Method and apparatus for transmitting sidelink HARQ feedback information
Provided are a method and an apparatus of a user equipment for transmitting sidelink HARQ feedback information. The method includes: receiving configuration information on a PSFCH resource pool, and determining a PSFCH resource for transmitting HARQ feedback information within the PSFCH resource pool, and transmitting the HARQ feedback information using PSFCH resource. |
US11405141B2 |
Telemetry data error detection
A device may receive a first telemetry data entry associated with an attribute and store a record associated with the first telemetry data entry, wherein the record identifies a first context value associated with the attribute. The device may log a first timestamp of the first telemetry data entry in a lookup table, wherein the lookup table includes a mapping of the attribute to the first context value and to the first timestamp. The device may receive a second telemetry data entry associated with the attribute and may determine, from the mapping, that the second telemetry data entry is associated with a second context value that is different from the first context value. The device may determine whether a second timestamp, of the second telemetry data entry, is before the first timestamp. The device may perform an action based on whether the second timestamp is before the first timestamp. |
US11405138B2 |
Mixed space time and space frequency block coding
Systems and methods for mixed space time and space frequency block coding are provided. In some embodiments, a method of operating a first node in a wireless communication network for providing time and frequency diversity includes precoding modulation symbols intended for a second node according to two antenna ports on which they are to be transmitted. In a first subset of Orthogonal Frequency-Division Multiplexing (OFDM) symbols, mapping the precoded modulation symbols to resource elements starting first with indices corresponds to frequency. In a different subset of OFDM symbols, mapping the precoded modulation symbols to resource elements in any two adjacent OFDM symbols starting first with indices corresponds to time. In this way, transmission efficiency may be increased by not having any resource elements unused. Additional flexibility for precoding may also be provided when there is no symbol pair mapped to resource elements across two resource blocks. |
US11405136B1 |
Viterbi equalizer with soft decisions
A Viterbi Equalizer having a limited number of stages is disclosed. In some embodiments, the Viterbi Equalizer may have only four stages. The Viterbi Equalizer produces soft decisions, which comprise a final decision and reliability information related to that final decision. The Viterbi Equalizer is able to provide reliability information even if all paths do not converge on the final decision at the last stage. The reliability information is calculated based on if and when the paths in the trellis converge on a final decision. This reliability information can be used downstream, such as by another Viterbi Algorithm block to perform forward error correction. The use of soft decision provides gains of up to several dB in performance. Additionally, the Viterbi Equalizer is low cost and readily implemented in hardware or software. |
US11405130B2 |
Apparatus, system and method of communicating a physical layer protocol data unit (PPDU)
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a Physical Layer Protocol Data Unit (PPDU). For example, an Enhanced Directional Multi-Gigabit (DMG) (EDMG) station (STA) may be configured to encode a Physical Layer (PHY) Service Data Unit (PSDU) of at least one user in an EDMG PHY Protocol Data Unit (PPDU) according to an EDMG Low-Density Parity-Check (LDPC) encoding scheme, which is based at least on a count of one or more spatial streams for transmission to the user; and transmit the EDMG PPDU in a transmission over a channel bandwidth in a frequency band above 45 Gigahertz (GHz). |
US11405123B2 |
Method and apparatus for transporting client signals in an optical transport network
Method and apparatus for transporting client signals in an OTN are provided. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission. |
US11405120B2 |
Systems and methods for synchronizing transmission of wireless data
An audio system, method, and computer program product for synchronizing device clocks. The systems, methods and computer program product can establish a first isochronous data stream between a peripheral device and a first device and establish a second isochronous data stream between the first device and a second device to send data between the first and second device. As the two data streams may rely on two different device clocks, e.g., one clock which defines the timing for the first isochronous data stream and a second clock which defines the timing for the second isochronous data stream, the systems, methods, and computer program disclosed herein are configured to maintain synchronization and/or synchronize the first clock with the second clock to prevent data loss due to clock drift. |
US11405109B2 |
Information transmission method, optical line termination, optical network unit, and communications system
The present disclosure relates to information transmission methods, optical line terminations (OLTs), optical network units (ONUs), and communications systems. One example method on an OLT side includes allocating, by the OLT, an identifier to a first ONU through a first channel, performing, through the first channel, ranging on the first ONU to obtain ranging information about the first channel, and after determining, by the OLT and the ONU through negotiation, to use two channels to perform information transmission, performing, by the OLT, data transmission of a first service with the first ONU through a second channel. |
US11405106B2 |
Setup for receiving an optical data signal
The disclosure relates to a setup for receiving an optical data signal having input optics for receiving the signal. An optical receiving fiber with an end facet is provided, which can be injected into the optical receiving fiber by an optical collimation system. A detector for detecting the optical data content is connected to the optical receiving fiber. A receive calibration source is provided, which is connected to the optical receiving fiber by a circulator. An insertable retroreflector is provided in the light path for adjusting the setup into the light path so that light from the receive calibration source is reflected and focused by the optical collimation system onto the end facet of the receiving fiber. The distance in the z-direction between the optical collimation system and the end facet of the receiving fiber is adjusted by the power of the light from the receive calibration source detected. |
US11405101B2 |
OTDR receive device with connectivity feedback
There is provided an OTDR receive device and an OTDR system comprising an OTDR receive device wherein the OTDR unit and the OTDR receive device are to be connected at opposite ends of an optical fiber link under test. The OTDR receive device comprises means for the OTDR system to detect an established connectivity between the OTDR unit and the OTDR receive device via the optical fiber link under test and a status indicator to notify a user of the receive device of the connectivity status and optionally an OTDR measurement status. Connectivity detection allows to check for continuity between the OTDR unit and the OTDR receive device before launching an OTDR measurement. A user of the OTDR unit does not need to communicate with the user of the OTDR receive device to know when to start the acquisition. |
US11405100B2 |
Methods and systems for monitoring optical networks
Methods and systems for monitoring an optical network are described. An optical device may receive a data signal. The optical device may send the data signal to a test port. A measuring device may measure characteristics associated with the data signal. |
US11405096B2 |
System and method to improve carrier aggregation efficiency for aerial user equipment over terrestrial 5G networks
A method includes registering, by a primary cell site processor, an unmanned aerial vehicle, receiving, by the primary cell site processor, a list of one or more potential secondary cell sites from the unmanned aerial vehicle, timing advances associated with the one or more secondary cell sites, deriving, by the primary cell site processor, a number of component carriers within each of the one or more potential secondary cell sites, selecting, by the primary cell site processor, one or more secondary cell sites from the one or more potential secondary cell sites, and transmitting, by the primary cell site processor, instructions to the one or more secondary cell sites to provide a component carrier to the unmanned aerial vehicle. |
US11405092B2 |
Beam management procedures
Wireless communications are described. A wireless device and/or a base station may determine/select one or more beams for transmission of signals (e.g., sounding reference signals, SRSs) in one or more cells. The wireless device and/or the base station may determine/select a beam based on one or more of: cell indicators of a first cell and/or a second cell, antenna panel indicators associated with SRS transmissions, prorities of SRS transmissions, resource set indicators corresponding to the SRS transmissions, and/or other information. |
US11405090B2 |
Method and apparatus for antenna beam tracking in wireless cellular communication system
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retailing, and security and safety related services, on the basis of 5G communication technologies and IoT-related technologies. Disclosed are a method and an apparatus for communication between a transmission end and a receiving end in a communication environment to which analog beamforming is applied. |
US11405089B2 |
Method and system for managing interference in multi TRP systems
Systems and methods for managing interference in a communication network include transmitting a first downlink signal from a first transmit/receive point (TRP) to an electronic device using a beam. The electronic device can also receive a second downlink signal from a second TRP, where a portion of the first downlink signal from the first TRP interferes with the second downlink signal. The first TRP then receives a series of uplink pilot signals from the electronic device. Using the received uplink pilot signals, the first TRP can then estimate the angle of departure (AoD) for the intended signal (first downlink signal), and the AoD for the interference signal. The first TRP can then reconfigure the beam used to transmit the first downlink signal based on the estimated AoDs for the intended signal and interference signal to manage the interference effect that the first leakage signal has on the second downlink signal. |
US11405085B2 |
Method and apparatus for transmission pattern configuration and signal detection
Embodiments of the present disclosure provide a method for configuring transmission pattern in a wireless system. The method comprises indicating a number of antenna ports to be used for the transmission pattern; and configuring transmission resource for the number of antenna ports by indicating K resource configurations, with each resource configuration indicating resource for one of K subsets of antenna ports which form a set of the number of antenna ports. A method for signal detection according to the transmission pattern is also provided. Embodiments of the present disclosure also provide corresponding apparatus. |
US11405079B2 |
Techniques for acquisition of channel state information
This disclosure relates to a channel state information, CSI, acquisition circuitry, configured to: determine at least one channel covariance matrix estimate and interference-and-noise covariance matrix estimate based on at least one channel state information reference signal, CSI-RS, resource; select a restricted number of rank indicator, RI, hypotheses from a set of RI hypotheses for running a joint rank indicator-precoding matrix indicator, RI-PMI, search on the CSI-RS based channel covariance matrix estimate and interference-and-noise covariance matrix estimate to select an optimal RI value and associated PMI value, wherein the restricted number of RI hypotheses is in accordance with a run-time estimated CSI acquisition capability of the CSI acquisition circuitry; and execute the joint RI-PMI search based on the selected RI hypotheses. |
US11405078B1 |
Device for implementing beamforming in wireless networks
A beamformee executes a singular value decomposition operation on a channel coefficient matrix to generate a diagonal matrix and a unitary matrix. The beamformee extracts a submatrix from each of the diagonal matrix and the unitary matrix. Each of a number of rows and a number of columns of the submatrix extracted from the diagonal matrix is equal to a number of spatial streams associated with a beamformer. Further, the submatrix extracted from the unitary matrix has a number of rows and a number of columns equal to a number of beamformer antennas of the beamformer and the number of spatial streams, respectively. The beamformee generates a subspace matrix that is a product of the submatrix extracted from the diagonal matrix and a conjugate transpose of the submatrix extracted from the unitary matrix. Further, the beamformee generates a steering matrix based on the subspace matrix. |
US11405077B2 |
Encoding and resource mapping for multiplexing feedback codebooks
Methods, systems, and devices for wireless communications are described. A UE may determine resource amounts for transmitting feedback codebook for two different service types based on satisfaction of a multiplexing condition by overlapping resource schedules. The codebooks may be encoded according to different coding rates to generate encoded feedback codebooks. The encoded codebooks may be mapped to transmission resources according to codebook payload sizes, encoding rates, and available resources and transmitted according to the mapping. |
US11405076B2 |
Apparatuses and methods for adaptive spatial diversity in a MIMO-based system
Examples described herein include apparatuses and methods to perform adaptive spatial diversity in a MIMO system. An example apparatus may include a plurality of receiving antennas and a wireless receiver configured to receive a respective plurality of receive signals each from a respective receiving antenna of the plurality of receiving antennas. The wireless signal may be further configured to apply a corresponding weight to each of the plurality of signals to provide a plurality of weighted signals and to apply an eigenfilter to the plurality of weighted signals provide a transfer function. The wireless receiver further configured to perform a fast Fourier transform (FFT) on the transfer function to provide output signals in the frequency domain. |
US11405061B2 |
Interference mitigation in a communications network
A network node obtains, via a transmission and reception point (TRP) and from a terminal device not served by the network node, a packet comprising channel state information feedback indicating that a further packet is expected to be transmitted from the TRP on a downlink within a predefined time interval. The network node initiates transmission via the downlink of the TRP responsive to the channel state information feedback such that the transmission interferes with an uplink of the terminal device by less than a threshold amount during the predefined time interval. |
US11405052B2 |
Compression of high dynamic ratio fields for machine learning
Various embodiments include methods and devices for implementing decompression of compressed high dynamic ratio fields. Various embodiments may include receiving compressed first and second sets of data fields, decompressing the first and second compressed sets of data fields to generate first and second decompressed sets of data fields, receiving a mapping for mapping the first and second decompressed sets of data fields to a set of data units, aggregating the first and second decompressed sets of data fields using the mapping to generate a compression block comprising the set of data units. |
US11405051B2 |
Enhancing processing performance of artificial intelligence/machine hardware by data sharing and distribution as well as reuse of data in neuron buffer/line buffer
An exemplary artificial intelligence/machine learning hardware computing environment having an exemplary DNN module cooperating with one or more memory components can perform data sharing and distribution as well reuse of a buffer data to reduce the number of memory component read/writes thereby enhancing overall hardware performance and reducing power consumption. Illustratively, data from a cooperating memory component is read according to a selected operation of the exemplary hardware and written to corresponding other memory component for use by one or more processing elements (e.g., neurons). The data is read in such a manner to optimize the engagement of the one or more processing elements for each processing cycle as well as to reuse data previously stored in the one or more cooperating memory components. Operatively, the written data is copied to a shadow memory buffer prior to being consumed by the processing elements. |
US11405050B2 |
Entropy encoding and decoding scheme
Decomposing a value range of the respective syntax elements into a sequence of n partitions with coding the components of z laying within the respective partitions separately with at least one by VLC coding and with at least one by PIPE or entropy coding is used to greatly increase the compression efficiency at a moderate coding overhead since the coding scheme used may be better adapted to the syntax element statistics. Accordingly, syntax elements are decomposed into a respective number n of source symbols si with i=1 . . . n, the respective number n of source symbols depending on as to which of a sequence of n partitions into which a value range of the respective syntax elements is sub-divided, a value z of the respective syntax elements falls into, so that a sum of values of the respective number of source symbols si yields z, and, if n>1, for all i=1 . . . n−1, the value of si corresponds to a range of the ith partition. |
US11405049B2 |
Optical communication apparatus and correcting method
An optical communication apparatus includes a level detector, an FIR filter, and a adjustor. The level detector detects level information that discriminates a change in a multi-value level based on an input signal used in a multi-value amplitude modulation system. The FIR filter compensates a signal band of the input signal in accordance with tap coefficients of a plurality of multipliers. The adjustor corrects the tap coefficient of each of the multipliers included in the FIR filter based on the level information detected in the level detector. |
US11405039B1 |
Level shifter with improved negative voltage capability
A level shifting circuit includes negative voltage shifting circuitry including a first leg and a second leg. The first leg includes a first NMOS transistor and a first PMOS transistor in series with a first input node and a negative amplified voltage, and the second leg includes a second NMOS transistor and a second PMOS transistor in series with a second input node and the negative amplified voltage. The level shifting circuit further includes positive voltage shifting circuitry including a first plurality of high voltage transistors in series with a positive amplified voltage and an output node of the level shifting circuit, and a second plurality of high voltage transistors in series with a first intermediate node of the first leg of the negative voltage shifting circuitry and the output node of the level shifting circuit. The level shifting circuitry further includes input circuitry including a plurality of inverters. |
US11405038B2 |
Level shifter circuit and display panel
The present disclosure discloses a level shifter circuit and a display panel. The level shifter circuit includes a level shifter module, a compare module connected to the level shifter module. The level shifter module includes a level shifter unit, a control unit connected to the level shifter unit. The level shifter unit receives a first voltage signal and a second voltage signal and generates a level shifter result signal according to the first voltage signal and the second voltage signal. The compare module is configured to compare a voltage corresponding to the level shifter result signal with a reference voltage at a predetermined time and generate a comparison result. The control unit stops the shifter unit when the voltage corresponding to the level shifter result signal is less than the reference voltage. The present disclosure prevents the display panel from being damaged by short circuiting. |
US11405035B1 |
Gate resistor bypass for RF FET switch stack
A common gate resistor bypass arrangement for a stacked arrangement of FET switches, the arrangement including a series combination of an nMOS transistor and a pMOS transistor connected across a common gate resistor. During at least a transition portion of the transition state of the stacked arrangement of FET switches, the nMOS transistor and the pMOS transistor are both in an ON state and bypass the common gate resistor. On the other hand, during at least a steady state portion of the ON steady state and the OFF steady state of the stacked arrangement of FET switches, one of the nMOS transistor and the pMOS transistor is in an OFF state and the other of the nMOS transistor and the pMOS transistor is in an ON state, thus not bypassing the common gate resistor. |
US11405032B2 |
Smart electronic switch
An integrated circuit that may be employed as a smart switch is described herein. In accordance with one embodiment the integrated circuit includes a power transistor coupled between a supply pin and an output pin and a current sensing circuit coupled to the power transistor and configured to generate a current sense signal indicative of a load current passing through the power transistor. The integrated circuit further comprises a monitor circuit configured to receive the current sense signal and to provide a protection signal based on the current sense signal and a threshold value, wherein the monitor circuit includes a filter that is configured to receive a filter input signal that depends on the current sense signal. The filter has a transfer characteristic with two or more time constants. |
US11405030B1 |
Cascode bias for comparator
A comparator having: a first transistor coupled to a first input terminal; a first current source coupled to the first transistor; a second transistor coupled to a second input terminal and coupled to the first current source; a third transistor coupled in series with the first transistor; a fourth transistor coupled in series with the second transistor; a fifth transistor coupled in series with the first transistor; a sixth transistor coupled in series with the second transistor; a seventh transistor coupled to the first input terminal and coupled as a source follower to the fifth transistor; and an eighth transistor coupled to the second input terminal and coupled as a source follower to the sixth transistor. The comparator also including a differential amplifier coupled to the first output terminal and coupled to the second output terminal. |
US11405025B1 |
Frequency divider functionality detection and adjustment
A frequency divider functionality detection and adjustment circuit includes an auxiliary voltage controlled oscillator (VCO) coupled to a first multiplexer (MUX), a programmable divider coupled to the first MUX, a second MUX coupled to the programmable divider, a counter coupled to the second MUX, and a controller coupled to the counter, the controller configured to adjust a supply voltage provided to the programmable divider based on a measured divide ratio, NMEAS. |
US11405023B2 |
Semiconductor integrated circuit device
A semiconductor integrated circuit device includes a flipflop circuit using vertical nanowire (VNW) FETs. A latch unit of the flipflop circuit includes: a feedback node; first p-type and n-type transistors each of which receives an input signal at one node and is connected to the feedback node at the other node; and second p-type and n-type transistors each connected to the feedback node at one node. In a standard cell, the tops of the first and second p-type and n-type transistors are connected to the feedback node. |
US11405022B2 |
Filter networks for driving capacitive loads
According to at least one aspect, a filter network is provided. The filter network comprises: an active filter comprising an amplifier (e.g., an operational amplifier), wherein the active filter is configured to add at least one member selected from the group consisting of a pole and a zero to a transfer function of the filter network; a passive filter coupled to the active filter and configured to add at least one pole to the transfer function of the filter network; and a non-inverting amplifier (e.g., a voltage buffer) having an input coupled to the passive filter and an output coupled to the active filter. |
US11405020B2 |
Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
Acoustic resonators, acoustic filter devices and methods of making the same. An acoustic resonator device includes a piezoelectric plate having front and back surfaces, and an interdigital transducer (IDT) on the front surface including interleaved fingers. An overlapping distance of the interleaved fingers defines an aperture of the acoustic resonator device. The device further includes a fast region between the aperture and a busbar of the IDT. The piezoelectric plate and the IDT are configured such that a radio frequency signal applied to the IDT excites a primary shear acoustic mode having a first frequency in the piezoelectric plate within a central portion of the aperture and a primary shear acoustic mode having a second frequency in the fast region. The second frequency is higher than the first frequency. |
US11405019B2 |
Transversely-excited film bulk acoustic resonator matrix filters
Radio frequency filters. A radio frequency filter includes a substrate attached to a piezoelectric plate, portions of the piezoelectric plate forming a plurality of diaphragms spanning respective cavities in the substrate. A conductor pattern formed on the piezoelectric plate includes a plurality of interdigital transducers (IDTs) of a respective plurality of resonators, interleaved fingers of each IDT disposed on a respective diaphragm of the plurality of diaphragms. The conductor pattern connects the plurality of resonators in a matrix filter circuit including a first sub-filter and a second sub-filter, each sub-filter comprising two or more resonators from the plurality of resonators. |
US11405018B2 |
Filter and multiplexer
A filter includes a ladder filter including a first parallel arm resonator and a second parallel arm resonator, a longitudinally coupled resonator filter electrically connected in series to the ladder filter, a first ground terminal electrically connected to the first parallel arm resonator, a second ground terminal electrically connected to the second parallel arm resonator, a third ground terminal electrically connected to the longitudinally coupled resonator filter, a third signal path electrically connected to a first node on a first signal path electrically connecting the second parallel arm resonator to the second ground terminal and a second node on a second signal path electrically connecting the longitudinally coupled resonator filter to the third ground terminal, and an inductor electrically connected between the first node on the first signal path and the second ground terminal or between the second node on the second signal path and the third ground terminal. |
US11405015B2 |
Surface acoustic wave device
A surface acoustic wave device includes a quartz layer, a piezoelectric layer, and an Inter Digital Transducer. A rotation in a right-screw direction is assumed as a +-rotation. A three-dimensional coordinate system formed by an x1-axis, a y1-axis, and a z1-axis respectively matching an X-axis, a Y-axis, and a Z-axis as crystallographic axes of a quartz-crystal is rotated from +125.25° in a range of ±3° with the x1-axis as a rotation axis. Subsequently, the three-dimensional coordinate system is rotated from +45° in a range of ±2° with the z1-axis as the rotation axis. Subsequently, the three-dimensional coordinate system is rotated from −45° in a range of ±2° with the x1-axis as the rotation axis. The quartz layer is cut along a surface as a sectional plane perpendicular to the z1-axis. The quartz layer has a propagation direction of the surface acoustic wave in a direction parallel to the x1-axis. |
US11405014B1 |
Solid-state tuning behavior in acoustic resonators
The present invention relates to tunable microresonators, as well as methods of designing and tuning such resonators. In particular, tuning includes applying an electrical bias to the resonator, thereby shifting the resonant frequency. |
US11405013B2 |
Bulk acoustic wave resonator structure for second harmonic suppression
Embodiments of this disclosure relate to acoustic wave filters configured to filter radio frequency signals. An acoustic wave filter includes a first bulk acoustic wave resonator on a substrate, a second bulk acoustic wave resonator on the substrate, a conductor electrically connecting the first bulk acoustic wave resonator in anti-series with the second bulk acoustic wave resonator, and an air gap positioned between the conductor and a surface of the substrate. The air gap can reduce parasitic capacitance associated with the conductor. Acoustic wave filters disclosed herein can suppress a second harmonic. |
