Document Document Title
US10200170B2 Method and apparatus for a multi-cell full-dimension MIMO system
A method for interference reduction of a user equipment (UE) in a wireless communication system. The method comprises receiving, from a base station (BS), configuration information comprising a set of different transmission parameters for cells of a multi-cell full dimension multi-input multi-output (MC FD-MIMO) system, determining a type of sounding reference signal (SRS) based on the configuration information, and transmitting, to the BS, an SRS based on the configuration information over at least one of a predetermined or a configured multi-cell SRS (MC SRS) resources configured by the BS, wherein the SRS includes a set of SRS sequences.
US10200167B2 Full-duplex communication over a shared transmission medium
The present invention relates to a method for assigning transmission resources (101) to communications between an access node (11) and a plurality of subscriber devices (41 to 46) coupled to a shared transmission medium.In accordance with an embodiment of the invention, the method comprises characterizing interference between respective ones of the plurality of subscriber devices over the shared transmission medium, grouping highly-interfering subscriber devices into respective interfering groups (G1, G2, G3, G4) based on the so-characterized interference, and assigning disjoint transmission time intervals to upstream communication from any one subscriber device of any one interfering group and to downstream communication towards any other subscriber device of the same interfering group.The present invention also relates to a resource controller.
US10200165B2 Beamformed transmission in high efficiency wireless LAN
The present invention relates to a method and apparatus for beamformed transmission in a wireless local area network. According to one aspect of the present invention, a method for transmitting a Physical layer Protocol Data Unit (PPDU) frame to a plurality of stations (STAs) by an Access Point (AP) in a wireless local area network may be provided. The method may include transmitting a SIGNAL field of the PPDU frame, the SIGNAL field including beamforming information indicating whether beamforming is applied to respective data units of the PPDU frame, and transmitting the data units of the PPDU frame, the data units being individually beamformed or not beamformed according to the beamforming information.
US10200164B2 Carrier activation in a multi-carrier wireless network
A wireless device receives, in a first subframe, a media-access-control control element (MAC CE) comprising at least one parameter instructing the wireless device to activate at least one licensed cell and at least one LAA cell. The wireless device performs channel monitoring on the at least one LAA cell before a first maximum number of subframes after the first subframe. The wireless device performs channel monitoring on the at least one licensed cell before a second maximum number of subframes after the first subframe. The first maximum number of subframes and the second maximum number of subframes are different.
US10200163B1 Small and seamless carrier detector
In a carrier detector, the simple latch is replaced with a pulse timer and reference control module which outputs logic high (H) when more than two consecutive toggled signals come within 1.5 baud periods and keeps logic high (H) until it misses a toggled signal for two baud periods. This carrier detector has a tolerance for a false detection which happens when the frequency shifts from lower to higher and the input amplitude level does not reach a detectable level. With this transition, the amplitude level at filter output becomes higher due to the transient response of the filter and eventually this would trigger the comparator for only one baud period. The deglitch circuit, however, ignores this clock edge in the carrier detector as provided herein.
US10200162B2 HARQ feedback in shared RF spectrum band
Methods, systems, and devices for wireless communication are described. Wireless communications systems operating in unlicensed or shared radio frequency spectrum band may use different modes to manage hybrid automatic repeat request (HARQ) feedback. HARQ feedback may be transmitted autonomously or, in some cases, HARQ feedback may be solicited from a user equipment (UE) for one or several HARQ processes. Solicited feedback may be referred to as polled feedback and autonomous feedback may be referred to as unpolled feedback. Polled and unpolled feedback may be transmitted using different physical channels, and may be grant-based or triggered without an express grant. Buffers for polled and unpolled feedback may be separately maintained and managed. In a multicarrier configuration, uplink control information (UCI) for one or more carriers may be transmitted on a subset of configured uplink carriers. A number of carriers used for UCI may depend on operating conditions of a UE.