US11405012B2 |
Balun and method for manufacturing the same
A balun and a method for manufacturing the same are disclosed. According to an embodiment, the balun comprises a substrate, and a first and a second coplanar waveguide (CPW) couplers which are disposed on the substrate and cascaded with each other. Each CPW coupler comprises two first ground planes disposed on a first side of the substrate, a first microstrip line and at least two second microstrip lines which are disposed on the first side of the substrate between the two first ground planes, and at least one third microstrip line that is disposed on an opposite side of the substrate. The first microstrip line and the at least two second microstrip lines can be coupled with each other by electromagnetic coupling. The at least one third microstrip line electrically connects the at least two second microstrip lines with each other by via-holes. |
US11405010B2 |
Method for manufacturing a micromechanical layer structure
A method for manufacturing a micromechanical layer structure, including: providing a first protective layer patterned to have at least one opening which is filled with sacrificial layer material; depositing a functional-layer layer structure; producing a first opening in the functional-layer layer structure to at least one opening of the first protective layer, so that in at least one of the layers of the functional-layer layer structure; depositing a second protective layer so that the first opening is filled with material of the second protective layer; patterning the second protective layer and the filled first opening to have a second opening to the first protective layer, the second opening having the same or a lesser width than the first opening; removing sacrificial layer material at least in the opening of the first protective layer; and removing protective layer material at least in the second opening. |
US11405005B2 |
Radio frequency amplifier circuit
A radio frequency amplifier circuit is provided. A matching circuit is configured on a radio frequency path of an input end or an output end of an amplifier. An inductance-capacitance resonance circuit and the matching circuit share an inductor included in the matching circuit to generate a corresponding resonance frequency. The matching circuit provides an input impedance or an output impedance matching two fundamental tones in a radio frequency signal at a first frequency and a second frequency. The inductance-capacitance resonance circuit provides a filtering path for filtering a signal component outside a frequency band formed by the first frequency and the second frequency in the radio frequency signal. |
US11405004B2 |
Low-power approximate DPD actuator for 5G-new radio
Systems and methods are disclosed herein for providing efficient Digital Predistortion (DPD). In some embodiments, a system comprises a DPD system comprising a DPD actuator. The DPD actuator comprises a Look-Up Table (LUT), selection circuitry, and an approximate multiplication function. Each LUT entry comprises information that represents a first set of values {p1, p2, . . . , pk} and a second set of values {s1, s2, . . . , sk} that represent a LUT value of s1·2p1+s2·2p2+ . . . +sk·2pk where each value si∈{+1,−1} where k≥2. The selection circuitry is operable to, for each input sample of an input signal, select a LUT entry based on a value derived from the input sample that is indicative of a power of the input signal. The approximate multiplication function comprises shifting and combining circuitry that operates to, for each input sample, shift and combine bits that form a binary representation of the input sample in accordance with {p1, p2, . . . , pk} and {s1, s2, . . . , sk} to provide an output sample. |
US11405003B1 |
Extended feedback gain tuning in TIA based current amplifier or mixer
A transimpedance amplifier (TIA) device design is disclosed. Symmetric components include first and second resistors Ri, Rfb, Re, Rm, Rx, Rc, and Rl, and transistors Q1-Q4. An optional mixer or cascode adds transistors Q5-Q8. Values for resistor components Rx provide extended feedback gain tuning in a TIA-based current amplifier or mixer implementations without greatly affecting the input impedance or requiring more attenuators. Example values for resistor components Rx range from about 50 to about 350 ohms. |
US11405000B1 |
Transformer based voltage controlled oscillator (VCO)
A transformer based voltage controlled oscillator (VCO) is provided with a primary resonant circuit having a first inductor connected in parallel with a variable first capacitance circuit. A secondary resonant circuit is formed from a second inductor connected in parallel with a variable second capacitance circuit, and also includes a mode control circuit. The mode control circuit controls the direction of current flow through the secondary resonant circuit inductor. The first and second inductors are inductively mutually coupled in either an even mode or an odd mode in response to the mode control circuit. The VCO supplies a first resonant frequency in response to even mode operation, or a second resonant frequency, greater than the first resonant frequency, responsive to odd mode operation. The VCO may include a first electrically tunable varactor shunted across the first capacitance circuit and a second electrically tunable varactor shunted across the second capacitance circuit. |
US11404999B2 |
Method for detecting a contact fault in a photovoltaic system
A method for detecting a contact fault in a photovoltaic system is disclosed. The photovoltaic system includes an inverter and a photovoltaic generator connected to the inverter via DC current lines. The inverter includes a transmitter for coupling a first AC voltage signal having communication frequencies in a first frequency range between 125 kHz and 150 kHz into the DC current lines. A receiver is configured to couple out the first AC voltage signal and is arranged at the photovoltaic generator. A decoupling circuit is configured to decouple the impedance of the photovoltaic generator is arranged between the inverter and the photovoltaic generator, such that the photovoltaic generator is AC decoupled from a transmission path between the inverter and the decoupling circuit. The inverter communicates with the receiver via the first AC voltage signal, and wherein AC currents are measured in the DC current lines and AC voltages are measured between the DC current lines to aid in detection of a contact fault condition. |
US11404998B1 |
Pneumatic solar tracking system for solar panels
The pneumatic solar tracking system for solar panels adjusts the angular orientation of a solar panel to maximize exposure of an upper surface of the solar panel to incident solar radiation from the sun as the sun moves across the sky. The pneumatic solar tracking system includes a base and a platform supported above the base. The platform has an opening formed therein. A plurality of pneumatic actuators are supported on the base beneath the opening formed in the platform. The solar panel is supported on an upper surface of the platform, and a plurality of pivotal connectors pivotally connect the lower surface of the solar panel to respective pistons of the plurality of pneumatic actuators. Each of the pivotal connectors pivots along at least two orthogonal axes. An optical sensor is provided for detecting and tracking the angular position of the sun. |
US11404996B2 |
Adjustable clip assembly for solar modules
The present disclosure describes a solar power system including rails, solar modules, and a plurality of adjustable clips to secure the solar modules to the rails. The clips include at least a base member, an elastomeric support member, a bracket member, and an alignment member configured to secure the various members of the clip together. The adjustable clips are configured to slide within a slot defined through a portion of a surface of a rail and including a recessed edge thereby allowing the rail system to accommodate solar modules of varying dimensions. |
US11404995B2 |
Mobile generator
A mobile generator includes a housing having a top portion, a first side portion, and a second side portion, wherein the first side portion includes an energy-receiving component. The mobile generator also includes an arm pivotally coupled to the housing at a first pivot point and to the first side portion at a second pivot point. A first motion controller is configured to drive rotation of the arm about the first pivot point, and a second motion controller configured to drive rotation of the first side portion about the second pivot point. |
US11404992B2 |
Motor control device
A motor control device includes a plurality of control units corresponding to a plurality of windings which is provided in a motor. The plurality of control units includes a master control unit, a slave control unit, and at least one abnormality monitoring unit. The slave control unit is configured to generate a power supply control command value using information which is acquired through a path other than communication between the control units and which is held for use in control of supply of electric power to the windings in a normal state in which an abnormality in communication between the control units is not detected and to perform backup control for holding the power supply control command value until the abnormality monitoring unit fixes an abnormality in communication between the control units after detecting the abnormality in communication. |
US11404991B2 |
Variable frequency drive DC bus capacitor configuration to limit DC bus short circuit current
A voltage source inverter comprises a rectifier circuit having an input for connection to a multi-phase AC power source and converting the AC power to DC power and an inverter circuit for receiving DC power and converting the DC power to AC power. A DC bus circuit is connected between the rectifier circuit and the inverter circuit to provide a relatively fixed DC voltage for the inverter circuit, the DC bus circuit comprising a DC bus including a first bus rail comprising an inductor and a second bus rail, and a soft charge circuit connected in series with a DC bus capacitor network between the first and second rails, the DC bus capacitor network comprising a first capacitor branch including a pair of capacitors with a fuse connected in series between the capacitors, a balancing resistor across each capacitor and a snubbing capacitor connected across the fuse. |
US11404990B2 |
Method for operating an electric synchronous machine
The invention relates to a method for operating an electric synchronous machine, having the steps of: —generating centered pulse-width-modulated switching signals for switching elements (T1 . . . T6) of half-bridges, wherein two switching elements (T1 . . . T6) are connected to a respective half-bridge in each case; second switching elements (T4 . . . T6) of each half-bridge are actuated in a complementary manner to the first switching elements (T1 . . . T3) of each half-bridge if a sufficient minimum measurement duration (TM) is thereby provided during which the switching signals of switching elements (T1 . . . T6) of two half-bridges lie at different potentials; —otherwise: —generating pulse-width-modulated switching signals for the switching elements (T1 . . . T6) of the half-bridges, said switching signals deviating from the center at least to such a degree that a sufficient minimum measurement duration (TM) is provided, wherein —the switching signals of the switching elements (T1 . . . T6) are designed such that temporal changes corresponding to the minimum measurement duration (TM) in the switching signals of the switching elements (T1 . . . T6) are prevented; and —carrying out a 1-shunt current measurement within the provided minimum measurement duration TM). |
US11404989B2 |
Power supply system for vehicle
A power supply system (1) includes: a drive motor (M) coupled to drive wheels (W); a first inverter (23) which converts DC electric power into three-phase AC electric power; a first current sensor (23I) which generates a current detection signal according to electrical current flowing in the first inverter (23), and a system ECU (8) which executes discharge control for discharging electrical charge of a second smoothing capacitor (C2) connected to the first inverter (23), in a case of a discharge start condition being established. The system ECU (8), in a case of the drive motor (M) rotating upon starting the discharge control, executes the discharge control, after executing three-phase short-circuit control to turn ON all switching elements of an upper arm or all switching elements of a lower arm of the three-phase arm of the first inverter (23), based on the current detection signal of the sensor (23I). |
US11404988B2 |
Inverter control method, and inverter control apparatus
A control method of inverter for driving motor including a magnet, comprises detecting a rotation state of the motor by a rotation sensor, detecting current of the motor by a current sensor, calculating, based on a torque command value, a detection value of the rotation state detected by the rotation sensor, and detection current detected by the current sensor, a voltage command value for controlling a voltage of the motor by a controller for controlling the inverter, specifying a value of at least one of a local maximum value, a local minimum value, and an average value of the torque voltage command value included in the voltage command value as a torque determination target command value by the controller, comparing a demagnetizing determination threshold value with the torque determination target command value by the controller, and determining whether or not demagnetization of the magnet occurs in accordance with the compared result. |
US11404983B2 |
Catch spin method for permanent magnet synchronous motor with sensorless field oriented control
A motor control actuator configured to drive a permanent magnet synchronous motor (PMSM) with sensorless Field Oriented Control (FOC) includes: a sampling circuit configured to measure a counter electro motive force (CEMF) or a back electro motive force (BEMF) of the PMSM, while the PMSM rotates, and generate a measurement signal based on the measured CEMF or the measured BEMF; a motor controller including a current controller configured to generate control signals for driving the PMSM, the current controller configured to receive the measurement signal and perform a catch spin sequence for restarting the PMSM while rotating based on the measurement signal; and a multi-phase inverter configured to supply multiple phase voltages to the PMSM based on the control signals. The motor controller is configured to match an output voltage of the multi-phase inverter to the measured CEMF or the measured BEMF during the catch spin sequence. |
US11404982B2 |
Method for estimating mechanical parameters of an electrical motor
A method for controlling an electrical motor taking in account slip frequency. The method including determining amplitude, phase and frequency of the stator voltage from voltage measurements, determining estimates for current components from current measurement and stator voltage phase, determining estimate for torque from voltage amplitude, frequency, current amplitude and motor data, determining estimate for speed from torque, frequency and motor data, and determining over-estimation of speed from speed estimate, torque estimate and slip frequency. The over-estimation may be used to improve functional safety of the motor. |
US11404979B2 |
Motor driving circuit, integrated circuit device, and electronic apparatus
A motor driving circuit includes a first motor driving circuit that controls driving of a first motor is disposed, a second motor driving circuit that controls driving of a second motor is disposed, and a constant current generation circuit that generates a constant current is disposed, and the constant current generation circuit is disposed at a position deviating from between the first motor driving circuit and the second motor driving circuit. |
US11404977B2 |
Control method for vibration type actuator including vibrator and contact body moving relative to each other, drive control device, vibration type drive device, and apparatus
A vibration type drive device capable of maintaining stable drive performance and controllability includes a vibration type actuator comprising a vibrator and a contact body, and a drive control device. The drive control device applies two-phase alternating current voltages to the energy conversion element of the vibrator by a drive portion, converts a control amount of feedback control based on the relative position/speed into a phase difference between the two-phase alternating current voltages, and outputs the phase difference to the drive portion by using, for the relative movement, a phase difference of a first or second quadrant in a coordinate system (in a first direction) and a phase difference of a third or fourth quadrant (in a second direction), with θ representing the phase difference, SIN θ corresponding to the vertical axis, and COS θ corresponding to the horizontal axis in the coordinate system. |
US11404975B2 |
Electronic control system for a frequency converter with a use value
An electronic control system of a frequency converter repeatedly receives one nominal base value at a time for the operation of an electrical machine, determines a respective nominal current value using the respective nominal base value, and determines respective control signals for power semiconductors of the frequency converter using the respective nominal current value. The electronic control system controls the power semiconductors according to the determined respective control signals and thereby supplies the electrical machine with electrical energy such that the electrical machine is operated according to the nominal base value. The electronic control system determines the respective nominal current value and/or the respective control signals according to an enabled determination method if and as long as a permissible extent of use for the enabled determination method is larger than 0. |
US11404974B2 |
Power converter for performing conversion from DC to AC or vice versa, and method for controlling the power converter
In a High Efficient and Reliable Inverter Concept power conversion device, control is performed with one cycle divided into four periods, wherein in a first period when the signs of an AC voltage and an AC current are both positive, first and fourth switches perform switching operation, second and third switches are opened, and a sixth switch is closed; in a second period when the signs are positive and negative, a current is passed through freewheeling diodes when a fifth switch is opened while the fifth switch performs switching operation; in a third period when both signs are negative, the second and third switches perform switching operation, the first and fourth switches are opened, and the fifth switch is closed; and in a fourth period when the signs are negative and positive, a current is passed through freewheeling diodes when the sixth switch is opened while the sixth switch performs switching operation. |
US11404972B2 |
Power module and converter with asymmetrical semiconductor rating arrangement
Systems for operating a rectifier are provided. Aspects include a rectifier including a set of bridge structures configured to receive an input current of a power supply, wherein each bridge structure in the set of bridge structures includes a set of diodes and a set of active switches, wherein each active switch in the set of active switches is configured to provide a parallel path around each diode in the set of diodes when in a PWM state, a controller configure to determine a threshold current for the rectifier and operate one or more active switches in the rectifier in a PWM state based on the input current being less than the threshold current. |
US11404970B2 |
Power converter
A power converter includes a housing that accommodates at least one capacitor inside the housing, a first power conversion module including at least one first positive electrode and at least one first negative electrode, a second power conversion module including at least one second positive electrode and at least one second negative electrode, a first positive electrode busbar that connects a first electrode of the capacitor to the first positive electrode, a first negative electrode busbar that connects a second electrode of the capacitor to the second negative electrode, a second positive electrode busbar that is fixed to the first positive electrode together with the first positive electrode busbar and that is fixed to the second positive electrode, and a second negative electrode busbar that is fixed to the first negative electrode and that is fixed to the second negative electrode together with the first negative electrode busbar. |
US11404965B2 |
DC-DC converter, on-board charger, and electric vehicle
A DC-DC converter includes: a first three-phase bridge module, a resonance module, a second three-phase bridge module, and a controller. The second three-phase bridge module is configured to: adjust frequency of an input signal of a battery module during discharging; and in a light load mode, the controller is configured to: control the first three-phase bridge module to switch to a two-phase bridge arm input or a one-phase bridge arm input and the second three-phase bridge module to switch to a two-phase bridge arm output, and control the second three-phase bridge module to switch to a two-phase bridge arm input or a one-phase bridge arm input and the first three-phase bridge module to switch to a two-phase bridge arm output during discharging, thereby reducing a switch loss in the light load mode. |
US11404961B2 |
On-time compensation in a power converter
A power converter includes a switch, an ON-time controller, and a compensator. Over multiple control cycles, the ON-time controller controls an ON-time duration of a control signal driving the switch. Activation of the switch generates an output voltage that powers a dynamic load. The ON-time controller controls attributes such as a switching frequency and/or an ON-time duration of the control signal driving the switch to regulate the output voltage. A phase-locked loop in the compensator supplies the ON-time controller with adjustment signals that adjust the ON-time duration of activating the switch to maintain the switching frequency at a desired setpoint. Thus, if a transient load condition causes the ON-time controller to temporarily operate the switch to at a value other than the desired setpoint frequency, the phase-locked loop of the compensator causes the switching frequency to align with the desired switching frequency again over one or more control cycles. |
US11404960B2 |
Charge pump gate drive circuit for reduction in turn-on switching loss for MOSFETs
An electronic circuit includes a charge pump circuit, which includes a drive power supply; a flying capacitor; and a pump capacitor that is coupled in parallel to the drive power supply and the flying capacitor in response to a first control signal being in first state and is configured to receive charge from the flying capacitor to boost a pump voltage across the pump capacitor to a value that exceeds a drive voltage provided by the drive power supply responsive to a transition of the first control signal from the first state to a second state. The electronic circuit further includes a gate drive circuit coupled to the charge pump circuit. |
US11404959B2 |
DC/DC power converter
A DC-DC power converter including: input terminals for receiving an input voltage; a pulse wave generator for generating a pulse wave; a transformer having a primary winding and a secondary winding and a magnetizing inductance; a DC blocking capacitor; a rectifier; a filter capacitor; at least one resonant inductor connected in series with the transformer; a resonant capacitor connected to the rectifier; output terminals; and a control unit for controlling operation of the pulse wave generator such when the duty cycle of the pulse wave voltage varies, high efficiency is maintained. |
US11404957B2 |
Mounting of power cables for limiting common mode currents
A mounting device shaped for contact with at least a part of a circumference formed by a configuration of three separately electric isolated one-phase power cables and at least one electrically isolated one-phase common mode return cable positioned together so that electrically conductive portions of the respective cables form a symmetrical cross sectional pattern, wherein the mounting device is arranged for fixation of all of said three power cables and the at least one common mode return cable to an associated structure. This mounting device allows effective fixation of power cables in electric power systems involving a three-phase PWM converter, where common mode return cables are necessary, e.g. in a wind turbine. The mounting device allows an effective practical handling and freedom to choose cables with custom fit cross sectional areas as well as compliance with the required maximum temperatures. |
US11404950B2 |
Retarder-equipped rotating electrical machine
A retarder-equipped rotating electrical machine includes a rotor, a stator, and a retarder rotor. The stator has teeth at regular intervals in a circumferential direction. One ends of the teeth are disposed to face the rotor. The retarder rotor has a magnetic member continuously in the circumferential direction. The retarder rotor is disposed to face the other ends of the teeth of the stator and configured to rotate integrally with the rotor. A rotor-to-stator pole piece portion having pole pieces at regular intervals in the circumferential direction is disposed between the rotor and the stator. A stator-to-retarder rotor pole piece portion having pole pieces at regular intervals in the circumferential direction is disposed between the stator and the retarder rotor. Both pole piece portions are moved in the circumferential direction to switch between an operation as a motor or generator and an operation as a retarder. |
US11404949B2 |
Linear vibration motor
The present invention provides a linear vibration motor including a housing with; a vibrator and a stator accommodated in the housing; and elastic support parts suspending the vibrator in the accommodation space. Each elastic support part includes a first installation part fixed to the housing, a second installation part fixed to the vibrator, a first extension part connecting with one end of the second installation part, a second extension part, and a third extension part fixedly connected with the first installation part. By virtue of the invention, the stress generated by the vibration of the vibrator is respectively borne by the two extension parts between the two fixation parts of the elastic support parts. The elastic support parts are more difficult to deform. Accordingly, the linear vibration motor has better reliability. |
US11404946B2 |
Method for manufacturing a stator
An apparatus for manufacturing a stator includes a supporting member configured to support a stator core, at least one processing jig having a cylindrical part and a plurality of protruding parts, and an operating unit. The operating unit is configured to perform, in a state where each of coil protruding parts is inserted between one circumferentially-adjacent pair of the protruding parts of the processing jig and an axial end face of the stator core is located close to the protruding parts of the processing jig, a first operation and a second operation either simultaneously or alternately. The first operation is an operation of relatively rotating the stator core and the processing jig in a circumferential direction of the stator core. The second operation is an operation of relatively moving the stator core and the processing jig away from each other in an axial direction of the stator core. |
US11404939B2 |
Position feedback for sealed environments
A transport apparatus comprising a housing, a variable reluctance drive mounted to the housing, and at least one transport arm connected to the variable reluctance drive where the drive includes at least one rotor having salient poles of magnetic permeable material and disposed in an isolated environment, at least one stator having salient pole structures each defining a salient pole with corresponding coil units coiled around the respective salient pole structure and disposed outside the isolated environment where the at least one salient pole of the at least one stator and the at least one salient pole of the rotor form a closed magnetic flux circuit between the at least one rotor and the at least one stator, at least one seal partition configured to isolate the isolated environment; and at least one sensor including a magnetic sensor member connected to the housing, at least one sensor track connected to the at least one rotor, where the at least one seal partition is disposed between and separates the magnetic sensor member and the at least one sensor track so that the at least one sensor track is disposed in the isolated environment and the magnetic sensor member is disposed outside the isolated environment. |
US11404937B2 |
Integrated linear generator system
An integrated linear generator system includes, for example, a generator assembly, a control system, a frame system, an exhaust system, an intake system, a cooling system, a bearing system, one or more auxiliary systems, or a combination thereof. The generator system is configured to generate power, as controlled by the control system. The generator assembly may include an opposed- and free-piston linear generator, configured to operate on a two-stroke cycle. The intake and exhaust systems are configured to provide reactants to and remove products from the generator assembly, respectively. The cooling system is configured to effect heat transfer, material temperature, or both, of components of the integrated linear generator system. The bearing system is configured to constrain the off-axis motion of translators of the generator assembly without applying significant friction forces. The frame system is configured to manage rigidity, flexibility, and alignment of components of the integrated linear generator system. |
US11404933B1 |
Electric actuator and vibration damping apparatus for drive apparatus
An electric actuator for use with a variable drive apparatus is disclosed herein. The electric actuator has a rotary design incorporating a magnetic field sensor chip disposed on a circuit board to sense the rotational orientation of the magnetic field of a cylindrical diametric magnet positioned on the end of a control shaft of a hydrostatic drive unit. The circuit board includes a microprocessor, electric motor power control and CAN Bus communication capability. The gear housing of the electric actuator features an integral end cap to accommodate mounting of the electric motor to enable a compact design. A vibration damping apparatus may be utilized to improve integrity of signals generated by the magnetic field sensor chip. |
US11404931B2 |
Driving device
A driving unit has an adhered recess that is in a loop shape. A cover has an adhered protrusion that is in a loop shape and is opposed to the adhered recess. An adhesive sealing compound adheres the adhered recess and the adhered protrusion to each other continually in a loop shape. A positioning part is configured to position the adhered protrusion relative to the adhered recess. |
US11404924B2 |
Rotor
There is provided a rotor that is capable of improving torque and rotational speed while securing mechanical strength. The rotor is equipped with a plurality of outer radial-side magnet slots 12, 13, a plurality of inner radial-side magnet slots 14, 15, a plurality of outer radial-side magnets 21, 22 that are respectively fit into the outer radial-side magnet slots 12, 13, and a plurality of inner radial-side magnets 23, 24 that are respectively fit into the inner radial-side magnet slots 14, 15. Lb2>Lb1 is satisfied, when one 12c, 13c of the recesses 12a-12d, 13a-13d of the outer radial-side magnet slot 12, 13 that is closest to the d-axis has a radial length of Lb1, and when one 14d, 15d of the recesses of the inner radial-side magnet slot 14, 15 that is closest to the d-axis has a radial length of Lb2. |
US11404922B2 |
Rotary electric machine having torque transmitting portion and rotor core retaining portion
According to the present invention, provided is a rotary electric machine, which is to be connected to at least one of a first torque input/output shaft and a second torque input/output shaft, and includes a stator and a rotor. The rotor of the rotary electric machine includes: a rotor core; a torque transmitting portion, which is connected to at least one of the first torque input/output shaft and the second torque input/output shaft, and is formed of a plate-shaped member; and a rotor core retaining portion, which is retained on the torque transmitting portion, is configured to retain the rotor core, and is formed of a plate-shaped member. |
US11404921B2 |
Power receiving apparatus, power transmitting apparatus, control methods thereof, and non-transitory computer-readable storage medium
A power receiving apparatus comprises a power receiving unit configured to wirelessly receive power from a power transmitting apparatus; and a transmitting unit configured to, in a state where both power reception by the power receiving unit and reception of power transmitted to the power receiving apparatus from an external apparatus via a cable are detected, transmit, to the power transmitting apparatus, information for restricting power transmission for activating the power receiving apparatus, wherein the information being information for restricting power transmission during the period of time from when the power transmission is stopped until a predetermined period has elapsed. |
US11404920B2 |
Methods and apparatus for protecting wireless charging receivers
A wireless charging receiver includes a controller configured to determine that a first overvoltage threshold is met and based thereon enable a first switch to couple an output of a rectifier to electrical ground through a first resistor, to determine that a second overvoltage threshold is met and based thereon enable receive resonant circuit switches to short circuit a receive resonant circuit, to determine that a hysteresis threshold is met and based thereon disable the receive resonant circuit switches to open circuit the receive resonant circuit, and to determine that a hysteresis cycle threshold is met and that the receive resonant circuit switches are disabled and based thereon enable the second switch to couple the second resistor to the electrical ground and to communicate to wireless charging transmitter to decrease the power level on wireless charging receiver side. |
US11404919B2 |
Modular wireless power transmitters for powering multiple devices
A modular wireless power transfer system includes a first wireless transmission system and one or more secondary wireless transmission systems. The first wireless transmission system is configured to receive input power from an input power source, generate AC wireless signals, and couple with one or more other antennas. Each of the one or more secondary wireless transmission systems includes a secondary transmission antenna, the secondary transmission antenna configured to couple with one or more of another secondary transmission antenna, the first transmission antenna, one or more receiver antennas, or combinations thereof. The one or more secondary wireless transmission systems are configured to receive the AC wireless signals from one or more of the first wireless transmission system, another secondary wireless transmission system, or combinations thereof and repeat the AC wireless signals to one or more of the secondary transmission antennas, the one or more receiver antennas, or combinations thereof. |
US11404917B2 |
Metamaterial reflectors for radio-frequency wireless power transfer
A system, method, and device that provides power to an electrical unit such as an Internet of Things (IoT) device that includes a transmitter that provides electrical power through electromagnetic waves, a receiver, an array that includes a plurality of metamaterial elements, such that the electrical power passes wirelessly from the transmitter to the array, and a controller that applies selective phase shifts to each of the plurality of metamaterial elements such that the electrical power is transmitted from the transmitter, reflected off the array, and is received in phase at the receiver that converts the electromagnetic waves to an electric current to power the device. |
US11404912B2 |
Power reception unit, power transmission unit, and wireless power transfer device
Provided is a power reception unit that receives electric power transmitted from a power transmission unit, in which variation in power transmission efficiency is prevented. The power reception unit includes: a plurality of power reception coils that are configured to receive electric power by magnetic coupling with a power transmission coil of the power transmission unit; and a load coil that is disposed close to the power reception coils, in which a plurality of series resonant circuits that resonate at a frequency equal to a power transmission frequency are constituted by each of the plurality of power reception coils and a resonance capacity, the plurality of series resonant circuits are connected in series in a loop shape, and the load coil extracts received electric power from the series resonant circuits. |
US11404910B2 |
Multi-cell inductive wireless power transfer system
A multi-cell inductive wireless power transfer system includes multiple transmitting elements. Each transmitting element includes one or more transmitting windings and one or more transmitting magnetic cores. The multi-cell inductive wireless power transfer system also includes multiple receiving elements. The transmitting elements are separated from the receiving elements by an air gap. Each receiving element includes one or more receiving windings and one or more receiving magnetic cores. |
US11404908B2 |
System for contactlessly transmitting electrical energy to a mobile part which can be moved on the floor of a system
A system for non-contact transmission of electrical energy to a mobile part has a double floor in which a primary part is situated. |
US11404906B1 |
Power failure protection system for solid state drives
A power failure protection system is provided for a solid state drive. In an embodiment, the system includes: power converters; a stand-by power converter; a power switch array including power switch pairs; and a power control complex programmable logic device. The power control complex programmable logic device monitors power failures of the power converters; when a power failure of a particular power converter is detected, configures a power level for the stand-by power converter, the configured power level corresponding to the failed power converter; and controls a target power switch pair corresponding to the failed power converter such that an operation voltage generated by the stand-by power converter is applied to an internal component. |
US11404892B2 |
Portable power system with modular battery pack receptacle
Systems and methods are provided for a portable power system. A portable power system can include a housing having a plurality of receptacles adapted to receive one or more batteries. The housing can further include control circuitry that is configured to utilize the batteries in order to provide output power to one or more detachable external devices. Examples of such external devices include fry pans, sauce pans, griddles, blenders, lights, or power inverters. |
US11404889B2 |
Power saving circuit for embedded battery applications
A battery-disconnect circuit may include a latch, a battery-disconnect subcircuit, and a power-enable subcircuit. The battery-disconnect subcircuit may be configured to control current leakage. The battery-disconnect subcircuit may be connected to the latch. The latch may be configured to maintain a power supply state of the battery-disconnect subcircuit, a no-power supply state of the battery-disconnect subcircuit, or both. The power-enable subcircuit may be connected to the battery-disconnect subcircuit. The power-enable subcircuit may be configured to switch the battery-disconnect subcircuit to the power supply state based on an enable signal. The power-enable subcircuit may be configured to switch the battery-disconnect subcircuit to the no-power supply state based on an off signal. |
US11404886B2 |
Communicating battery charger
A battery charger adapted to charge a battery and output battery statue and/or battery information to a mobile computing device and/or a remote server via a wired and/or wireless connection. The battery charger including a rectifier, a controller/processor, a battery connection, an optocoupler, a signal conditioner, and a communication module. |
US11404885B1 |
Large-format battery management systems with gateway PCBA
A battery system with a large-format Li-ion battery pack powers attached equipment by discharging battery cells distributed among a plurality of battery packs. A limp home notification is generated from a smart lithium-ion battery pack to one or more application devices using an analog signal. The battery pack may provide broadcast messages over electronic communication lines, that includes state of charge (SoC), fault status, etc. which can be read by one or more application devices to enter limp home mode. In another example, a “fully charged” notification is generated from the smart lithium-ion battery pack to one or more application devices using an analog signal. The end device powered by the battery pack system receives and reacts to the outputted fully charged signal by modifying the state of the circuitry on the end device. |
US11404882B2 |
Methods and systems for an AC grid having increased power throughput
A method increases the power of an AC grid by means of the conductors which connect the grid coils of the grid transformer. The conductor-ground voltages and the AC phase voltage are kept lower than a voltage value. The sinusoidal phase voltages of the expanded grid are increased by up to 25% compared to the AC phase voltages, while the phase currents always remain sinusoidal. To this end, the Δ generators couple harmonic voltages between the conductors and ground and reduce the amplitude of the resulting hypersinusoidal conductor-ground voltages such that they always remain below the Uix value. In addition, the Δ generators control the transferred grid power. |
US11404878B2 |
Method for controlling an electrical transmission link including a direct current high voltage line
The invention relates to a method for controlling an electrical transmission link (3) between first and second AC voltage buses (11, 21) comprising a high-voltage DC line (320), first and second AC/DC converters (321, 322) connected to the high-voltage DC line (320), comprising: retrieving a setpoint active power value (Pdc0) applied to a converter (321, 322); retrieving the instantaneous values V1 and V2 of the voltages on the first and second buses; wherein the setpoint active power of the first or of the second converter is modified by a value including a term ΔPdc, so as to impose new dynamics on the first and second areas, where: ΔPdc=ΔPdcs+ΔPdca. |
US11404875B2 |
Energy management system, method of controlling one or more energy storage devices and control unit for one or more power storage units
Systems, methods and apparatuses are provided for reducing peak energy demand and to smooth intermittent energy profiles from onsite variable energy sources and loads. Some embodiments use system level and device level analysis and optimization to adaptively adjust the operation of a behind the meter energy storage (BMES) to smooth out energy generation variabilities and follow a reference load signal, including at short time resolutions. |
US11404871B1 |
Methods and systems for automatic generation control of renewable energy resources
The present disclosure provides systems and methods for an operation of an electric power plant comprising a renewable energy resource and an energy storage device. The method may comprise determining, at a first time, a forecast of predicted energy production by the electric power plant over a time period subsequent to the first time based on a forecast for the time period; detecting a current state of charge of the energy storage device; calculating a range of automatic generation controls the electric power plant is capable of satisfying for the time period based on the forecast of predicted energy production and the detected current state of charge of the energy storage device; and signaling, from the electric power plant to a central utility controlling a power grid, the range of automatic generation controls the electric power plant is capable of satisfying for the time period. |
US11404870B2 |
Method for planning an electrical power transmission network, planning arrangement and computer program product
A method for planning an electrical power transmission network using a planning arrangement includes providing a first input dataset, and converting the first input dataset into graphical representation using a conversion device. The graphical representation contains topology information for interconnection of equipment items and data communication information and parameterization information for equipment items. Different types of equipment are distinguished by a first identifier, electrical connections are distinguished by a second identifier and data communication links are distinguished by a third identifier. Multiply recurring patterns in the graphical representation are identified by a pattern recognition device. A respective frequency of patterns is determined by the pattern recognition device. All patterns having a frequency exceeding a predetermined threshold are marked as candidate samples by the pattern recognition device. Typical configurations are selected from the candidate patterns using a selection criterion. A planning arrangement and a computer program product are also provided. |
US11404865B2 |
Direct current bus capacitor breakdown protection circuit for drives
To avoid the catastrophic failure of a drive, protection circuitry is configured to limit current in the DC bus capacitors. The drive may include an isolation circuit and a protection circuit having a comparator. The protection circuit may be configured to compare the voltage measured across a DC bus capacitor with a threshold voltage and activate the isolation circuit when the DC capacitor voltage exceeds the threshold voltage. The drive may also include a low voltage circuit coupled to the isolation circuit, where the low voltage circuit is configured to interrupt the bypass signal to disengage the bypass circuit and activate the precharge circuit when the isolation circuit is activated. Accordingly, the current in the drive and to the DC bus capacitors is limited by the precharge circuit when the voltage of a capacitor in the DC bus exceeds a threshold. |
US11404858B2 |
Quick connect mount for electrical fixture and method for connecting a ceiling mounted fixture to an electrical junction box
A quick-connect electrical fixture mounting device having first and second junction box mounting plates is provided. The first junction box mounting plate is removably affixed to the junction box, and a first electrical connector is positioned in a channel in a front face of the first junction box mounting plate. The second fixture mounting plate is removably affixed to the electrical fixture, and a second electrical connector is positioned in a slot in a projection extending upwardly from a front face of the second fixture mounting plate. The channel in the front face of the first junction box mounting plate is sized to slidably receive the projection extending from the front face of the second electrical fixture mounting plate, and the first electrical connector is configured to mate with the second electrical connector. |
US11404857B2 |
Flex-fitting cable tray
A cable tray system including two or more cable tray sections comprising a first side rail and a second side rail arranged substantially parallel to one another and a floor extending between. The tray system also includes one or more flex-wires for joining the cable tray sections, where the flex-wires can be U- or loop-shaped. Upon exerting tension on the flex-wires, the first and second cable tray sections can move away from one another from a first position to a second position. In addition, the tray system includes a fastening device that removably locks the tray system into the second position. |
US11404853B2 |
Method and apparatus for translating coupling features of a plug-in unit
Embodiments of a plug-in unit for an electrical enclosure are disclosed. The plug-in unit includes at least one stab configured to engage a bus, a stab shaft coupled with a base of the at least one stab, and a stab translation mechanism configured to translate the stab shaft such that the at least one stab translates from a retracted position to an extended position. |
US11404849B2 |
Light emitting element to control an oscillation wavelength
A light emitting element includes a laminated structure formed by laminating a first light reflecting layer 41, a light emitting structure 20, and a second light reflecting layer 42. The light emitting structure 20 is formed by laminating, from the first light reflecting layer side, a first compound semiconductor layer 21, an active layer 23, and a second compound semiconductor layer 22. In the laminated structure 20, at least two light absorbing material layers 51 are formed in parallel to a virtual plane occupied by the active layer 23. |
US11404842B2 |
Laser device, and method for estimating degree of deterioration of light source of laser device
A laser device includes: a light source including laser diodes; a processor that holds: a maximum current value of a driving current applied to the laser diodes, and a maximum power value of a power of light emitted from the light source; and a memory, coupled to the processor, that stores a relationship between a magnitude of the driving current, a magnitude of the power of the light, and a degree of deterioration of the light source. The processor further refers to the memory and estimates the degree of deterioration from the maximum current value and the maximum power value. |
US11404840B2 |
Device and method for measuring thermal load caused by excited state absorption in laser gain crystal
A device and a method for measuring thermal load caused by excited state absorption in laser gain crystal are disclosed. Thermal focal lengths on the tangential and sagittal planes of the laser gain crystal are obtained by obtaining the threshold when the pump power is decreased, the optimal operating point, and cavity parameters of the single-frequency laser. Individual ABCD matrices of the laser gain crystal on the tangential plane and the sagittal plane are obtained based on thermal focal length. The thermal load corresponding to the threshold when the pump power is decreased, the ESA thermal load corresponding to the threshold when the pump power is decreased, and the ESA thermal load at the optimal operating point are obtained |
US11404829B2 |
Pluggable electronic receptacle connector with heat-sink assembly
A connector assembly comprising a shielding shell, a heat dissipating module and a clip. The shielding shell comprises a top wall and two side walls. The heat dissipating module comprises a thermal conducting plate which is provided to a top wall of the shielding shell. Side edges of the thermal conducting plate comprise rearward stopped portions toward the rear. The clip comprises an elastic pressing portion which presses against a top surface of the thermal conducting plate and outer side plates which are assembled to the corresponding side walls of the shielding shell. The outer side plate comprises a rearward displace limiting portion. The rearward displace limiting portion cooperates with the corresponding rearward stopped portion of the thermal conducting plate so as to limit relative displacement of the thermal conducting plate relative to the shielding shell toward the rear. Therefore, it may prevent the thermal conducting plate from disengaging. |
US11404825B2 |
Cover and locking member for electrical devices
A locking member particularly adapted to lock a cover onto an electrical connector which connects an electrical transmission conductor to a distribution conductor is provided. The locking member includes a tip portion, a gripping portion, a holding portion, and a head portion, where the tip portion has a smaller cross-sectional area than the gripping portion and where the head portion is a widest portion of the locking member. The present disclosure is also directed insulating cover assemblies that include an insulating cover and a locking member contemplated by the present disclosure. |
US11404824B2 |
Attachment housing arrangement and method for unlocking
Plug connections and in particular plug connections for use in an industrial environment are presented. An attachment housing arrangement has an attachment housing for accommodating a hood of a plug connector with plug contacts and a mechanical locking arrangement for mechanically locking the hood on the attachment housing. Also presented is a method for unlocking a mechanical locking of a hood of a plug connector with plug contacts on an attachment housing of an attachment housing arrangement. The attachment housing arrangement is provided with a fixing arrangement for fixing the mechanical locking arrangement at least in a locking state, and with a control unit for controlling the fixing arrangement, the control unit being configured to control the fixing arrangement so as to release a fixing of the locking arrangement only when the plug contacts are free of current and free of voltage within predefined tolerances. |
US11404816B2 |
Spring-biased plug connector for connecting an electrical attachment cable to a mating plug connector of an electrical appliance
A plug connector for connecting an attachment cable to a mating plug connector of an electrical appliance in the form of a vacuum cleaner, wherein the plug connector has a contact carrier having plug contacts which are connected or connectable to the attachment cable and which can be brought into an electrical contact position with mating plug contacts of the mating plug connector by a plugging movement along a plug axis, wherein the contact carrier is received, in an axially movable manner with respect to the plug axis, in a plug housing which is mounted rotatably about the plug axis with respect to the contact carrier, wherein rotary form-fit contours are arranged on the plug housing and can be brought into form-fit engagement with mating rotary form-fit contours of the mating plug connector by a rotation movement of the plug housing about the plug axis with respect to the contact carrier, such that the plug connector is secured on the mating plug connector in a tension-resistant manner with respect to the plug axis, and wherein the plug connector has a cable sleeve for the attachment cable. |
US11404809B2 |
Electrical connector assembly with shielding shells surrounding each of first and second connectors
In a connector assembly in which a first connector and a second connector are fitted to each other, a first shell, which has a rectangular frame-like shape and serves as an outer shell of the first connector, includes curved portions on upper ends of respective sides of the rectangle, and a second shell, which has a rectangular frame-like shape and serves as an outer shell of the second connector, includes convex portions, which are elongated along respective sides to be slender, on outer surfaces on the sides of the rectangle. The curved portions and the convex portions are positioned so that the curved portions and the convex portions are partially overlapped with each other. The convex portions are in contact with the first shell through the entire lengths, and the curved portions are in contact with the second shell through the entire lengths. |
US11404807B2 |
Receptacle connector and connector assembly including the same
A receptacle connector having a stable contact point structure and a rigid structure, and a connector assembly including the same, is provided. The receptacle connector includes a receptacle housing, a plurality of receptacle terminals which are retained and supported in the receptacle housing in a first direction, and one pair of receptacle metal members which are provided on both ends of the receptacle housing in the first direction. |
US11404806B2 |
Connector having shunt structure and shunt device thereof
A connector having a shunt structure and a shunt device thereof are provided. The connector includes an insulating housing having a first and a second side surface, a plurality of electrical terminals, and a first shunt socket. The first side surface has a plug input interface provided for insertion of a power supply component along a first direction. Each of the electrical terminals has one of a plurality of first contact portions and one of a plurality of first legs. The first shunt socket is located on a third side surface of the insulating housing and corresponds to a shunt hole of the third side surface. The shunt hole allows a surface of at least one of the electrical terminals to be partially exposed and become a shunt contact surface. When a second connector is inserted into the first shunt socket, the second connector is positioned thereon. |
US11404805B2 |
Solderless circuit connector
A device is provided that allows for repeated electrical connection of an integrated circuit. The device includes a top, an alignment plate, a connector and a bottom. The top, alignment plate, connector and bottom each have first and second sides facing opposite directions, with the top, alignment plate, connector and bottom being stacked in a vertical orientation. The top is vertically moveable relative to the alignment plate to secure the integrated circuit adjacent to an edge of the connector, with the edge extending from a space between the first and second sides thereof. |
US11404804B2 |
Bolted bus bar with finger-proofing
A bus bar assembly includes a nonconductive terminal cap that is configured to secure to an electrically conductive terminal via an attachment feature. The terminal cap has a slot that is configured to expose a terminal portion of the terminal in an assembled condition. A bus bar has an end that is configured to be received in the slot in the assembled condition in which the end is in electrical contact with the terminal portion of the terminal. A nonconductive shroud encloses the bus bar. The end extends through shroud. |
US11404803B2 |
Electrical connector having a staggered contact carrier
An electrical connector for making electrical contact with at least one lead of an electronic device. The connector includes a mounting flange portion and a connector housing portion. The connector also includes at least one conductor having a pin end and a terminal end, wherein the terminal end includes a lead opening that receives the lead and a fastener hole oriented substantially transverse to the lead opening. A fastening element is used to engage the fastener hole and contacts the lead to form electrical contact between the conductor and the lead. The connector further includes a conductor carrier that extends through the connector housing and mounting flange. The conductor carrier includes a base portion and at least one extended portion that extends from the base portion to form a staggered arrangement. The base and extended portions each include a plurality of channels wherein each channel includes a conductor. |