US10200157B2 Distributed antenna system
A technology related to a distributed antenna system is disclosed. In an exemplary embodiment, a distributed antenna system may include a master unit and a plurality of remote units. The master unit may be interfaced with a wireless communications network and perform a bidirectional simultaneous digital radio frequency distribution of a wireless signal. The plurality of remote units may be each coupled to the master unit, and each perform a wireless transmission or reception of a split radio frequency signal to or from terminals located within a coverage. The master unit and the plurality of remote units may transmit or receive digital radio frequency signals in a wavelet transform domain. The master unit may determine whether the digital radio frequency signal, transmitted by each of the remote units, is normal, and merge the digital radio frequency signals.
US10200151B1 Methods and apparatus to improve SNR for signaling across multi-channel cables
A method of transmitting Ethernet data over multiple physical sub-channels is disclosed. The method includes determining one or more noisy sub-channels affected by alien crosstalk; selectively reducing a number of data bits per symbol for transmitted data symbols along the noisy sub-channels; transmitting data along the noisy sub-channels via sparser constellations; and transmitting data along non-noisy sub-channels via denser constellations.
US10200150B2 Digital radio channel error detection
A method includes determining, at a device, that transmission data indicates that first data was transmitted via a digital radio channel. The method also includes determining, at the device, that reception data indicates that second data was received via the digital radio channel. The first data has a first size that is less than a second size of the second data. The method also includes determining, at the device, whether an error occurred in transmission of the first data based on determining whether each of a plurality of portions of the first data is included at least once in the second data. Other aspects are also disclosed.
US10200148B1 Smart beamwidth adaptation in wireless head-mounted displays
An apparatus and related operating method of a mmWave WHMD, are provided. The apparatus utilizes beamforming information to determine direction information indicating a direction of a received signal from an external component that is connected to the apparatus via a VR data link. The apparatus selects and sets a current MCS that supports a data load of the VR data link. The apparatus, while maintaining the VR data link, determines a VR data link condition by a determination that a received signal is stronger or weaker than a predetermined signal strength level for the current MCS of the VR data link. When stronger, the processing circuitry is configured to signal a transceiver to widen a beam from a current beamwidth to a new wider beamwidth in a direction based on the direction information to maintain the current MCS and data load of the VR data link.
US10200145B2 Flexible grid optical spectrum transmitter, receiver, and transceiver
A flexible grid optical transceiver communicatively coupled to an optical network includes a coherent optical transmitter configured to generate a transmit signal at a first frequency/wavelength center and spanning a first one or more bins of optical spectrum; and a coherent optical receiver configured to receive a receive signal at a second frequency/wavelength center and spanning a second one or more bins of optical spectrum, wherein a size of each of the first one or more of bins and the second one or more of bins is based on a required roll off of a wavelength selective component in the optical network.
US10200134B2 Communications systems, methods and devices having improved noise immunity
Communications systems, methods and devices having improved noise immunity are disclosed. In one embodiment, a method for improving noise immunity in a communication may include (1) at least one computer processor determining a region of interest in a received signal; (2) the at least one computer processor determining a surrogate candidate within the region of interest of the signal; and (3) the at least one computer processor encoding the surrogate candidate as a surrogate in a region of the signal other than the region of interest.
US10200129B2 Channel bonding in passive optical networks
An apparatus in a passive optical network (PON) is configured to modify a preamble of a data packet to include channel bonding information. The apparatus may further fragment the data packet into a plurality of data frames and transmit the fragmented data frames through multiple channels. The channel bonding information may be used to identify different channels and to identify data frames transmitted through each channel.
US10200126B2 Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
Aspects of the subject disclosure may include, for example, a coupler that includes a tapered collar that surrounds a transmission wire. A coaxial coupler, that surrounds at least a portion of the transmission wire, guides an electromagnetic wave to the tapered collar. The tapered collar couples the electromagnetic wave to propagate along an outer surface of the transmission wire. Other embodiments are disclosed.