US11404798B2 |
Millimeter-wave dual-band antenna and electronic device comprising same
An electronic device includes a housing and an antenna array disposed inside the housing. The antenna array includes multiple antenna elements separated in a pattern. At least one of the antenna elements includes a substantially flat conductive plate. The conductive plate includes a partially oval periphery having a first end and a second end, a partial major axis, a minor axis, and a straight periphery that makes a non-zero angle with the partial major axis, contacts or crosses the partial major axis, and interconnects the first end and the second end. A wireless communication circuit is electrically connected to the antenna elements, and transmits a first signal having a first frequency by feeding at or near the straight periphery, and a second signal having a second frequency which is greater than the first frequency by feeding part of the partially oval periphery at or near the minor axis. |
US11404797B2 |
Time-based beam switching in phased arrays
Methods and system for shaping radiation patterns are described. Given a plurality of radiation patterns corresponding to spatial combinations of a plurality of signals, a system can perform beam switching between the given plurality of radiation patterns within a configured time. The beam switching within the configured time can create a beam having a new radiation pattern within the signal modulation bandwidth. |
US11404796B2 |
Omni-directional orthogonally-polarized antenna system for MIMO applications
Omni-directional orthogonally-polarized antenna system for MIMO applications are disclosed herein. An example antenna system can have two arrays of horizontally polarized radiating elements, and two arrays of vertically polarized radiating elements, each array having roughly 180-degree radiation pattern, disposed about a central axis in a common horizontal plane, arrays of common polarization separated by 180-degrees, such that MIMO processing of signals to the arrays of common polarization results in a radiation pattern that is substantially constant over 360-degrees in azimuth. |
US11404789B1 |
All-in-one antenna
An antenna is disclosed, including an omnidirectional antenna with a first conical antenna section. The omnidirectional antenna forms a first feed aperture. The omnidirectional antenna forms a field of view aperture in a wall of the omnidirectional antenna. The antenna also includes a directional antenna, disposed within an interior portion of the omnidirectional antenna such that the directional antenna has an electrically unobstructed field of view through the field of view aperture in the wall of the omnidirectional antenna. The antenna also includes a feed cable, electrically coupled to the directional antenna and disposed within the omnidirectional antenna and the first feed aperture. |
US11404786B2 |
Planar complementary antenna and related antenna array
A planar complementary antenna and an antenna array with multiple planar complementary antennas. The planar complementary antenna has a substrate, a planar dipole antenna arranged on the substrate, a loop antenna arranged on the substrate and operably connected with the planar dipole antenna, and a feed network for connection with a feed source. The feed network is operably connected with the planar dipole antenna and the loop antenna for feeding an electrical signal from the feed source to the planar dipole antenna and the loop antenna so as to form an electric dipole at the planar dipole antenna and a magnetic dipole at the loop antenna. |
US11404784B2 |
Multi-band antenna and components of multi-band antenna
A multi-band antenna is provided that includes a ground plane, a first lower frequency antenna radiator including one or more outer conductive elements surrounding an interior void and a first higher frequency antenna radiator including one or more interior conductive elements surrounded by an exterior void. The multi-band antenna also includes a first lower frequency antenna feed including one or more outer conductive elements surrounding at least partially an interior void and a first higher frequency antenna feed including one or more interior conductive elements surrounded at least partially by an exterior void. The multi-band antenna further includes at least one lower frequency interface and at least one higher frequency interface. The at least one lower frequency interface is for the first lower frequency feed and the at least one higher frequency interface is for the higher frequency feed. |
US11404777B2 |
Moveable antenna apparatus
An antenna apparatus comprising at least one antenna array configured to produce a beam to facilitate wireless communication with at least one other antenna apparatus is described, in which the beam can be electronically steered in an associated beamforming plane by beamforming circuitry. The at least one antenna array has an associated antenna array plane, and an antenna array rotation mechanism is configured to rotate each antenna array in its associated antenna array plane to cause its beamforming plane to rotate. Methods for operating such an antenna apparatus, and for deploying an antenna apparatus in a wireless communication network, are also described. |
US11404769B2 |
Antenna module for a vehicle with radiant elements arrangement
Antenna module for a vehicle including a base suitable for being fixed to a vehicle body, a main board disposed horizontally on the base, a first, second, third and fourth radiant element that protrude in upper position from the main board. The first and the second radiant element have median axes that extend in the direction of the vertical axis and intersect the horizontal plane of the base in intersection points disposed on both sides with respect to the longitudinal axis of the base and spaced by distances from the longitudinal axis of the base. The third and fourth radiant elements have median axes that extend in the direction of the vertical axis and intersect the horizontal plane of the base in intersection points disposed on both sides with respect to the longitudinal axis of the base and spaced by distances from the longitudinal axis of the base. |
US11404768B2 |
Antenna device and vehicle
An antenna device 1 is an antenna device 1 to be mounted on a vehicle including an inner panel 17 that is provided with a mounting hole, and a roof 16 in which a region facing the inner panel 17 on an upper side of the inner panel 17 is upraised to an upper side. The antenna device 1 includes a base 12 and a fixing portion (13, 14, and 15) that fixes the base 12 to the inner panel 17. At least a part of the antenna device 1 is contained in a space 16b formed between a region 16a of the roof 16 that is upraised and the inner panel 17, and there are a plurality of portions in which the base 12 and the inner panel 17 are fixed by the fixing portion. |
US11404767B2 |
Antenna apparatus
An antenna apparatus includes a signal processing section having a first processing unit for calculating position information of a vehicle to which a first antenna element is attached, a second processing unit for performing mobile communication, a third processing unit for receiving information from outside of the vehicle and transmitting information that pertains to the vehicle, and a fourth processing unit for receiving a digital broadcast; an antenna element section having the first antenna element to a fourth antenna element; and a transceiver unit connected to a gateway ECU of the vehicle through an onboard LAN. The first antenna element to the fourth antenna element are covered with an antenna case. The first to fourth processing units are accommodated in a housing arranged at a position closer to the antenna element section than the gateway ECU. |
US11404766B2 |
Wearable electronic device including an overlapping communications antenna
A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices. |
US11404765B2 |
Retractable phased array for mobile devices
An electronic device includes: a housing; a display; and an extendable phased array antenna structure integrated with the housing and moveable relative to the housing between a retracted position and an extended position. The extendable phased array antenna structure comprises an array of antenna elements that are configured to form a beam in a determined direction. |
US11404760B2 |
Electrical power distribution splitter
An electrical power distribution splitter is designed to receive high wattage electrical power, e.g. 80 W-600 W, and then to “split” that power into multiple low output wattage electrical power, e.g. 60 W/12V or 96 W/24V. An IC and circle board in the distribution splitter is used to reduce output power in this manner. The result is the ability to input a single large wattage electrical power supply to a distribution splitter which then outputs multiple lower wattages to a variety of individual different circuits, and, in so doing, a Class 2 UL power supply can be utilized. This is especially important in the signage industry where, for example, one large wattage power electrical supply feeding into the power distribution splitter can supply multiple smaller wattage power to different circuits in one sign. |
US11404759B2 |
Connection structure including a coupling window between a dielectric waveguide line in a substrate and a waveguide and having plural recesses formed in the connection structure
A connection structure includes a dielectric waveguide line and a rectangular waveguide. The dielectric waveguide line transmits a high-frequency signal in a transmission region surrounded by a first conductor layer, a second conductor layer, and two arrays of via hole groups. A coupling window is formed in the second conductor layer. The rectangular waveguide is disposed in such a way that an open end surface of the rectangular waveguide faces the coupling window, and that the transmission direction of the dielectric waveguide line becomes orthogonal to the transmission direction of the rectangular waveguide. A plurality of recesses are formed on a first substrate surface in the vicinity of the coupling window. A recessed conductor layer electrically connected to the first conductor layer is formed on inner wall surfaces of the plurality of recesses. |
US11404758B2 |
In line e-probe waveguide transition
A transition device for a hollow waveguide comprises a rectangular structure comprising an inlet wall and interior extending from the inlet wall along a longitudinal axis. The inlet wall is configured to receive a transmission line comprising an antenna. The antenna forms a proximal end proximate to the inlet wall and a distal end configured to extend into the rectangular structure of the hollow waveguide. A channel is formed in the rectangular structure. The channel comprises a base forming a tuning surface. The tuning surface is configured to extend along a length of the antenna in a spaced configuration parallel to the longitudinal axis. |
US11404757B2 |
Multi-band RF monoblock filter configured to have an antenna input/output located for separating first and second filters from a third filter
A multi-band RF monoblock filter including at least three RF signal filters defined in the monoblock of dielectric material by resonators defined in part by through-holes extending through the block. In one embodiment, two of the RF signal filters are in a co-linear and side-by-side relationship and the third filter is in a parallel and side-by side relationship with one of the two other RF signal filters. A pattern of conductive material defines two end and one interior RF signal input/output on the block top surface. The end RF signal input/outputs are located at opposite ends of the block and the central RF signal input/output is located between the two co-linear and side-by-side RF filters. An RF signal is transmitted through the one end RF signal input/output, the two parallel and side-by-side RF signal filters, and the central RF signal input/output and also through the other end RF signal input/output, one of the co-linear and side-by-side RF filters, and the central RF signal input/output. |
US11404753B2 |
Overcharge protection systems having dual spiral disk features for prismatic lithium ion battery cells
A prismatic lithium ion battery cell includes a packaging having a cover. The cover includes: a first spiral disk feature disposed below a first terminal pad; a second spiral disk feature disposed below a second terminal pad; a first reversal disk disposed below the first spiral disk feature; and a second reversal disk disposed below the second spiral disk feature. The first and second reversal disks are configured to deflect upwards to displace the first and second spiral disk features to contact the first and second terminal pads, respectively, in response to a pressure within the packaging being greater than a predefined pressure threshold and form an external short-circuit between the first and second terminal pads via the first and second spiral disk features. Subsequently, a portion of the power assembly fails in response to the external short-circuit and interrupts current flow between the first and second terminal pads. |
US11404751B2 |
Battery module
A battery module that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys. |
US11404746B2 |
Battery and method of producing the same
A battery includes at least an electrode array and an electrolyte solution. The electrolyte solution contains at least a solvent and a supporting salt. The electrode array includes at least a positive electrode, a porous insulating layer, and a negative electrode. The porous insulating layer is interposed between the positive electrode and the negative electrode. The porous insulating layer contains at least a group of inorganic nanoparticles and a group of polymer particles. Each inorganic nanoparticle in the group of inorganic nanoparticles is a dielectric. Each inorganic nanoparticle in the group of inorganic nanoparticles is in contact with the electrolyte solution. |
US11404744B1 |
Battery, power consumption apparatus, and method and apparatus for producing battery
Embodiments of the present application provide a battery, a power consumption apparatus, and a method and apparatus for producing a battery. The battery includes: a plurality of battery cells, the battery cell comprising a housing, the housing being configured to be actuated when an internal pressure or temperature of the housing reaches a threshold, to relieve the internal pressure of the housing; a plurality of first boxes, the first box being configured to accommodate at least one battery cell of the plurality of battery cells, the first box including a pressure relief region, and the pressure relief region being configured to relieve an internal pressure of the first box; and a second box, the second box being configured to accommodate the plurality of first boxes. According to the technical solutions of the embodiments of the present application, the safety of the battery can be enhanced. |
US11404739B2 |
Highly integrated mobile energy storage system
A highly integrated mobile energy storage system is provided, which includes a container and battery racks. The battery racks are arranged in two rows along a length direction of the container, and the two rows of the battery racks are arranged back to back. For each of the two rows of battery racks, a maintenance door is arranged at a wall of the container close to the row of battery racks. In a case that a battery rack needs to be maintained, it is just required to open the maintenance door to maintain the battery rack. Since the two rows of battery racks are arranged back to back, no maintenance passage is required, thereby reducing a floor space along a width direction of the container, thus reducing the floor space of the system. |
US11404738B2 |
Battery pack
A battery pack is provided. The battery pack includes: a plurality of battery modules mutually connected by a bus bar; a mold assembly including a module receiver configured to receive the battery module; and a pack case configured to receive the mold assembly. |
US11404734B2 |
Vehicle battery pack
A vehicle battery pack includes: a battery cell; a casing that has a heat dissipation property for discharging heat outside the casing and houses the battery cell in a housing space; a first solid-liquid phase change material that directly comes in contact with the battery cell and fills the housing space; a second solid-liquid phase change material that has a heat storage property and has a second phase change temperature higher than a first phase change temperature of the first solid-liquid phase change material; and a heat storage container that has thermal conductivity and has an internal space filled with the second solid-liquid phase change material. The heat storage container is housed in the housing space of the casing, and has an outer wall surface that comes in contact with an inner wall surface of the casing. |
US11404733B2 |
Electrode assembly, secondary battery comprising the same, and battery pack
The present invention provides an electrode assembly comprising: a radical unit provided with first and second electrodes stacked with a separator therebetween, wherein the first electrode is stacked at the outermost side; and a safety unit disposed on the outermost surface of the radical unit, wherein the safety unit comprises: a first safety plate disposed above the outermost surface of the radical unit; and a first semiconductor material provided between the radical unit and the first safety plate, wherein the first semiconductor material changes from an insulator to a conductor at the first set temperature or more to connect the radical unit to the first safety plate, thereby dissipating heat of the radical unit while conducting the heat to the first safety plate. |
US11404726B2 |
All-solid-state sodium ion secondary battery
Provided is an all-solid-state sodium ion secondary battery in which a current collector is difficult to peel from an electrode layer and which can suppress the decreases in discharge capacity and discharge voltage. An all-solid-state sodium ion secondary battery 1 according to the present invention includes: a solid electrolyte layer 2 made of a sodium ion-conductive oxide; a positive electrode layer 3 formed on a first principal surface 2a of the solid electrolyte layer 2; a negative electrode layer 4 formed on a second principal surface 2b of the solid electrolyte layer 2; and a current collector layer 5, 6 formed on a principal surface of at least one of the positive electrode layer 3 and the negative electrode layer 4, wherein the current collector layer 5, 6 is made of at least one metallic material selected from the group consisting of aluminum, titanium, silver, copper, stainless steel, and alloys thereof, and the current collector layer 5, 6 has a thickness of not less than 10 nm and not more than 10 μm. |
US11404725B2 |
Non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery includes: an electrode group including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; a tape for securing at least a wound end of the electrode group; and a non-aqueous electrolyte. The negative electrode, at least in a charged state, includes a lithium metal and/or a lithium alloy. The tape has a tensile strength of 20 N/10 mm or less at an elongation ratio of 200% or more. |
US11404721B2 |
Gel polymer electrolyte composition and lithium secondary battery including the same
The present invention relates to a gel polymer electrolyte composition for a lithium secondary battery and a secondary battery including the same, and particularly, to a gel polymer electrolyte composition for a lithium secondary battery, which includes a lithium salt, a non-aqueous organic solvent, an ionic liquid, an oligomer having a specific structure, a heat stabilizer, and a polymerization initiator, and a lithium secondary battery in which high-temperature stability is improved by including the same. |
US11404716B2 |
Lithium ion secondary cell and method for producing active material
The art disclosed herein provides a lithium ion secondary cell in which the internal resistance of the secondary cell is further reduced. A lithium ion secondary cell includes electrodes including an active material. The active material includes, on the surface, two coating layers of a metal oxide layer including a metal oxide and an ion conductive layer including a lithium ion conductor. The metal oxide layer and the ion conductive layer are adjacent to each other. |
US11404712B2 |
Fuel-cell end plate
Provided is a fuel-cell end plate that is disposed at an end, in a stacking direction, of a fuel cell stack formed by stacking members including a single cell. This fuel-cell end plate has, on a surface disposed so as to face the outside of the fuel cell stack, a first rib that extends in a first direction and a second rib that extends in a second direction different from the first direction, intersects the first rib, and is formed so as to be shorter in height than the first rib. |
US11404711B2 |
Fuel cell system
A fuel cell system for an aircraft includes a hydrogen burner, an oxidizing agent, and a fuel cell. The hydrogen burner has a first inlet suitable for receiving a first oxidizing agent, a second inlet capable of receiving at least hydrogen, and an outlet suitable for delivering a second oxidizing agent and heat. The oxidizing agent conditioning system has an inlet and an outlet, said inlet being suitable for receiving the second oxidizing agent and heat, said outlet being capable of delivering the conditioned second oxidizing agent. The fuel cell has an anode and a cathode, the cathode has a cathode inlet connected to the outlet of the oxidizing agent conditioning system, the cathode inlet receiving the conditioned second oxidizing agent. |
US11404708B2 |
Device and method for controlling start-up of fuel cell vehicle
A device and a method for controlling start-up of a fuel cell vehicle are provided and include a table in which a time-difference between a hydrogen supply initiating time-point and an air supply initiating time-point is recorded for each cooling water temperature at a fuel cell stack outlet. The air supply initiating time-point is adjusted based on the table during the start-up of the fuel cell vehicle to prevent a cell voltage deviation and a cell reverse voltage of the fuel cell stack. A temperature sensor measures a cooling water temperature of a fuel cell stack and a controller adjusts the air supply initiating time-point based on the cooling water temperature of the fuel cell stack during start-up of a fuel cell vehicle. |
US11404706B2 |
PEM fuel cell powersystems with efficient hydrogen generation
Methods and devices for generating power using PEM fuel cell power systems comprising a rotary bed reactor for hydrogen generation are disclosed. Hydrogen is generated by the hydrolysis of fuels such as lithium aluminum hydride and mixtures thereof. Water required for hydrolysis may be captured from the fuel cell exhaust. Water is preferably fed to the reactor in the form of a mist generated by an atomizer. An exemplary 750 We-h, 400 We PEM fuel cell power system may be characterized by a specific energy of about 550 We-h/kg and a specific power of about 290 We/kg. |
US11404705B2 |
Bipolar plate of polymer electrolyte membrane fuel cell
A plurality of channel elements provided in a bipolar plate have different widths depending on positions, so that the velocity of flow of the fluid increases from an inlet toward an outlet of the bipolar plate and water generated when the fluid is condensed on the downstream side of the bipolar plate can be discharged more smoothly. In addition, a plurality of channel elements have different contact angles depending on positions of the plurality of channel elements so that the contact angle increases toward the outlet side of the bipolar plate. Thus, the reaction gas can be more concentrated on the surface of a gas diffusion layer. Even if the concentration of the reaction gas is reduced at the outlet side of the bipolar plate, the diffusion of the reaction gas is well performed, so that performance reduction can be prevented. |
US11404698B2 |
Liquid metal interfacial layers for solid electrolytes and methods thereof
Methods of making a solid-state electrochemical cell that cycles lithium ions are provided that include applying a liquid metal composition comprising gallium to a first major surface of either a solid-state electrolyte or a solid electrode (e.g., lithium metal) in the presence of an oxidant and in an environment substantially free of water to reduce surface tension of the liquid metal composition so that it forms a continuous layer over the first major surface. The first major surface having the continuous layer of liquid metal composition is contacted with a second major surface to form a continuous interfacial layer between the solid-state electrolyte and the solid electrode. Solid-state electrochemical cells formed by such methods are also provided, where the metal composition comprising gallium is a liquid in a temperature range of greater than or equal to about 20° C. to less than or equal to about 30° C. |
US11404690B2 |
Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
The presently disclosed subject matter is directed to a positive electrode active material for a non-aqueous electrolyte secondary battery including a lithium transition metal-containing composite oxide, comprising secondary particles formed by aggregates of primary particles. The secondary particles comprise: an outer-shell section formed by an aggregate of the primary particles; at least one aggregate section formed by an aggregate of primary particles and existing on an inside of the outer-shell section, and electrically and structurally connected to the outer-shell section; and at least one space section existing on the inside of the outer-shell section and in which there are no primary particles. The average particle size of the secondary particles being within the range 1 μm to 15 μm, an index [(d90-d10)/average particle size] that indicates a spread of a particle size distribution of the secondary particles being 0.7 or less, and the surface area per unit volume being 1.7 m2/cm3 or greater. |
US11404685B2 |
Anode, and sulfide solid-state battery
Copper reacts with a sulfide solid electrolyte to generate copper sulfide when an anode current collector layer made from copper, and an anode mixture layer containing the sulfide solid electrolyte are used to compose an anode, and the resistance of the interface between the anode current collector layer and the anode mixture layer increases. To alloy an anode current collector layer to lower the reactivity to a sulfide solid electrolyte, specifically, an anode includes: an anode mixture layer; and an anode current collector layer that is in contact with the anode mixture layer, wherein the anode mixture layer contains an anode active material and a sulfide solid electrolyte, and at least a surface of the anode current collector layer is made from material that contains an alloy of copper and metal of a higher ionization tendency than copper, the surface being in contact with the anode mixture layer. |
US11404683B2 |
All-solid-state lithium battery and method for manufacturing same
There is provided an all-solid-state lithium battery including: a positive-electrode plate composed of a lithium complex oxide sintered body having a layered rock-salt structure; a solid electrolyte layer composed of a lithium-ion-conductive antiperovskite material; a negative-electrode plate containing Ti and permitting intercalation and deintercalation of lithium ions at 0.4 (vs. Li/Li+) V or more; a positive-electrode current collecting layer provided on a face, remote from the solid electrolyte layer, of the positive-electrode plate; a negative-electrode current collecting layer provided on a face, remote from the solid electrolyte layer, of the negative-electrode plate; a positive-electrode covering metal membrane provided at an interface between the positive-electrode plate and the solid electrolyte layer; and a negative-electrode covering metal membrane provided at an interface between the negative-electrode plate and the solid electrolyte layer. |
US11404682B2 |
Non-rectangular shaped electrodes utilizing complex shaped insulation
The disclosed technology relates to electrodes of a battery cell. The electrodes include a current collector having a first non-rectangular shape, an active coated region having a second non-rectangular shape, an insulator coated region having a third non-rectangular shape, and an uncoated tab disposed adjacent to the insulator coated region. The insulator coated region is disposed along a periphery of the current collector along a plurality of sides or edges of the current collector providing several locations for the tab to be positioned. |
US11404671B2 |
Organic electroluminescence device
An organic electroluminescence device is disclosed. The organic electroluminescence device includes a light emitting layer disposed on a substrate and an encapsulation layer covering the light emitting layer. The encapsulation layer includes at least one inorganic layer and at least one organic layer, wherein the inorganic layer and the organic layer of the encapsulation layer are disposed alternately, and the at least one inorganic layer is disposed on the light emitting layer and covers the light emitting layer; and two buffer layers, wherein each of the buffer layers is disposed between the inorganic layer and the organic layer which are adjacent, and a material of the buffer layer is at least one of a tetramethylsilane monomer, an ethoxysilane monomer, or a silicon oxycarbide monomer. |
US11404669B2 |
Display panel and preparation method thereof
The present disclosure provides a display panel and a preparation method thereof. The display panel includes a substrate, a thin film transistor, a pixel layer, and a thin film encapsulation layer. Wherein the thin film encapsulation layer includes a first inorganic layer, a first organic layer, and a second organic layer. The preparation method of the display panel includes the following steps: a substrate provision step, a thin film transistor preparation step, a pixel layer preparation step, and a thin film encapsulating layer preparation step. |
US11404667B2 |
Display device and method for fabricating the same
A display device and a method of manufacturing the display device that is capable of easily bending the display device, simplifying manufacturing processes, and reducing manufacturing costs are provided. The display device includes a substrate including a bending area; a display element disposed on an upper surface of the substrate; and a protective layer disposed on a lower surface of the substrate. A portion of the protective layer that is disposed in the bending area has a material stiffness lower than a material stiffness of another portion of the protective layer. |
US11404663B2 |
Flexible display panel structure having optical clear resin in space formed by quadrilateral anti-flow barrier and cover plate and fabricating method thereof
A flexible display panel structure and fabricating method thereof. The flexible display panel structure includes a cover plate, a touch panel, an organic light-emitting diode device, and a backplate disposed, which are sequentially disposed, wherein a first optical clear resin fluid glue layer is disposed between the cover plate and the touch panel, and the first optical clear resin fluid glue layer bonds the cover plate to the touch panel, which is beneficial to reduce risk of panel cracking and peeling. |
US11404662B2 |
Display panel, packaging cover plate and manufacturing method of the same for improved display and packaging effect
This disclosure relates to a display panel, a packaging cover plate, and a manufacturing method of a packaging cover plate, and relates to the field of display technology. The packaging cover plate includes a base, a color film layer, and a blocking layer. The color film layer is disposed at a side of the base, and includes a pixel defining layer and a filter layer divided into a plurality of sub-pixels by the pixel defining layer. The blocking layer is disposed at a side of the color film layer away from the base and is capable of blocking gases. The packaging cover plate can improve packaging effect and ensure the display effect. |
US11404661B2 |
OLED display panel and manufacturing method thereof
An organic light-emitting diode (OLED) display panel and a manufacturing method thereof are provided. An organic material and an inorganic nano-particle material are placed in a crucible under a high-pressure gas after vacuuming, the inorganic nanoparticles and the organic material are highly uniformly mixed during an evaporation process, and an encapsulation layer is formed integrally into one piece by adjusting an evaporation rate ratio of the organic material to the inorganic nano-particle material. The film layer stability and transmittance are optimized, and the inorganic nanoparticles are uniformly distributed, thereby improving the light transmittance of the OLED display panel. |
US11404653B2 |
Organic electroluminescent materials and devices
A compound including a first ligand LA of Formula I is disclosed. The compound is useful as an emitter in phosphorescent OLEDs. |
US11404652B2 |
Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
An iridium complex compound of formula (10): wherein Ir represents an iridium atom. m1 represents an integer of 1 or 2, n1 represents an integer of 1 or 2, and m1+n1=3. Ra1 at each occurrence represents an alkyl group or an aralkyl group. Rb1, Rc1, and R21 to R24 each independently represent a hydrogen atom or a substituent. and Ra1 to Rc1 and R21 to R24 may be further bonded to each other to form a ring, and wherein at least one of Rb1 and Rc1 is a substituted or unsubstituted aromatic or heteroaromatic group. |
US11404642B2 |
Organic light-emitting device and method of manufacturing the same
Provided are an organic light-emitting device and a method of manufacturing the same. The organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode and including an emission layer. The organic layer includes a hole transport region between the first electrode and the emission layer. The hole transport region also includes a first compound and a second compound, or includes the first compound and a third compound. |
US11404641B2 |
Method of manufacturing display apparatus
A method of manufacturing a display apparatus includes: forming a pixel electrode on a substrate; forming a pixel defining layer covering at least an edge of the pixel electrode and including an opening exposing a part of the pixel electrode; performing first dry cleaning by adding oxygen gas (O2) to a surface of the pixel electrode exposed by the opening in the pixel defining layer, wherein the oxygen gas (O2) is added at a flow rate in a range of about 1,200 sccm to about 3,600 sccm; performing second dry cleaning after the first dry cleaning; forming an intermediate layer on the pixel electrode after the second dry cleaning; and forming an opposite electrode on the intermediate layer and the pixel defining layer. |
US11404637B2 |
Tapered cell profile and fabrication
Methods, systems, and devices for a tapered cell profile and fabrication are described. A memory storage component may contain multiple chalcogenide materials and may include a tapered profile. For example, a first chalcogenide material may be coupled with a second chalcogenide material. Each of the chalcogenide materials may be further coupled with a conductive material (e.g., an electrode). Through an etching process, the chalcogenide materials may tapered (e.g., step tapered). A pulse may be applied to the tapered chalcogenide materials resulting in a memory storage component that includes a mixture of the chalcogenide materials. |
US11404635B2 |
Memory stacks and methods of forming the same
Memory stacks and method of forming the same are provided. A memory stack includes a bottom electrode layer, a top electrode layer and a phase change layer between the bottom electrode layer and the top electrode layer. A width of the top electrode layer is greater than a width of the phase change layer. A first portion of the top electrode layer uncovered by the phase change layer is rougher than a second portion of the top electrode layer covered by the phase change layer. |
US11404625B2 |
Multilayer actuator
A multilayer actuator includes multiple electrode layers of alternating polarity situated one on top of the other in the direction of a longitudinal axis, and dielectric layers situated between the electrode layers. The electrode layers of identical polarity each extend as far as, and are electrically connected to one another at least indirectly in, an edge area on one side in a direction perpendicular to the longitudinal axis and end before the edge area on the opposite side. |
US11404618B2 |
Light-emitting device package and light source module
A light-emitting device package according to one embodiment comprises: a body including a through-hole formed in an upper surface and a lower surface; a light-emitting device arranged on the upper surface of the body and including first and second bonding units spaced apart from each other; and first and second metal units arranged so as to be spaced apart from each other on the rear surface of the body, wherein a partial area of each of the first and second bonding units overlaps with the through-hole in a vertical direction, the first and second metal units respectively includes first and second extension portions extending to the through-hole; the first and second extension portions is electrically connected to the first and second bonding units, respectively; and the first and second extension portions face each other within the through-hole. |
US11404615B2 |
Light emitting device and method of manufacturing light emitting device
A light emitting device includes a light emitting element, a wavelength conversion member, a reflecting member and a covering member. The light emitting element has a top surface and lateral surfaces. The wavelength conversion member has a top surface, a bottom surface, and lateral surfaces, with the bottom surface of the wavelength conversion member facing the top surface of the light emitting element. The reflecting member surrounds the lateral surfaces of the light emitting element and the lateral surfaces of the wavelength conversion member. The reflecting member has a top surface. The covering member covers the top surface of the wavelength conversion member and the top surface of the reflecting member. The covering member contains a pigment or a dye so that a body color of the covering member is the same or a similar color as a body color of the wavelength conversion member. |
US11404614B2 |
Light-emitting device
Provided is a light-emitting device having a plurality of light-emitting elements with high operation stability and light extraction efficiency. The light-emitting device includes: a light-emitting element; a translucent member which is disposed on the light-emitting element and has a columnar first portion having a bottom surface opposed to an upper surface of the light-emitting element, a second portion formed continuously with the first portion on the first portion and narrowed upward, and a columnar third portion formed continuously with the second portion on the second portion; and a reflective member configured to cover the side surfaces of the translucent member. In this light-emitting device, the height of the first portion of the translucent member in a direction perpendicular to the bottom surface thereof is ⅙ or more the height of the translucent member in the direction perpendicular to the bottom surface. |
US11404611B2 |
Production of a semiconductor device
In an embodiment a method for producing a semiconductor device includes providing a carrier with a semiconductor component arranged on the carrier, providing a layer arrangement on the carrier, the layer arrangement adjoining the semiconductor component and comprising a first and a second flowable layer, wherein the first layer is formed on the carrier and then the second layer is formed on the first layer, wherein the first layer comprises particles, wherein a density of the first layer is greater than a density of the second layer, and wherein a lateral wetting of the semiconductor component with the first layer occurs such that the first layer comprises a first configuration comprising a curved layer surface laterally with respect to the semiconductor component, and centrifuging the carrier such that the first layer comprises a second configuration as a result, wherein the first layer cannot return to the first configuration since the second layer is arranged on the first layer. |
US11404610B2 |
Light fixture with broadband and narrow band emitters
A light fixture includes a first phosphor-converted light-emitting diode (“PCLED”) emitting light in a first PCLED wavelength range having first PCLED upper and lower bounds, a first direct light-emitting diode (“DLED”) emitting light in a first DLED wavelength range having first DLED upper and lower bounds, a second PCLED emitting light in a second PCLED wavelength range having second PCLED upper and lower bounds, and a second DLED emitting light in a second DLED wavelength range having second DLED upper and lower bounds. The first PCLED upper bound has a higher wavelength value than the first DLED upper bound. The first PCLED lower bound has a lower wavelength value than the first DLED lower bound. The second PCLED upper bound has a higher wavelength value than the second DLED upper bound. The second PCLED lower bound has a lower wavelength value than the second DLED lower bound. |
US11404609B1 |
Light-emitting module
A light-emitting module includes a light-shielding sheet, a light guide plate, a light barrier, a circuit board, and first and second light-emitting elements. The light-shielding sheet includes a first pattern area and a second pattern area. The light guide plate is disposed under the light-shielding sheet and has a microstructure disposed corresponding to the second pattern area. The light barrier is disposed under the light guide plate and has first and second holes. The circuit board is disposed under the light barrier. The first light-emitting element is disposed on the circuit board, enters the first hole, and is configured to emit light toward a bottom surface of the light guide plate. The second light-emitting element is disposed on the circuit board, passes through the second hole, and is configured to emit light toward a side surface of the light guide plate. |
US11404607B2 |
Display apparatus, source substrate structure, driving substrate structure, and method of manufacturing display apparatus
A display apparatus, including a light-emitting device including a device-side electrode; a driving substrate configured to drive the light-emitting device; a driver-side electrode provided on the driving substrate; and a metal layer configured to connect the device-side electrode to the driver-side electrode, and including a first interface between the metal layer and the device-side electrode, and a second interface between the metal layer and the driver-side electrode, wherein at least one of the first interface and the second interface includes an intermetallic compound. |
US11404606B2 |
Semiconductor light-emitting element
A semiconductor light-emitting element is configured to emit ultraviolet light having a wavelength of 320 nm or shorter. Denoting a total area of a principal surface of a substrate as S0, an area on a p-type semiconductor layer in which a p-side contact electrode is formed as S1, an area on an n-type semiconductor layer in which an n-side contact electrode is formed as S2, a reflectivity of the p-side contact electrode for ultraviolet having a wavelength of 280 nm incident from a side of the p-type semiconductor layer as R1, and a reflectivity of the n-side contact electrode for ultraviolet light having a wavelength of 280 nm incident from a side of the n-type semiconductor layer as R2, (S1/S0)×R1+(S2/S0)×R2≥0.5, S1>S2, and R1≤R2. |
US11404605B2 |
Display device
A display device is disclosed and includes a substrate, a first insulating layer, a light emitting element, and a light conversion element. The first insulating layer is disposed on the substrate, and the first insulating layer includes at least one opening and a side surface surrounding the at least one opening. The light emitting element is disposed in the at least one opening, the light emitting element includes a first electrode, a light emitting layer disposed on the first electrode, and a second electrode disposed on the light emitting layer, and the first electrode includes a side portion located on the side surface. The light conversion element is disposed on the light emitting element. A height of a top of the side portion of the first electrode is greater than a height of a bottom of the light conversion element. |
US11404604B2 |
Pixel of micro display having vertically stacked sub-pixels and common electrode
Disclosed is a unit pixel of a microdisplay. In the unit pixel, sub-pixels which respectively form blue, green, and red light are vertically stacked on a growth substrate. Accordingly, the overall area of the unit pixel is reduced, and a transfer process is easily performed. |
US11404602B2 |
Light-emitting diode and method for manufacturing thereof
The present application relates to the field of semiconductor, especially the Light-Emitting Diode (LED) and a manufacturing method thereof. In some examples, by etching the channel between adjacent light-emitting units, making the high reflection layer at the bottom of the channel, and producing interference fringes through the high reflection layer, and the side of the LED is exposed by using the interference fringes, thereby forming the structure of the groove and the protrusion on the side of the LED. Further, the width of the bottom of the groove can be larger than the width of the opening, and a silicon dioxide layer can be provided on the surfaces of the protrusion structures, which can further improve the luminous efficiency of the LED. |
US11404589B2 |
Open electrodes for in-plane field generation
An electrode film includes a first electrode pattern having a first set of parallel conductive electrodes and a second electrode pattern having a second set of parallel conductive electrodes disposed on a surface of a transparent film. The conductive electrodes in the first and second electrode patterns are conductive mesh patterns including a pattern of open areas and are arranged in an interlaced pattern. The first and second electrode patterns are configured to be connected to respective sources of electrical power supplying respective waveforms to generate a time-varying electric field pattern above a surface of the electrode film. |
US11404588B2 |
Imaging panel
An imaging panel includes an imaging element that is formed on a substrate. The imaging element includes a gate line, a source line, a switching element, a photoelectric conversion element, and a bias line. The gate line and the source line are formed in a layer in which a part of the switching element is formed, a layer in which a part of the photoelectric conversion element is formed, or a layer in which the bias line is formed. |
US11404583B2 |
Apparatus including multiple channel materials, and related methods, memory devices, and electronic systems
An apparatus comprises a stack comprising an alternating sequence of dielectric structures and conductive structures, a first channel material extending vertically through the stack, and a second channel material adjacent the first channel material and extending vertically through the stack. The first channel material has a first band gap and the second channel material has a second band gap that is relatively larger than the first band gap. The apparatus further comprises a conductive plug structure adjacent to each of the first channel material and the second channel material, and a conductive line structure adjacent to the conductive plug structure. Methods of forming the apparatus, memory devices, and electronic systems are also described. |
US11404582B2 |
Array substrate and method for manufacturing the same, and display device
The embodiments of the present disclosure provide an array substrate and a method for manufacturing the same, and a display device. The array substrate includes a substrate, wherein the substrate has a display region and a peripheral region surrounding the display region, the display region has a plurality of pixels arranged in an array, and each of the plurality of pixels includes a light transmission region and a light shielding region, and a light shielding block covering at least a part of the light transmission region of at least one pixel close to the peripheral region of the plurality of pixels. |
US11404578B2 |
Dielectric isolation layer between a nanowire transistor and a substrate
Gate all around semiconductor devices, such as nanowire or nanoribbon devices, are described that include a low dielectric constant (“low-κ”) material disposed between a first nanowire closest to the substrate and the substrate. This configuration enables gate control over all surfaces of the nanowires in a channel region of a semiconductor device via the high-k dielectric material, while also preventing leakage current from the first nanowire into the substrate. |
US11404576B2 |
Dielectric fin structure
A semiconductor device according to the present disclosure includes a dielectric fin having a helmet layer, a gate structure disposed over a first portion of the helmet layer and extending along a direction, and a dielectric layer adjacent the gate structure and disposed over a second portion of the helmet layer. A width of the first portion along the direction is greater than a width of the second portion along the direction. |
US11404573B2 |
Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
A semiconductor device in which sufficient stress can be applied to a channel region due to lattice constant differences. |
US11404572B2 |
Semiconductor device
According to one embodiment, a semiconductor device includes an element region, an element isolation region adjacent to the element region, a gate insulating layer provided on an upper surface of the element region, and a gate electrode including a semiconductor layer, the semiconductor layer containing boron (B) and including a portion provided on the gate insulating layer, the element isolation region including an upper portion including an upper surface of the element isolation region and a lower portion including a lower surface of the element isolation region, and the upper portion of the element isolation region applying compressive stress to a portion of the element region, which is adjacent to the upper portion of the element isolation region. |
US11404571B2 |
Methods of forming NAND memory arrays
Some embodiments include device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen-containing material directly against the semiconductor channel material and on an opposing side of the semiconductor channel material from the dielectric region. Some embodiments include a device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen within at least some of the semiconductor channel material. Some embodiments include a NAND memory array which includes a vertical stack of alternating insulative levels and wordline levels. Channel material extends vertically along the stack. Charge-storage material is between the channel material and the wordline levels. Dielectric material is between the channel material and the charge-storage material. Nitrogen is within the channel material. Some embodiments include methods of forming NAND memory arrays. |
US11404570B2 |
Semiconductor devices with embedded ferroelectric field effect transistors
A method includes providing a structure having a substrate, gate stacks and source/drain (S/D) features over the substrate, S/D contacts over the S/D features, one or more dielectric layers over the gate stacks and the S/D contacts, and a via structure penetrating the one or more dielectric layers and electrically connecting to one of the gate stacks and the S/D contacts. The method further includes forming a ferroelectric (FE) stack over the structure, wherein the FE stack includes an FE layer and a top electrode layer over the FE layer, wherein the FE stack directly contacts the via structure; and patterning the FE stack, resulting in a patterned FE stack including a patterned FE feature and a patterned top electrode over the patterned FE feature. |
US11404563B2 |
Insulated-gate bipolar transistor with enhanced frequency response, and related methods
Embodiments of the disclosure provide an insulated-gate bipolar transistor (IGBT), including: a substrate with a first type of doping; a drift region including a first semiconductor material and a second semiconductor material having dissimilar band gaps, the drift region having a second type of doping; and a base region with the first type of doping, wherein the drift region is disposed between the substrate and the base region; wherein a stoichiometry ratio of the first and second semiconductor materials of the drift region varies as a function of distance within the drift region to provide a built-in electric field via band gap modulation. The built-in electric field reduces a band gap barrier for minority charge carriers and increases a drift velocity of the minority charge carriers in the drift region, increasing a frequency response of the IGBT. |
US11404558B2 |
Semiconductor device and a method for fabricating the same
A semiconductor device includes a first field effect transistor (FET) including a first gate dielectric layer and a first gate electrode. The first gate electrode includes a first lower metal layer and a first upper metal layer. The first lower metal layer includes a first underlying metal layer in contact with the first gate dielectric layer and a first bulk metal layer. A bottom of the first upper metal layer is in contact with an upper surface of the first underlying metal layer and an upper surface of the first bulk metal layer. |
US11404549B2 |
Split gate flash memory cells with a trench-formed select gate
Structures for a split gate flash memory cell and methods of forming a structure for a split gate flash memory cell. A trench is formed in a semiconductor substrate. First and second source/drain regions are formed in the semiconductor substrate. A first gate is laterally positioned between the trench and the second source/drain region, and a second gate includes a portion inside the trench. The first source/drain region is located in the semiconductor substrate beneath the trench. A dielectric layer is positioned between the portion of the second gate inside the trench and the semiconductor substrate. |
US11404545B2 |
Method of forming split-gate flash memory cell with spacer defined floating gate and discretely formed polysilicon gates
A method of forming a memory device that includes forming a first polysilicon layer using a first polysilicon deposition over a semiconductor substrate, forming an insulation spacer on the first polysilicon layer, and removing some of the first polysilicon layer to leave a first polysilicon block under the insulation spacer. A source region is formed in the substrate adjacent a first side surface of the first polysilicon block. A second polysilicon layer is formed using a second polysilicon deposition. The second polysilicon layer is partially removed to leave a second polysilicon block over the substrate and adjacent to a second side surface of the first polysilicon block. A third polysilicon layer is formed using a third polysilicon deposition. The third polysilicon layer is partially removed to leave a third polysilicon block over the source region. A drain region is formed in the substrate adjacent to the second polysilicon block. |
US11404543B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a semiconductor channel layer, a gate structure, complex regions, a source terminal and a drain terminal. The gate structure is disposed on the semiconductor channel layer. The source terminal and the drain terminal are disposed on the semiconductor channel layer. The complex regions ae respectively disposed between the source terminal and the semiconductor channel layer and between the drain terminal and the semiconductor channel layer. |
US11404541B2 |
Binary III-nitride 3DEG heterostructure HEMT with graded channel for high linearity and high power applications
A HEMT comprising: a substrate; a channel layer coupled to the substrate; a source electrode coupled to the channel layer; a drain electrode coupled to the channel layer; and a gate electrode coupled to the channel layer between the source electrode and the drain electrode; wherein the channel layer comprises: at least a first GaN layer; and a first graded AlGaN layer on the first GaN layer, the Al proportion of the first graded AlGaN layer increasing with the distance from the first GaN layer. |
US11404540B2 |
Bipolar junction transistor, and a method of forming a collector for a bipolar junction transistor
A bipolar junction transistor is provided with a multilayer collector structure. The layers of the collector are individually grown in separate epitaxial growth stages. For a PNP transistor, each layer, after it is grown, is doped with a p-type dopant in a dedicated implant stage. By providing separate epitaxial growth stages and separate dopant implant stages for each layer of the collector, the dopant concentration profile in the collector region can be better controlled to optimize the speed and breakdown voltage of a bipolar junction transistor. |
US11404533B2 |
Capacitance structure and manufacturing method thereof
A capacitance structure includes a substrate, a plurality of rod capacitors and an oxide layer. The rod capacitors are located on a top surface of the substrate and form a capacitor array. The oxide layer covers a top and a side of the capacitor array and a portion of the substrate. The rod capacitors extend along a first direction perpendicular to a second direction in which the top surface of the substrate extends. The oxide layer extends from the top of the capacitor array to the substrate along a third direction, and an angle is formed between the first and third directions. |
US11404528B2 |
Display device
A display device includes a substrate including a first area and a second area, main pixel groups, auxiliary pixel groups, first signal lines, and second signal lines, wherein a distance between adjacent ones of the first signal lines in the second area gradually decreases toward outer regions of the second area from a center of the second area, and a distance between adjacent ones of the second signal lines in the second area gradually decreases toward the outer regions of the second area from the center of the second area. |
US11404520B2 |
Organic light emitting diode display
An organic light emitting diode display according to exemplary embodiments includes: a data wire including a data line disposed in a display area and a first data line disposed in a peripheral area; a driving voltage wire including a driving voltage line disposed in the display area and a first driving voltage line disposed in the peripheral area and extending in a first direction; and a driving low voltage wire including a cathode covering the display area and formed to the peripheral area and a first driving low voltage connection portion connected to the cathode and disposed in the peripheral area, wherein the first driving low voltage connection portion includes a first portion and a second portion having a different width than the first portion. |
US11404517B2 |
Display panel
A display panel includes: a first scan line, a second scan line, and a third scan line; a data line; a first pixel in a first pixel area, connected to the first scan line and the second scan line, and connected to the data line through a first capacitor; and a second pixel in a second pixel area, connected to the second scan line and the third scan line, and connected to the data line through the first capacitor. |
US11404516B2 |
Method for manufacturing a display device
A plurality of thin film transistors provided in a peripheral region are first staggered thin film transistors where a first channel layer configured of low-temperature polysilicon is included, and the first channel layer is not interposed between a first source electrode and a first gate electrode, and between a first drain electrode and the first gate electrode. A plurality of thin film transistors provided in a display region are second staggered thin film transistors where a second channel layer configured of an oxide semiconductor is included, and the second channel layer is not interposed between a second source electrode and a second gate electrode, and between a second drain electrode and the second gate electrode. The first thin film transistor is located below the second thin film transistor. |
US11404510B2 |
Stretchable display panel, stretchable display apparatus, and method of fabricating stretchable display panel
A stretchable display panel has a plurality of first regions and a plurality of second regions alternately arranged. The stretchable display panel includes a plurality of first light emitting elements and a plurality of first driving circuits for driving light emission of the plurality of first light emitting elements; and a plurality of second light emitting elements and a plurality of second driving circuits for driving light emission of the plurality of second light emitting elements. The plurality of first light emitting elements, the plurality of first driving circuits, and the plurality of second driving circuits are limited in the plurality of first regions. The plurality of second light emitting elements are limited is the plurality of second regions. The stretchable display panel in the plurality of first regions have a Young's modulus greater than a Young's modulus in the plurality of second regions of the stretchable display panel. |
US11404508B2 |
Display device and method thereof of reduced masks
A display device and a method of manufacturing a display device are provided. A display device includes a first conductive layer on a first gate insulating film and including a first gate electrode and a first electrode of a capacitor connected to the first gate electrode, and a second conductive layer on the second interlayer insulating film and including a first and a second source/drain electrode, and a second electrode of the capacitor, the second electrode of the capacitor is in a trench structure in which the second interlayer insulating film is partially removed. |
US11404503B2 |
Display panel and manufacturing method thereof with precleaning process using ultra-violet lithography unit
The present invention provides a display panel and a manufacturing method of the display panel. By etching a certain amount of a protective layer in a first contact region and in a second contact region, a first via hole and a second via hole expose a surface of an active layer, and a source/drain metal layer is connected to the active layer through the first via hole and the second via hole. The present invention does not use a hydrofluoric acid cleaning machine (HFC) to rinse the protective layer, so a first capacitor electrode and a second capacitor electrode are effectively prevented from being etched by hydrofluoric acid (HF). Accordingly, stable thin-film-transistor (TFT) electrical parameters are obtained. |
US11404500B2 |
Display apparatus and display control method
A display apparatus and a display control method are provided. The display apparatus includes an organic light-emitting display device having electrostatic attraction and including a transparent cathode layer and a transparent anode layer, so that the organic light-emitting display device can achieve bidirectional light emission; frustrated total reflection devices positioned on both sides of the organic light-emitting display device respectively and each including an active film layer and a frustrated switch, wherein the frustrated switch is turned on or off according to a received control signal to control whether the active film layer has electrostatic attraction; and a sealant bonded between the organic light-emitting display device and the frustrated total reflection devices to form a gap therebetween. When the active film layer has electrostatic attraction, the light emitted by the organic light-emitting display device is emitted from the active film layer. |
US11404496B2 |
Array substrate and preparation method thereof and display device
Provided is an array substrate and a preparation method thereof and a display device, to improve performance and yield of display products. An embodiment of the present disclosure provides an array substrate, where the array substrate is divided into a display area and a surrounding area arranged outside the display area; the array substrate includes: a substrate, electroluminescent devices and an encapsulation layer disposed on the substrate in the display area, the encapsulation layer configured to encapsulate the electroluminescent device, and a touch function layer disposed on the encapsulation layer; the touch function layer includes a touch lead extending from the display area to the surrounding area; and the array substrate further includes: a thickness compensation layer located in the surrounding area and disposed between the substrate and the touch lead layer. |
US11404495B2 |
OLED display panel, fabrication method thereof and OLED display device
The embodiments of the present disclosure provide an OLED display panel, a fabrication method thereof and an OLED display device, which improve optical, mechanical, and electrical characteristics of the OLED display panel. The OLED display panel includes an OLED light-emitting layer and touch electrodes. The touch electrode includes a first touch electrode layer and a second touch electrode layer, and the OLED light-emitting layer is disposed between the first touch electrode layer and the second touch electrode layer. |
US11404490B2 |
OLED device, method of manufacturing the same, and display panel
Embodiments of the present disclosure provide an OLED device, a method of manufacturing the OLED device, and a display panel. The OLED device comprises: a substrate, a first electrode layer, a color filter layer, a light emitting layer and a second electrode layer. The first electrode layer is one of an anode layer and a cathode layer and comprises: a first sub-electrode layer disposed on the substrate; and a second sub-electrode layer electrically connected with the first sub-electrode layer. The color filter layer is disposed on the first sub-electrode layer and the second sub-electrode layer is disposed on the color filter layer. The second electrode layer is the other of the anode layer and the cathode layer and the light emitting layer is disposed between the second electrode layer and the second sub-electrode layer of the first electrode layer. |
US11404483B2 |
Solid-state image sensor and electronic apparatus
This technology relates to a solid-state image sensor configured to make smaller the chip size of a CIS that uses an organic photoelectric conversion film, and to an electronic apparatus. A solid-state image sensor according to a first aspect of this technology is characterized in that it includes a first substrate and a second substrate stacked one on top of the other and a first organic photoelectric conversion film formed on the first substrate and that a latch circuit is formed on the second substrate. This technology may be applied to back-illuminated CISs, for example. |
US11404471B2 |
Optoelectronic semiconductor component, and method for producing an optoelectronic semiconductor component
An optoelectronic semiconductor component may have a semiconductor body comprising a first region of an n-type conductivity, a second region of a p-type conductivity, an active region capable of generating electromagnetic radiation, a marker layer, a plurality of emission regions and a plurality of recesses. The active region is disposed between the first region and the second region in a plane parallel to the main extension plane of the semiconductor body. The recesses delimit the emission regions in lateral direction. Starting from the side of the first region facing away from the active region, the recesses extend transversely to the main plane of the semiconductor body in the direction of the second region and adjoin the marker layer or penetrate the marker layer completely. The recesses are formed only in the first region or the recesses extend into the second region and completely penetrate the active region. |
US11404466B2 |
Multilevel semiconductor device and structure with image sensors
An integrated device, the device including: a first level including a first mono-crystal layer, the first mono-crystal layer including a plurality of single crystal transistors; an overlaying oxide on top of the first level; a second level including a second mono-crystal layer, the second level overlaying the oxide, where the second mono-crystal layer includes a plurality of first image sensors; and a third level overlaying the second level, where the third level includes a plurality of second image sensors, where the second level is bonded to the first level, where the bonded includes an oxide to oxide bond; and an isolation layer disposed between the second mono-crystal layer and the third level. |
US11404463B2 |
Color filter array, imagers and systems having same, and methods of fabrication and use thereof
A pixel cell with a photosensitive region formed in association with a substrate, a color filter formed over the photosensitive region, the color filter comprising a first material layer and a second material layer formed in association with the first shaping material layer. |
US11404461B2 |
Anti-reflective layers in semiconductor devices
A Complementary Metal Oxide Semiconductor, CMOS, device for radiation detection. The CMOS device includes a semiconductor diffusion layer having a photodetector region for receiving incident light, and a polysilicon layer having a patterned structure in a region at least partially overlapping the photodetector region. The structure includes a plurality of features being perforations extending through the polysilicon layer or columns of polysilicon, wherein the perforations are filled with, or the columns are surrounded by, a dielectric material. |
US11404460B2 |
Vertical gate field effect transistor
In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate. |
US11404458B2 |
Image sensor including quantum dot layer
The present invention discloses an image sensor including a quantum dot layer. The image sensor including a quantum dot layer according to the present invention includes photoelectric conversion elements formed on a substrate to correspond to a plurality of pixel regions; a wiring layer formed on the substrate on which the photoelectric conversion elements are formed; color filters formed on the wiring layer to correspond to the photoelectric conversion elements; and a quantum dot layer formed on the color filters and absorbing light and emitting visible light having a specific range of wavelengths converted from the absorbed light. |
US11404455B2 |
Imaging apparatus
There is provided an imaging apparatus including a first imaging element and a second imaging element configured to perform imaging in the same direction. The second imaging element is different in pixel arrangement between a central part and a non-central part, such that the pixels in the non-central part are more sensitive than the pixels in the central part. Image signals from the non-central part of the second imaging element are used to correct for shading (vignetting) in image signals from the first imaging element. |
US11404450B2 |
Array substrate and display panel
The present application discloses an array substrate and a display panel, the array substrate including a substrate, and a first gate layer and a second gate layer formed on the substrate; the first gate layer includes a first gate line connecting a plurality of first gates, at least two of the second gates of the second gate layer connected to a same one of the first gates; or the second gate layer including a second gate line connecting the plurality of second gates, at least two of the first gates of the first gate layer connected to a same one of the second gates. |
US11404449B2 |
Display panel
The present invention provides a display panel, and by means of using a plurality of sub-pixels as a sub-pixel unit, each sub-pixel unit corresponds to one gate fan-out line, such that a number of the gate fan-out lines of a pixel unit can be reduced, a width of a pixel opening area can be increased, and an aperture ratio (AR %) and response time (TR %) of the panel can be improved. |
US11404443B2 |
Semiconductor device
A semiconductor device includes a substrate including a first active region and a second active region, the first active region having a conductivity type that is different than a conductivity type of the second active region, and the first active region being spaced apart from the second active region in a first direction, gate electrodes extending in the first direction, the gate electrodes intersecting the first active region and the second active region, a first shallow isolation pattern disposed in an upper portion of the first active region, the first shallow isolation pattern extending in the first direction, and a deep isolation pattern disposed in an upper portion of the second active region, the deep isolation pattern extending in the first direction, and the deep isolation pattern dividing the second active region into a first region and a second region. |
US11404441B2 |
3D NAND memory device and method of forming the same
In a method for manufacturing a memory device, a plurality of first insulating layers and a bottom select gate (BSG) layer are formed over a substrate, where the first insulating layers are disposed between the substrate and the BSG layer. One or more first dielectric trenches are formed to pass through the BSG layer and the first insulating layers, and extend in a length direction of the substrate. A plurality of word line layers and a plurality of second insulating layers are formed over the BSG layer, where the second insulating layers are disposed between the BSG layer and the word line layers. One or more common source regions are formed over the substrate to extend in the length direction of the substrate, and further extend through the BSG layer, the first insulating layers, the word line layers, and the second insulating layers. |
US11404438B2 |
Memory device and fabrication method thereof
A memory device includes a substrate; and a stack structure, including alternately arranged first dielectric layers and electrode layers. In a first lateral direction, the memory device includes array regions and a staircase region arranged between array regions. In a second lateral direction, the stack structure includes a first block and a second block, each including a wall-structure region and extending along the first lateral direction. The wall-structure regions of the first block and the second block are adjacent to each other and together form a wall structure in the staircase region. The memory device also includes a first separation structure, formed through the stack structure and positioned between the first block and the second block in array regions along the first lateral direction; and second dielectric layers positioned between the first block and the second block in the staircase region, and alternated with the first dielectric layers. |
US11404435B2 |
Three-dimensional semiconductor memory device including first vertical structure on first region of substrate and wider second vertical structure on second region of substrate
Provided is a three-dimensional semiconductor memory device include a first stack structure and a second stack structure adjacent to each other on a substrate, a first common source plug between the first stack structure and the second stack structure, a second common source plug between the first stack structure and the second stack structure, and a vertical dielectric structure between the first common source plug and the second common source plug. Each of the first stack structure and the second stack structure may include a plurality of insulation layers and a plurality of electrodes alternately stacked on the substrate. The first common source plug may be connected to the substrate. The second common source plug may be spaced apart from the substrate. |
US11404427B2 |
Three-dimensional memory device including multi-tier moat isolation structures and methods of making the same
A method of forming a three-dimensional memory device includes forming a first-tier alternating stack of first insulating layers and first sacrificial material layers, forming first-tier memory openings, first-tier support openings, and first-tier moat trenches through the first alternating stack using a same etching step, forming a first dielectric moat structure in the first moat tier-trenches and first support pillar structures in the first-tier support openings during a same deposition step, forming memory stack structures in the first-tier memory openings, forming backside trenches through the first-tier alternating stack after forming the first dielectric moat structure, replacing portions of the first sacrificial material layers with first electrically conductive layers through the backside trenches, and forming at least one through-memory-level interconnection via structure through the first vertically alternating sequence of first insulating plates and first dielectric material plates surrounded by the first dielectric moat structure. |
US11404426B2 |
Controlling trap formation to improve memory window in one-time program devices
In some embodiments, the present disclosure relates to a one-time program (OTP) memory cell. The OTP memory cell includes a read transistor and a program transistor neighboring the read transistor. The read transistor includes a read dielectric layer and a read gate electrode overlying the read dielectric layer. The program transistor includes a program dielectric layer and a program gate electrode overlying the program dielectric layer. The program transistor has a smaller breakdown voltage than the read transistor. |
US11404422B2 |
DRAM semiconductor device having reduced parasitic capacitance between capacitor contacts and bit line structures and method for manufacturing the same
A semiconductor device and a method for manufacturing the same are provided. The method includes forming a plurality of bit line structures on a semiconductor substrate, wherein there is a plurality of trenches between the bit line structures. The method also includes forming a first oxide layer conformally covering the bit line structures and the trenches, and forming a photoresist material layer in the trenches and on the first oxide layer, wherein the photoresist material layer has an etch selectivity that is higher than that of the first oxide layer. The method further includes removing the photoresist material layer to form a plurality of capacitor contact holes between the bit line structures, and forming a capacitor contact in the capacitor contact holes. |
US11404419B2 |
Memory device comprising an electrically floating body transistor
A semiconductor memory cell having an electrically floating body having two stable states is disclosed. A method of operating the memory cell is disclosed. |
US11404417B2 |
Low leakage device
A semiconductor device according to the present disclosure includes a first plurality of gate-all-around (GAA) devices in a first device area and a second plurality of GAA devices in a second device area. Each of the first plurality of GAA devices includes a first vertical stack of channel members extending along a first direction, and a first gate structure over and around the first vertical stack of channel members. Each of the second plurality of GAA devices includes a second vertical stack of channel members extending along a second direction, and a second gate structure over and around the second vertical stack of channel members. Each of the first plurality of GAA devices includes a first channel length and each of the second plurality of GAA devices includes a second channel length smaller than the first channel length. |
US11404415B2 |
Stacked-gate transistors
The present disclosure relates to semiconductor structures and, more particularly, to stacked gate transistors and methods of manufacture. The structure includes a stacked gate structure having a plurality of transistors with at least one floating node and at least one node to either ground or a supply voltage, and a contact to either of the ground or supply voltage and the at least one floating node being devoid of any contact. |
US11404413B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a semiconductor substrate having a first region and a second region, insulators, gate stacks, and first and second S/Ds. The first and second regions respectively includes at least one first semiconductor fin and at least one second semiconductor fin. A width of a middle portion of the first semiconductor fin is equal to widths of end portions of the first semiconductor fin. A width of a middle portion of the second semiconductor fin is smaller than widths of end portions of the second semiconductor fin. The insulators are disposed on the semiconductor substrate. The first and second semiconductor fins are sandwiched by the insulators. The gate stacks are over a portion of the first semiconductor fin and a portion of the second semiconductor fin. The first and second S/Ds respectively covers another portion of the first semiconductor fin and another portion of the second semiconductor fin. |
US11404408B2 |
Semiconductor device having temperature sensing portions and method of manufacturing the same
A semiconductor device includes a MOS structure part and first to third temperature sensing portions. The MOS structure part has a semiconductor substrate of a first conductivity type, a first semiconductor layer of the first conductivity type, a second semiconductor layer of a second conductivity type, first semiconductor regions of the first conductivity type, trenches, and gate electrodes provided in the trenches via a gate insulating film. The first to the third temperature sensing portions are provided in plural and each includes the semiconductor substrate, the first semiconductor layer, a temperature sensing trench, a first polysilicon layer of the first conductivity type and a second polysilicon layer of the second conductivity type provided in the temperature sensing trench via an insulating film, a cathode electrode connected to the first polysilicon layer, and an anode electrode connected to the second polysilicon layer. |
US11404406B2 |
Protection circuit
A semiconductor device includes a first well, a first region and fourth regions of a first conductivity type as well as second regions, a third region, a second well of the second conductivity type. A first region is disposed in the first well and coupled to a first reference voltage terminal. Second regions are disposed in the first well, wherein one of the second regions is coupled to the first reference voltage terminal, and the second regions and the first well are included in a first transistor. A third region is disposed in the first well. A first resistive load is coupled between the third region and a second reference voltage terminal. A second well is coupled to the first well. Fourth regions are disposed in the second well, wherein the second well and at least one of the fourth regions are included in a second transistor. |
US11404404B2 |
Semiconductor structure having photonic die and electronic die
A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure for optically coupling a fiber includes a photonic die, an electronic die disposed on and electrically coupled to the photonic die, and an insulating layer disposed on the photonic die and extending along sidewalls of the electronic die. The photonic die includes a first portion and a second portion connected to the first portion, an optical device of the photonic die optically coupled to the fiber is within the first portion, and the second portion extends beyond lateral extents of the first portion. |
US11404403B2 |
Micro LED display module and method of manufacturing the same
A method of manufacturing a micro light emitting diode (LED) display module includes stacking a connecting layer onto a transfer substrate on which a micro LED is disposed; positioning the transfer substrate above a display substrate, in which a plurality of thin-film transistors are formed, so that the micro LED faces the display substrate; transferring, to the display substrate, the micro LED and a connecting member that is in contact with the micro LED and is separated from the connecting layer by using a laser transfer method; and heating the micro LED and compressing the micro LED against the display substrate to bond the micro LED to the display substrate by the connecting member. |
US11404402B2 |
Component assembly and method for producing components
A component assembly includes an intermediate carrier, a plurality of components and a plurality of anchoring elements. The components have at least two electrical devices and an insulating layer. At least one of the electrical devices is an optoelectronic semiconductor chip. The insulating layer is between the electrical devices of a same component. The at least two electrical devices of the same component are arranged next to one another and enclosed laterally by the insulating layer. The at least two electrical devices and the insulating layer of the same component are integral parts of a self-supporting and mechanically stable unit. The self-supporting and mechanically stable unit and the anchoring elements fix the positions of the components on the intermediate carrier. The components that are self-supporting and mechanically stable units are detachable from the intermediate carrier, and the anchoring elements release the components under mechanical load when the latter are removed. |
US11404401B2 |
Process for manufacturing an LED-based emissive display device
A method of manufacturing an electronic device, including: a) forming a plurality of chips, each including a plurality of connection areas and at least one first pad; b) forming a transfer substrate including, for each chip, a plurality of connection areas and at least one second pad, one of the first and second pads being a permanent magnet and the other one of the first and second pads being either a permanent magnet or made of a ferromagnetic material; and c) affixing the chips to the transfer substrate to connect the connection areas of the chips to the connection areas of the transfer substrate, by using the magnetic force between the pads to align the connection areas of the chips with the corresponding connection areas of the transfer substrate. |
US11404398B2 |
Method of mounting semiconductor elements and method of manufacturing semiconductor device using a stretched film
A method of mounting semiconductor elements, including stretching a stretchable film against an elastic force into a stretched state and disposing a plurality of semiconductor elements in predetermined regions on the stretchable film in the stretched state. Each of the predetermined regions have a predetermined group of semiconductor elements spaced apart from one other at a first distance. The stretchable film is released from the stretched state by using the elastic force of the stretchable film. The first distance between adjacent semiconductor elements in each of the predetermined regions at the time of disposing the semiconductor elements on the stretchable film in the stretched state is reduced to a predetermined second distance of a predetermined mounting distance after releasing the stretchable film from the stretched state. |
US11404397B2 |
Display panel
A display panel including a substrate, a buffer insulating layer, a plurality of pads, and a plurality of light emitting diodes is provided. The substrate has a display area and a peripheral area adjacent to the display area. The buffer insulating layer is disposed on the substrate. The Young's modulus of the buffer insulating layer is less than 10 GPa. The pads are located on the buffer insulating layer and disposed on the display area of the substrate. The light emitting diodes are electrically connected to the pads and bonding to the display area of the substrate by the pads. The buffer insulating layer is located between the light emitting diodes and the substrate. A normal projection of the light emitting diodes on the substrate is at least partially overlapped with a normal projection of the buffer insulating layer on the substrate. |
US11404394B2 |
Chip package structure with integrated device integrated beneath the semiconductor chip
A package structure and a method of forming the same are provided. The package structure includes a package substrate, a semiconductor chip over the package substrate, and at least one integrated device integrated with the semiconductor chip. The integrated device is integrated directly beneath the semiconductor chip in order to facilitate signal transmission. |
US11404392B1 |
Molded semiconductor module for PCB embedding
A molded semiconductor module include: a semiconductor die attached to a main surface of a metal block. The die has a metal contact pad at a side of the die facing away from the metal block. A metal terminal has a contact region attached to the metal contact pad of the die, and a distal end region that joins the contact region and is bent upward in a direction away from the metal block such that the distal end region has a free end which terminates at a further distance from the metal block than the contact region. A molding compound encapsulates the die and covers the contact region of the metal terminal. The distal end region of the metal terminal protrudes through a surface of the molding compound that faces a same direction as the side of the die with the metal contact pad. |
US11404387B2 |
Semiconductor chip
The present disclosure provides a semiconductor chip including a functional area, a first end, a second end, a third end, and a connecting portion. The functional area has first and second sides opposite to each other. The first end is disposed on the first side and the third end is disposed on the first side, wherein the semiconductor chip is switched on or off according to the drive signal received between the third end and the first end, and the connecting portion is disposed on the first side of the functional area and connected to the first end and the third end, wherein when the temperature rises above the a first temperature, the connecting portion is in a conductive state, and when the temperature drops to be not higher than a third temperature, the connecting portion is in an insulated state. |
US11404381B2 |
Chip package with fan-out structure
A chip package is provided. The chip package includes a semiconductor die and a protection layer surrounding the semiconductor die. The chip package also includes a first dielectric layer over the semiconductor die and the protection layer. The first dielectric layer has an upper surface with cutting scratches. The chip package further includes a conductive layer over the first dielectric layer. In addition, the chip package includes a second dielectric layer over the conductive layer and filling some of the cutting scratches. Bottoms of the cutting scratches are positioned at height levels that are lower than a topmost surface of the first dielectric layer and higher than a topmost surface of the semiconductor die. |
US11404375B2 |
Terminal configuration and semiconductor device
There is provided a terminal that includes a first conductive layer; a wiring layer on the first conductive layer; a second conductive layer on the wiring layer; and a conductive bonding layer which is in contact with a bottom surface and a side surface of the first conductive layer, a side surface of the wiring layer, a portion of a side surface of the second conductive layer, and a portion of a bottom surface of the second conductive layer, wherein an end portion of the second conductive layer protrudes from an end portion of the first conductive layer and an end portion of the wiring layer, and wherein the conductive bonding layer is in contact with a bottom surface of the end portion of the second conductive layer. |
US11404373B2 |
Hybrid low resistance metal lines
Disclosed are standard cells and methods for fabricating standard cells used in semiconductor device design and fabrication. Aspects disclosed include a standard cell having a plurality of wide metal lines. The wide metal lines being formed from copper. The standard cell also includes a plurality of narrow metal lines. The narrow metal lines are formed from a material that has a lower resistance than copper for line widths on the order of twelve nanometers or less. |
US11404372B2 |
Surface-mount thin-film fuse having compliant terminals
A surface-mountable thin-film fuse component is disclosed that may include a substrate having a top surface, a first end, and a second end that is spaced apart from the first end in a longitudinal direction. The thin-film component may include a fuse layer formed over the top surface of the substrate. The fuse layer may include a thin-film fuse track. An external terminal may be disposed along the first end of the substrate and electrically connected with the thin-film fuse track. The external terminal may include a compliant layer comprising a conductive polymeric composition. |
US11404371B2 |
One-time programmable capacitive fuse bit and a memory
The present disclosure provides a one-time programmable capacitive fuse bit, including an upper plate, the upper plate includes a plurality of fuses arranged side by side and spaced by an internal from each other, middle portions of two adjacent fuses are connected to each other; a connecting portion connected to the fuse is disposed above two ends and the middle portion of each of the plurality of fuses; the fuse bit further includes a lower plate corresponding to the two ends and the middle portion of the fuse, the lower plate is disposed below the fuse; the lower plate corresponding to the middle portion of the fuse is opposite to the connecting portion corresponding to the middle portion of the fuse; a hollow portion is disposed between the lower plate corresponding to the middle portion of the fuse and the lower plate corresponding to both ends of the fuse. |
US11404370B2 |
Failure structure in semiconductor device
A semiconductor device is provided. In an embodiment, the semiconductor device comprises a control region, a first power region, a second power region, an isolation region and/or a short circuit structure. The control region comprises a control terminal. The first power region comprises a first power terminal. The second power region comprises a second power terminal. The isolation region is between the control region and the first power region. The short circuit structure extends from the first power region, through the isolation region, to the control region. The short circuit structure is configured to form a low-resistive connection between the control region and the first power region during a failure state of the semiconductor device. |
US11404359B2 |
Leadframe package with isolation layer
An integrated circuit package that includes a leadframe and a mold compound encapsulating at least a portion of the leadframe. The mold compound includes a cavity open at a bottom surface of the mold compound that exposes a bottom surface of the leadframe. A thermally conductive and electrically insulating isolation layer is locked within the bottom cavity of the mold compound and contacts the bottom surface of the leadframe. |
US11404355B2 |
Package with lead frame with improved lead design for discrete electrical components and manufacturing the same
A semiconductor package includes a lead frame, a die, a discrete electrical component, and electrical connections. The lead frame includes leads and a die pad. Some of the leads include engraved regions that have recesses therein and the die pad may include an engraved region or multiple engraved regions. Each engraved region is formed to contain and confine a conductive adhesive from flowing over the edges of the engraved leads or the die pad. The boundary confines the conductive adhesive to the appropriate location on the engraved lead or the engraved die pad when being placed on the engraved regions. By utilizing a lead frame with engraved regions, the flow of the conductive adhesive or the wettability of the conductive adhesive can be contained and confined to the appropriate areas of the engraved lead or engraved die pad such that a conductive adhesive does not cause cross-talk between electrical components within a semiconductor package or short circuiting within a semiconductor package. |
US11404353B2 |
Electronic device, connection body, and manufacturing method for electronic device
An electronic device has a sealing part 90, a first terminal 11 projecting outward from a first side surface of the sealing part 90, a second terminal 13 projecting outward from a second side surface different from the first side surface of the sealing part 90, an electronic element 95 provided inside the sealing part 90, and a head part 40 coupled to the first terminal 11 and the second terminal and connected to a front surface of the semiconductor element 95 via a conductive adhesive 75. |
US11404351B2 |
Chip-on-chip power card with embedded direct liquid cooling
Methods, systems, and apparatuses for a power card for use in a vehicle. The power card includes an N lead frame, a P lead frame, and an O lead frame each having a body portion and a terminal portion, with the O lead frame located between the N lead frame and the P lead frame. The power card includes a first power device being located on a first side of the O lead frame and a second power device being located on a second side of the O lead frame, the body portion of the O lead frame having one or more channels configured to receive a cooling liquid for cooling the first power device and the second power device. |
US11404347B2 |
Semiconductor package
A semiconductor package according to an exemplary embodiment of the present disclosure may comprise a semiconductor chip comprising a chip pad; a redistribution layer electrically connected to the chip pad of the semiconductor chip; an external connection terminal electrically connected to the redistribution layer; a sealing material covering the semiconductor chip and configured to fix the semiconductor chip and the redistribution layer; an adhesive film positioned on the upper surface of the sealing material; and a heat sink formed on the upper surface of the adhesive film and having a stepped portion at the periphery thereof. |
US11404343B2 |
Package comprising a substrate configured as a heat spreader
A package that includes a first substrate, an integrated device coupled to the first substrate, a second substrate coupled to the integrated device, and an encapsulation layer located between the first substrate and the second substrate. The second substrate is configured to operate as a heat spreader. The second substrate is configured to be free of an electrical connection with the integrated device. |
US11404340B2 |
Semiconductor device and power conversion apparatus
An upper conductor portion having a thickness A larger than a thickness B of a lower conductor portion, the upper conductor portion including a circuit pattern on which semiconductor chips are disposed and an outer peripheral pattern provided on an outer peripheral side of the circuit pattern at a certain gap, the outer peripheral pattern of the upper conductor portion, an outer peripheral portion of an insulating layer, and an outer peripheral portion of the lower conductor portion are fixed to a concave portion formed in the inner peripheral portion of the peripheral wall portion of a case, a collar portion projecting outward from the outer peripheral portion of the peripheral wall portion of the case is formed, and the attachment holes, through which the radiation fins are attachable, are formed in the collar portion. |
US11404338B2 |
Fine pitch bva using reconstituted wafer with area array accessible for testing
A method for simultaneously making a plurality of microelectronic packages by forming an electrically conductive redistribution structure along with a plurality of microelectronic element attachment regions on a carrier. The attachment regions being spaced apart from one another and overlying the carrier. The method also including the formation of conductive connector elements between adjacent attachment regions. Each connector element having the first or second end adjacent the carrier and the remaining end at a height of the microelectronic element. The method also includes forming an encapsulation over portions of the connector elements and subsequently singulating the assembly. into microelectronic units, each including a microelectronic element. The surface of the microelectronic unit, opposite the redistribution structure, having both the active face of the microelectronic element and the free ends of the connector elements so that both are available for connection with a component external to the microelectronic unit. |
US11404337B2 |
Scalable extreme large size substrate integration
Electronic packages and methods of formation are described in which an interposer is solderlessly connected with a package substrate. The interposer may be stacked on the package substrate and joined with a conductive film, and may be formed on the package substrate during a reconstitution sequence. |
US11404336B2 |
Power module with metal substrate
A method of forming a power semiconductor module includes providing a substrate of planar sheet metal, forming channels in an upper surface of the substrate that partially extend through a thickness of the substrate and define a plurality of islands in the substrate, mounting a first semiconductor die on a first one of the islands, forming a molded body of encapsulant that covers the substrate, fills the channels, and encapsulates the semiconductor die, forming a hole in the molded body and a recess in the upper surface of the substrate beneath the hole, and arranging a press-fit connector in the hole and forming a mechanical and electrical connection between an interior end of the press-fit connector and the substrate. |
US11404333B2 |
Semiconductor device and method for manufacturing the same
A semiconductor device includes a first semiconductor die, a second semiconductor die, a dielectric layer, a first redistribution layer and a second redistribution layer. The first semiconductor die includes a first bonding pad and a second bonding pad. The second semiconductor die includes a third bonding pad and a fourth bonding pad. The dielectric layer covers the first semiconductor die and the second semiconductor die, and defines a first opening exposing the first bonding pad and the second bonding pad and a second opening exposing the third bonding pad and the fourth bonding pad. The first redistribution layer is disposed on the dielectric layer, and electrically connects the first bonding pad and the third bonding pad. The second redistribution layer is disposed on the dielectric layer, and electrically connects the second bonding pad and the fourth bonding pad. |
US11404332B2 |
Array substrate and fabrication method thereof, and display device
The present disclosure provides an array substrate, a fabrication method thereof and a display device. The array substrate includes an insulating layer provided with a first via therein. The array substrate further includes a detection structure including a first conductive structure, a second conductive structure and an insulating structure therebetween. The insulating structure is a portion of the insulating layer. The second conductive structure includes a first portion and a second portion which are separated from each other, and the first portion and the second portion partially overlap with the first conductive structure in a thickness direction of the array substrate, respectively. A second via is provided in the insulating structure between overlapping portions of the first portion and the first conductive structure, and a third via is provided in the insulating structure between overlapping portions of the second portion and the first conductive structure. |
US11404326B2 |
Semiconductor device and method for fabricating the same
A semiconductor device includes a substrate including a first active region, a second active region, and an isolation region positioned between the first active region and the second active region; and a gate layer crossing over the first active region, the second active region, and the isolation region, wherein the gate layer includes a first impurity doped portion overlapping with the first active region, a second impurity doped portion overlapping with the second active region, and a diffusion barrier portion positioned between the first impurity doped portion and the second impurity doped portion. |
US11404324B2 |
Fin isolation structures of semiconductor devices
A method of forming a fin field effect transistor (finFET) on a substrate includes forming a fin structure on the substrate and forming a shallow trench isolation (STI) region on the substrate. First and second fin portions of the fin structure extend above a top surface of the STI region. The method further includes oxidizing the first fin portion to convert a first material of the first fin portion to a second material. The second material is different from the first material of the first fin portion and a material of the second fin portion. The method further includes forming an oxide layer on the oxidized first fin portion and the second fin portion and forming first and second polysilicon structures on the oxide layer. |
US11404323B2 |
Formation of hybrid isolation regions through recess and re-deposition
A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. The isolation regions extend into a semiconductor substrate. The method further includes etching a portion of the semiconductor fin to form a trench, filling the trench with a first dielectric material, wherein the first dielectric material has a first bandgap, and performing a recessing process to recess the first dielectric material. A recess is formed between opposing portions of the isolation regions. The recess is filled with a second dielectric material. The first dielectric material and the second dielectric material in combination form an additional isolation region. The second dielectric material has a second bandgap smaller than the first bandgap. |
US11404322B2 |
Method of manufacturing a semiconductor device
In a method of manufacturing a semiconductor device, a fin structure is formed by patterning a semiconductor layer, and an annealing operation is performed on the fin structure. In the patterning of the semiconductor layer, a damaged area is formed on a sidewall of the fin structure, and the annealing operation eliminates the damaged area. |
US11404321B2 |
Semiconductor structure and method of manufacturing the same
A semiconductor structure and method of manufacturing a semiconductor structure are provided. The method includes receiving a substrate with fin features; forming sacrificial gate stacks over the substrate; forming a sacrificial fill layer over the sacrificial gate stacks; removing the sacrificial fill layer; forming sidewall spacers besides the sacrificial gate stacks; removing the sacrificial gate stacks; and forming metal gate stacks; wherein the sacrificial fill layers is made of fill materials with a high etch rate selectivity to materials of the sidewall spacers. |
US11404315B2 |
Method for manufacturing semiconductor device
A method of forming a semiconductor device includes forming an ILD structure over a source/drain region, forming a source/drain contact in the ILD structure and over the source/drain region, removing a portion of the source/drain contact such that a hole is formed in the ILD structure and over a remaining portion of the source/drain contact, forming a hole liner lining a sidewall of the hole after removing the portion of the source/drain contact, and forming a conductive structure in the hole. |
US11404308B2 |
Semiconductor package and method
In an embodiment, a method includes: forming a first dielectric layer over a die, the first dielectric layer including a photo-sensitive material; curing the first dielectric layer to reduce photo-sensitivity of the first dielectric layer; patterning the first dielectric layer by etching to form a first opening; forming a first metallization pattern in the first opening of the first dielectric layer; forming a second dielectric layer over the first metallization pattern and the first dielectric layer, the second dielectric layer including the photo-sensitive material; patterning the second dielectric layer by exposure and development to form a second opening; and forming a second metallization pattern in the second opening of the second dielectric layer, the second metallization pattern electrically connected to the first metallization pattern. |
US11404307B2 |
Interconnect structures and methods of fabrication
An integrated circuit interconnect structure includes a first interconnect in a first metallization level and a first dielectric adjacent to at least a portion of the first interconnect, where the first dielectric having a first carbon content. The integrated circuit interconnect structure further includes a second interconnect in a second metallization level above the first metallization level. The second interconnect includes a lowermost surface in contact with at least a portion of an uppermost surface of the first interconnect. A second dielectric having a second carbon content is adjacent to at least a portion of the second interconnect and the first dielectric. The first carbon concentration increases with distance away from the lowermost surface of the second interconnect and the second carbon concentration increases with distance away from the uppermost surface of the first interconnect. |
US11404305B1 |
Manufacturing method of isolation structures for semiconductor devices
A manufacturing method a semiconductor device includes the following steps. A first mask pattern and a second mask pattern are formed on a first region and a second region of a substrate respectively. The second region is located adjacent to the first region. A top surface of the first mask pattern is lower than a top surface of the second mask pattern in a thickness direction of the substrate. A trench is formed in the substrate. The trench is partly located in the first region and partly located in the second region. A first etching process is performed for reducing a thickness of the second mask pattern and reducing a height difference between the top surface of the first mask pattern and the top surface of the second mask pattern in the thickness direction of the substrate. An isolation structure is formed in the trench after the first etching process. |
US11404304B2 |
Pin lifting device with sliding guide
Disclosed is a pin lifting device for moving and positioning a substrate in a process atmosphere region. The pin lifting device has a coupling part including a coupling configured to receive a support pin designed to contact and carry the substrate, and a drive unit configured to adjust the coupling linearly along an adjustment axis (A) from a lowered normal position into an extended support position and back. The coupling part has a sliding guide element movable along the adjustment axis (A), where the sliding guide element is coupled to the drive unit and where the sliding guide element has at least one sliding element. The sliding element interacts with a guide surface provided by the coupling part to guide the sliding guide element can be linearly along the adjustment axis (A) and in a sliding manner relative to the guide surface. |
US11404299B2 |
Substrate transfer mechanism, substrate processing apparatus, and substrate processing method
In a substrate transfer mechanism, a moving body moves horizontally, and a support body is provided at the moving body to rotate about a vertical shaft. A first rotary shaft and a second rotary shaft are disposed vertically. A first arm forms a first substrate support region for supporting a first substrate, the first arm having a base portion connected to the first rotary shaft and a tip portion rotating at an outer side of the support body. A second arm forms a second substrate support region for supporting a second substrate, the second arm having a base portion connected to the second rotary shaft and a tip portion rotating the outer side of the support body. Further, an elevating mechanism is configured to raise and lower the second rotary shaft depending on a direction of the second arm with respect to the support body. |
US11404298B2 |
Travelling vehicle system and method for controlling travelling vehicle
A travelling vehicle system includes travelling vehicles and a controller. The controller includes a storage that stores a last permitted travelling vehicle, to which a passage permission is transmitted lastly and the passage permission for which is not canceled, for each direction in a branching section or a merging section included in a blocking area, stores a last canceled travelling vehicle, the passage permission for which is canceled lastly, for each direction in the blocking area, and stores the travelling vehicle, to which the passage permission in a same direction in the blocking area is transmitted lastly, as a forward travelling vehicle of a travelling vehicle waiting for the permission to pass through the blocking area at the time of transmission of the passage permission to the passage-permission waiting travelling vehicle, and a determiner that determines whether to give passage permission to the travelling vehicle waiting for the permission. |
US11404292B2 |
Substrate processing method and substrate processing apparatus
A substrate processing method includes a first processing liquid supplying step of supplying a first processing liquid to an upper surface of a substrate, a holding-layer forming step of solidifying or curing the first processing liquid to form a particle holding layer on the upper surface of the substrate, a holding-layer removing step of peeling and removing the particle holding layer from the upper surface of the substrate, a liquid film forming step of forming, after removal of the particle holding layer from the substrate, a liquid film of a second processing liquid, a gas phase layer forming step of forming a gas phase layer for holding the liquid film between the upper surface of the substrate and the liquid film, and a liquid film removing step of removing the second processing liquid from the upper surface of the substrate by moving the liquid film on the gas phase layer. |
US11404289B2 |
Semiconductor device assembly with graded modulus underfill and associated methods and systems
Underfill materials with graded moduli for semiconductor device assemblies, and associated methods and systems are disclosed. In one embodiment, the underfill material between a semiconductor die and a package substrate includes a matrix material, first filler particles with a first size distribution, and second filler particles with a second size distribution different than the first size distribution. Centrifugal force may be applied to the underfill material to arrange the first and second filler particles such that the underfill material may form a first region having a first elastic modulus and a second region having a second elastic modulus different than the first elastic modulus. Once the underfill material is cured, portions of conductive pillars coupling the semiconductor die with the package substrate may be surrounded by the first region, and conductive pads of the package substrate may be surrounded by the second region. |
US11404288B1 |
Semiconductor device packaging warpage control
A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel by placing a plurality of semiconductor die on a major side of a carrier substrate and encapsulating with an encapsulant the plurality semiconductor die and the major side of the carrier substrate. A plurality of warpage control features are formed with the encapsulant while encapsulating. The method further includes placing the panel onto a warpage control fixture to substantially flatten the panel. The plurality of warpage control features interlock with mating features of the warpage control fixture. |
US11404285B2 |
Semiconductor device, manufacturing method thereof, display device, and electronic device
The field-effect mobility and reliability of a transistor including an oxide semiconductor film are improved. Provided is a semiconductor device including an oxide semiconductor film. The semiconductor device includes a first insulating film, an oxide semiconductor film over the first insulating film, a second insulating film and a third insulating film over the oxide semiconductor film, and a gate electrode over the second insulating film. The second insulating film comprises a silicon oxynitride film. When excess oxygen is added to the second insulating film by oxygen plasma treatment, oxygen can be efficiently supplied to the oxide semiconductor film. |
US11404284B2 |
Semiconductor device and formation thereof
A semiconductor device and method of formation are provided. The semiconductor device includes a first active region adjacent a channel, the channel, and a second active region adjacent the channel. The channel has a channel doping profile. The channel includes a central channel portion having a first dopant concentration of a first dopant and a radial channel portion surrounding the central channel portion. The radial channel portion has a second dopant concentration of a second dopant greater than the first dopant concentration. The channel comprising the central channel portion and the radial channel portion has increased voltage threshold tuning as compared to a channel that lacks a central channel portion and a radial channel portion. |
US11404280B2 |
Plasma-based process for production of F and HF from benign precursors and use of the same in room-temperature plasma processing
Methods and apparatuses for the production of HF in an electron-beam generated plasma. A gas containing fluorine, hydrogen, and an inert gas such as argon, e.g., Ar/SF6/H2O or Ar/SF6/NH3 flows into a plasma treatment chamber to produce a low pressure gas in the chamber. An electron beam directed into the gas forms a plasma from the gas, with energy from the electron beam dissociating the F-containing molecules, which react with H-containing gas to produce HF in the plasma. Although the concentration of the gas phase HF in the plasma is a very small fraction of the total gas in the chamber, due to its highly reactive nature, the low concentration of HF produced by the method of the present invention is enough to modify the surfaces of materials, performing the same function as aqueous HF solutions to remove oxygen from an exposed material. |
US11404275B2 |
Selective deposition using hydrolysis
Methods and apparatuses for selective deposition of metal oxides on metal surfaces relative to dielectric surfaces are provided. Selective deposition is achieved by exposing metal and dielectric surfaces to a blocking reagent capable of forming a hydrolyzable bond with metal while forming a non hydrolyzable bond with the dielectric, and dipping the surfaces in water to cleave the hydrolyzable bond and leave a blocked surface on the dielectric surface, followed by depositing metal oxide selectively on the metal surface relative to the dielectric surface. Blocking reagents are deposited by wet or dry techniques and may include an alkylaminosilane or alkylchlorosilane as examples. |
US11404273B2 |
Semiconductor structure and forming method thereof
The present disclosure provides a semiconductor structure and a forming method thereof. One form of a forming method includes: providing a base; forming a plurality of discrete mandrel layers on the base, where an extending direction of the mandrel layers is a first direction, and a direction perpendicular to the first direction is a second direction; forming a plurality of spacer layers covering side walls of the mandrel layers; forming a pattern transfer layer on the base, where the pattern transfer layer covers side walls of the spacer layers; forming a first trench in the pattern transfer layer between adjacent spacer layers in the second direction; removing a mandrel layer to form a second trench after the first trench is formed; and etching the base along the first trench and the second trench to form a target pattern by using the pattern transfer layer and the spacer layer as a mask. In the present disclosure, the accuracy of the pattern transfer is improved. |
US11404272B2 |
Film deposition apparatus for fine pattern forming
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus. |
US11404271B2 |
Film deposition apparatus for fine pattern forming
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus. |
US11404261B2 |
Method, device, and base for preparing measurement sample for MALDI mass spectrometry
A method for preparing a measurement sample for MALDI mass spectrometry, the method including applying a laser beam to a base including a matrix used for preparing the measurement sample for MALDI mass spectrometry, the matrix being disposed on a surface of the base, in a manner that the laser beam is applied to a surface of the base opposite to the surface including the matrix, to make the matrix fly from the base to be disposed at a predetermined position of an analyte of MALDI mass spectrometry, wherein the base includes a laser energy absorbable material, and wherein laser energy of the laser beam has a wavelength of 400 nm or longer. |
US11404257B2 |
Method and system for measuring the chirality of molecules
A method for measuring the chirality of molecules in a sample of chiral molecules, the sample including at least one chemical species, the method including the steps of: introducing the sample of chiral molecules into an ionisation area; ionising the molecules by electromagnetic radiation in the ionisation area; and detecting a distribution of electrons produced by ionisation and emitted at the front and back of the ionisation area relative to the axis, z, of propagation of the electromagnetic radiation; wherein the electromagnetic radiation is elliptically polarised, the ellipticity varying continuously and periodically as a function of time, the method further including a step of: determining the chirality of the molecules from the electron distribution detected continuously as a function of time. A system is also provided for measuring the chirality of molecules using such a method. |
US11404256B2 |
Sample support, ionization method, and mass spectrometry method
A sample support body is for ionization of a sample. The sample support body includes a substrate including a first surface and a second surface on sides opposite to each other, and a conduction layer provided at least on the first surface. A plurality of through-holes opening on the first surface and the second surface are formed in an effective region of the substrate, the effective region being for ionizing components of the sample. A width of a second opening on the second surface side is larger than a width of a first opening on the first surface side in each of the plurality of through-holes. |
US11404251B2 |
Processing apparatus for processing target object
A cooling table includes a first portion, a second portion, a first path, a second path and a third path. An electrostatic chuck is provided on the first portion, and the first portion is provided on the second portion. The first path is provided within the first portion, and the second path is provided within the second portion. The third path is connected to the first path and the second path. A chiller unit is connected to the first path and the second path. The first path is extended within the first portion along the electrostatic chuck, and the second path is extended within the second portion along the electrostatic chuck. A coolant outputted from the chiller unit passes through the first path, the third path and the second path in sequence, and then is inputted to the chiller unit. |
US11404248B2 |
Modular microwave plasma source
Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator. |
US11404243B1 |
Microscopy
A charged-particle beam microscope is provided for imaging a sample. The microscope has a vacuum chamber to maintain a low-pressure environment. A motorized stage is provided to hold and move a sample in the vacuum chamber. A charged-particle beam source generates a charged-particle beam. Charged-particle beam optics converge the charged-particle beam onto the sample. A detector is provided to detect charged-particle radiation emanating from the sample. A controller analyzes the detected charged-particle radiation to generate an image of the sample. A power supply powers at least the charged-particle beam optics and the controller. The charged-particle beam microscope weighs less than about 50 kg. |
US11404242B2 |
Charged particle beam device and method for setting condition in charged particle beam device
To assist an operator in setting an observation conditions, so as to acquire an image with a desired image quality (such as contrast) in a charged particle beam device without falling into trial and error based on the experience of the operator. Therefore, the charged particle beam device includes a stage 115 on which a sample is placed, a charged particle optical system configured to irradiate the sample with a charged particle beam, detectors 121 and 122 configured to detect an electron generated by an interaction between the charged particle beam and the sample, a control unit 103 configured to control the stage and the charged particle optical system according to an observation condition set by the operator and configured to form an image based on a detection signal from the detectors, and a display 104 configured to display an observation assist screen for setting the observation condition. The control unit displays, on the observation assist screen 401, information 510 related to an irradiation electron amount per pixel irradiated onto the sample by the charged particle optical system under the observation condition. |
US11404239B2 |
Sample plate holder
A first spring array and a second spring array are provided in a holder body. Three sample plates can be mounted in the holder body. On each sample plate, pressing-up forces from the first spring array and the second spring array are applied, but upward movement of each sample plate is restricted by an inner surface of a cover. |
US11404238B2 |
Control method for electron microscope and electron microscope
There is provided a control method for an electron microscope including a thermionic-emission gun of self-bias type using a fixed bias resistor, an accelerating voltage power supply supplying an accelerating voltage to the thermionic-emission gun, and an optical system for irradiating a specimen with an electron beam. The control method includes: obtaining a value of a load current which is a current passing through an accelerating voltage power supply; determining a filament height of the thermionic-emission gun based on the value of the load current; and setting a condition of the optical system based on the filament height. |
US11404234B2 |
Process for manufacturing sealed automotive electrical fuse box
A fuse assembly including a fuse connected to two busbars, an injection molded base and an injection molded cover. The busbars are powder-coating with a powder-based adhesive or adhesion promoter, then cured in an oven. The busbars are then placed in the cavity image of an injection molding apparatus. Plastic is heated to a liquid form and injected into the cavity image. The resulting injection molded base is resistant to both dust and water, protecting the fuse inside. |
US11404233B2 |
Fusible switching disconnect modules and devices with tripping coil
A fusible switch disconnect device includes a housing adapted to receive at least one fuse therein, and a switchable contact for connecting the fuse to circuitry. A tripping mechanism and control circuitry are provided to move the switchable contact to an open position in response to a predetermined electrical condition. |
US11404232B1 |
Electromagnetic relay capable of externally and manually controlling, turning on, and shutting off electric power
An electromagnetic relay capable of externally and manually controlling, turning on, and shutting off electric power includes casing, push-pull rod and relay module. The casing has top cover, where slideway is formed, and an end of the slideway has bump. The push-pull rod is installed to the slideway and has an end formed into hook portion and passed into the casing. An open slot, which has fitting hole and sliding hole, is formed on the push-pull rod. The relay module is installed at the chassis and has elastic contact plate assembly and lever, and an end of the lever is engaged with the hook portion. After the fitting hole is sheathed on the bump, the sliding hole is moved relative to the bump, so that the hook portion drives the lever to push the elastic contact plate assembly to define electrical connection or disconnection state according to different requirements. |
US11404231B2 |
Contact point device and electromagnetic relay
A contact point device includes: a fixed contact; a movable contactor that has a movable contact capable of being in contact with the fixed contact by moving in parallel with a first direction, and extended along a second direction orthogonal to the first direction; a containing chamber that contains the fixed contact and the movable contact; and a shielding wall disposed inside the containing chamber. The containing chamber has a first space and a second space, the shielding wall faces the first space or the second space, the shielding wall includes a partition wall located between the first space and the second space, the first space and the second space are disposed side by side in a third direction orthogonal to the first direction and the second direction, and the partition wall is located in the first direction from the fixed contact and the movable contact. |
US11404226B2 |
Button with illumination ring
A hardware product for creating a light ring and a dead front effect. The product may include a housing with an opening. The hardware product may also include a button positioned within the opening and configured to be depressed by a user. The button is constructed using a two-part molding process and includes a first shot and a second shot. The first shot is configured to disperse light around the perimeter shape of the opening. The second shot is constructed from an optically opaque or semi-opaque material. A single light-emitting component electrically coupled to the circuit board provides light for creating the light ring. |
US11404223B2 |
Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device
A method for diagnosing the state of wear of an electrical switching unit including an electrical unit monitoring phase. The monitoring phase uses learning data loaded previously and representative of the type of electrical unit, and initialization data corresponding to the unit to be monitored and stored in an initialization phase. The monitoring phase includes the measurement and the acquisition of a measurement curve on opening the electrical unit, the determination of the value of local descriptors of the measurement curve as a function of values of the measurement curve, of initialization data and of learning data, the determination of the positioning of local descriptor values, the determination of an overall state class as a function of the positioning values. The device and the electrical unit implement the method. |
US11404217B2 |
Methods of incorporating leaker devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker devices
Some embodiments include an apparatus having horizontally-spaced bottom electrodes supported by a supporting structure. Leaker device material is directly against the bottom electrodes. Insulative material is over the bottom electrodes, and upper electrodes are over the insulative material. Plate material extends across the upper electrodes and couples the upper electrodes to one another. The plate material is directly against the leaker device material. The leaker device material electrically couples the bottom electrodes to the plate material, and may be configured to discharge at least a portion of excess charge from the bottom electrodes to the plate material. Some embodiments include methods of forming apparatuses which include capacitors having bottom electrodes and top electrodes, with the top electrodes being electrically coupled to one another through a conductive plate. Leaker devices are formed to electrically couple the bottom electrodes to the conductive plate. |
US11404216B2 |
Electrode cooled capacitor assembly
A capacitor assembly has a capacitor, a first terminal, a cooling device and a housing which contains the capacitor. The first terminal has a first heat absorbing part and a first heat dissipating part. The first terminal dissipates heat from a first side of the capacitor to the cooling device via the first heat absorbing part and the first heat dissipating part. The first side of the capacitor faces away from the cooling device. |
US11404213B2 |
Multilayer ceramic capacitor
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and layered internal electrodes, first and second main surfaces, first and second side surfaces, first and second end surfaces, and an external electrode connected to the internal electrodes and provided on each of the first and second end surfaces. A region where the internal electrodes are superimposed is defined as an effective region, regions respectively located on sides of the first and second end surfaces relative to the effective region are defined as first and second regions, and a bent portion where the dielectric layers and the internal electrodes are bent is located in the first region. In the bent portion, all vertices in the stacking direction are located within a range that extends by about 25 μm to about 35 μm in a length direction from the effective region of the multilayer body. |
US11404212B2 |
Capacitor
A capacitor includes a capacitor element, an electrode disposed on an end face of the capacitor element, a bus bar connected to the electrode, and a case housing the capacitor element. The bus bar is extended from an opening of the case to outside the case. Outside the case, the bus bar includes an extension part and a connection terminal. The extension part extends in a first direction along a side face of the case. The connection terminal is connected to the extension part. Further, the case includes a supporting part disposed on the side face of the case. The supporting part supports the bus bar to form a space between the side face and the extension part. |
US11404210B2 |
Capacitor stacks for noise filtering in high-frequency switching applications and an optical subassembly module implementing same
The present disclosure is generally directed to utilizing capacitors stacks with capacitors mounted in a terminal-to-terminal mounting orientation to reduce overall footprint of capacitor arrays for bypass filtering circuits. In an embodiment, each capacitor stack includes at least a first capacitor, a second capacitor, and a ground plane interconnect. The first capacitor includes first and second terminals disposed opposite each other. The first terminal provides a mating surface to couple to the second capacitor, the second terminal couples to a ground plane. The second capacitor includes first and second terminals disposed opposite each other. The first terminal provides a mounting surface to electrically couple to and support the first capacitor, and the second terminal provides a mating surface to electrically and physically couple to the ground plane. Accordingly, the first capacitor can be inverted and mounted atop the second capacitor to eliminate the necessity of wire bonds, for example. |
US11404209B2 |
Electrical device package structure and manufacturing method thereof
An electrical device package structure and manufacturing method thereof is disclosed. The manufacturing method comprises: providing an electrical device body having at least two electrodes, wherein an outer surface of the electrical device body is partially covered by the electrodes, and outer surfaces of the electrodes are covered by a plastic material; forming a first protective layer including phosphate salt at least on the exposed outer surface of the electrical device body; and forming a second protective layer including glass at least on an exposed outer surface of the first protective layer. The present invention can prevent the electrical device body and/or the electrodes from being damaged on their manufacturing process, and avoid a forming high impedance layer on an electrode. |
US11404207B2 |
Method for manufacturing R-T-B permanent magnet
A method for manufacturing an R-T-B permanent magnet comprises a diffusion step of adhering a diffusing material to the surface of a magnet base material and heating the magnet base material with the diffusing material adhered thereto, wherein the magnet base material comprises rare-earth elements R, transition metal elements T and boron B; at least some of R are Nd; at least some of T are Fe; the diffusing material comprises a first component, a second component and a third component; the first component is at least one of a simple substance of Tb and a simple substance of Dy; the second component comprises a metal comprising at least one of Nd and Pr and not comprising Tb and Dy; and the third component is at least one selected from the group consisting of a simple substance of Cu, an alloy comprising Cu, and a compound of Cu. |
US11404201B2 |
Method of manufacturing inductors
A structure for forming inductor windings includes a first portion and a second portion of a clamshell casing. The first portion includes a first set of electrically conductive segments, a first inner carrier, and a first outer carrier. The second portion includes a second set of electrically conductive segments, a second inner carrier, and a second outer carrier. An inductor core is mountable between the first inner carrier and the first outer carrier within the first portion. A control assembly aligns and joins the first portion to the second portion of the clamshell casing such that the first set of electrically conductive segments arranged in the first pattern that correspond to first half-turns of the inductor windings, are attached to the second set of electrically conductive segments arranged in the second pattern that correspond to second half-turns of the inductor windings, to form continuous turns around the inductor core. |
US11404200B2 |
Surface-mount inductor
A surface-mount inductor includes a molded body and a metallic plate. The metallic plate has a first metallic plate portion embedded in the molded body such that an extension direction and a width direction thereof are parallel to the mounting surface; second metallic plate portions extending from both end portions, in the extension direction, of the first metallic plate portion to a bottom surface of the molded body in a direction to the mounting surface; and third metallic plate portions disposed to extend from the second metallic plate portions along the bottom surface of the molded body and be separated from side surfaces adjacent to the bottom surface of the molded body. Each of the third metallic plate portions has at least a surface exposed from the molded body. End portions of the metallic plate are embedded to be separated from the side surfaces of the molded body. |
US11404196B2 |
Core for an electrical induction device
A core for an electric induction device includes a multiplicity of magnetizable metal sheets which form a stack of metal sheets resting on each other. Spacers that are each disposed between two metal sheets form at least one cooling channel which can be subjected to a greater thermal load and at the same time allows improved cooling. Said spacers are made, at least in part, of metal. |
US11404193B2 |
Magnetoresistive memory device including a magnesium containing dust layer
Magnetoelectric or magnetoresistive memory cells include a magnesium containing nonmagnetic metal dust layer located between a free layer and a dielectric capping layer. |
US11404192B2 |
Support structure for supporting flexible display screen, and flexible display screen module
A support structure for supporting a flexible display screen includes: a plurality of electromagnets and a controller electrically coupled to the plurality of electromagnets. Each electromagnet has a first surface and a second surface. The first surface is configured to be attached and secured to a flexible display screen so as to support the flexible display screen, and the second surface is at an acute angle to the first surface. When the flexible display screen is extended, the controller controls two adjacent electromagnets to repel each other. When the flexible display screen is bent, the controller controls two adjacent electromagnets to attract each other. |
US11404190B2 |
Hexagonal ferrite magnetic powder
Provided is a hexagonal ferrite magnetic powder for a magnetic recording medium, containing hexagonal ferrite magnetic particles having aluminum hydroxide adhered on the surface thereof, the hexagonal ferrite magnetic powder having an Al/Fe molar ratio of 0.030 to 0.200, a Co/Fe molar ratio of 0.002 to 0.030, and a Nb/Fe molar ratio of 0.005 to 0.050, and having an Fe site valence AFe of 3.015 to 3.040 as calculated by AFe=(3+2×[Co/Fe]+5×[Nb/Fe])/(1+[Co/Fe]+[Nb/Fe]) wherein [Co/Fe] represents the Co/Fe molar ratio and [Nb/Fe] represents the Nb/Fe molar ratio, and preferably having an activation volume Vact of 1400 to 1800 nm3. This magnetic powder simultaneously achieves an increase in magnetic characteristics including SNR of a magnetic recording medium and a further increase in durability thereof. |
US11404185B2 |
Water-stop grommet and wire harness
A grommet includes a water stop part having an annular shape that stops water by being inserted into a through hole formed on a mounting panel, and a first partition wall part or a second partition wall part disposed so as to close the annular shape of the water stop part by extending in a radially inner side of the water stop part. The water stop part includes an abutting surface formed in an annular shape capable of coming into contact with one side of a peripheral part of the through hole in an axial direction, and a plurality of claw parts that face the abutting surface in the axial direction, that are capable of coming into contact with another side of the peripheral part of the through hole, and that are intermittently provided in a circumferential direction. |
US11404181B2 |
Copper alloy wire, plated wire, electrical wire and cable
A copper alloy wire is made of a copper alloy, and the copper alloy contains indium, a content of which is equal to or more than 0.3 mass % and equal to or less than 0.45 mass %. A tensile strength of the copper alloy wire is equal to or higher than 800 MPa, and an electrical conductivity of the same is equal to or higher than 80% IACS. |
US11404179B2 |
Ion-optical cavity coupling system and method
An ionic optical cavity coupling system and method are described. The system includes a first optical cavity, a second optical cavity, and an ion trap system including a direct current electrode pair, a grounding electrode pair, and a radio frequency electrode pair. At least one ion is arranged in the ion trap system. Furthermore, the first optical cavity is used for obtaining a quantum optical signal and sending the quantum optical signal to the ion trap system, so that quantum information of the quantum optical signal is transferred to a single ion in the ion trap system. The second optical cavity is used for obtaining quantum information in the single ion in the ion trap system. |
US11404178B2 |
Reactor containment vessel vent system
The invention provides a reactor containment vessel vent system capable of continuously releasing steam generated in a reactor containment vessel to the atmosphere even when a power supply is lost. In the reactor containment vessel vent system (15), the noble gas filter (23) that allows steam to pass through but does not allow radioactive noble gases to pass through among vent gas discharged from the reactor containment vessel (1) is provided at a most downstream portion of the vent line. An immediate upstream portion of the noble gas filter (23) and the reactor containment vessel (1) are connected to each other by the return pipe (24a, 24b) via the intermediate vessel (100). Further, when the radioactive noble gases having pressure equal to or higher than predetermined pressure stays in the immediate upstream portion of the noble gas filter (23), the staying radioactive noble gases flows into the intermediate vessel (100) by the relief valve (25). Thus, the noble gas filter (23) does not lose steam permeability, and the reactor containment vessel vent system (15) can continuously release the steam to the atmosphere. |
US11404176B2 |
Nuclear fuel assembly support feature
A nuclear fuel assembly having lateral support provided by a bimetallic spring that extends from a side of the fuel assembly under certain core conditions to pressure against an adjacent component and withdraws under other core conditions, such as shutdown, to enable the nuclear fuel assembly to be aligned or withdrawn from the core and repositioned. |
US11404171B2 |
Building alarm management system with integrated operating procedures
A method for automatically managing and responding to alarms in a building management system. The method includes obtaining an operating procedure comprising a set of action items to be performed in response to an alarm in the building management system. The method includes determining, for an action item of the set of action items, whether the action item is capable of being performed automatically by the building management system or whether the action item requires user involvement. The method further includes in response to determining that the action item is capable of being performed automatically, automatically performing the action item by the building management system. The method further includes in response to determining that the action item requires user involvement, providing the action item to a user device for action by a user. |
US11404169B2 |
Collaboration tool for healthcare providers
A device may communicate with a first device to receive first data. The device may communicate with a second device to receive second data. The device may combine the first data and the second data into a user interface. The user interface may provide a single location for displaying communications with the set of entities and with a system associated with the set of entities. The user interface may include a first section that provides information that is persistently presented in the user interface. The user interface may include a second section that provides information that is selectively presented in the user interface. The device may provide the user interface for display. |
US11404167B2 |
System for anonymously tracking and/or analysing health in a population of subjects
Systems are provided for anonymously tracking and/or analyzing transitioning, flow or movement of individual subjects between health states or health-related subject states. There is provided a system for enabling anonymous estimation of the amount and/or flow of individual subjects, referred to as individuals, in a population transitioning and/or moving and/or coinciding between two or more health states or health-related subject states. The system receives identifying data from two or more individuals; generates, online and by one or more processors, an anonymized identifier for each individual; and stores: the anonymized identifier of each individual together with data representing a health state or health-related subject state; and/or a skew measure of such an anonymized identifier. |