US10200122B2 Connector system, connecting cable and receiving tool
A communication device is disclosed herein. In an example embodiment, a communication device includes an aperture section configured to attach to a protruding section of another communication device magnetically, and a first wireless communicator configured to wirelessly communicate with a second wireless communicator of the another communication device at a frequency associated with a millimeter-wave band, the first wireless communicator including at least one transmitting coupler, wherein the at least one transmitting coupler converts a wired signal to a radio signal.
US10200118B2 Multimode launch systems for use in performing an OTDR measurement on a multi-fiber array DUT and method of performing same
A multimode launch system to be connected to an Optical Time-Domain Reflectometer (OTDR) for use in performing at least one OTDR measurement on a multi-fiber array Device Under Test (DUT), the multimode launch system comprising: an optical switch being connectable to the OTDR during use; a launch array device having an end being connectable to the optical switch and another end being connectable to the multi-fiber array DUT during use, the launch array device having a plurality of multimode launch optical fibers each having at least one first guidance parameter being smaller than a corresponding one of at least one second guidance parameter of at least one multimode optical fiber of the optical switch; and a multi-fiber mode conditioner along the launch array device for inducing a preferential attenuation of higher-order optical modes of test light propagated into the multi-fiber array DUT during use.
US10200116B2 Multi-lane transmission device and multi-lane transmission method
A multilane transmission device that transmits data frames by using a plurality of lanes, comprising: a data frame allocating unit that allocates data frames based on a transmission destination; a flow group information sequence information adding unit that adds flow group information indicating a flow group corresponding to a transmission source and transmission destinations and sequence information indicating a sequence of the data frames to the data frames allocated based on each transmission destination by the data frame allocating unit; and a lane selecting/outputting unit that transmits the data frames having the respective flow group information and the respective sequence information added thereto by the flow group information sequence information adding unit to the transmission destinations by using one or more lanes corresponding to the respective flow group information.
US10200115B2 Methods and systems for frequency multiplexed communication in dense wireless environments
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes exchanging, at an access point, at least one frame reserving a wireless medium with at least one of a first and second wireless device. The method further includes receiving a first communication on a first set of wireless frequencies from the first wireless device. The method further includes receiving a second communication, at least partially concurrent with the first communication, on a second set of wireless frequencies from the second wireless device. The method further includes transmitting at least one acknowledgment of the first and second communication. The first set and the second set are mutually exclusive subsets of a set of wireless frequencies available for use by both the first and second wireless device.
US10200114B2 Ground network for end-to-end beamforming
Methods and systems are described for providing end-to-end beamforming. For example, end-to-end beamforming systems include end-to-end relays and ground networks to provide communications to user terminals located in user beam coverage areas. The ground segment can include geographically distributed access nodes and a central processing system. Return uplink signals, transmitted from the user terminals, have multipath induced by a plurality of receive/transmit signal paths in the end to end relay and are relayed to the ground network. The ground network, using beamformers, recovers user data streams transmitted by the user terminals from return downlink signals. The ground network, using beamformers generates forward uplink signals from appropriately weighted combinations of user data streams that, after relay by the end-end-end relay, produce forward downlink signals that combine to form user beams.
US10200110B2 Aviation protocol conversion
Systems and methods for recording and communicating engine data are provided. One example aspect of the present disclosure is directed to a method for encapsulating data. The method includes receiving, by one or more computing devices, a message via an aviation messaging protocol. The method includes encapsulating, by the one or more computing devices, the message in a packet, wherein the packet comprises a User Datagram Protocol format. The method includes transmitting, by the one or more computing devices, the packet via an Ethernet connection.
US10200105B2 Antenna tuning components in patterned conductive layers
An electronic device may include a peripheral conductive housing wall. The housing wall may be patterned to form first and second continuous regions defining opposing edges of a patterned region. The patterned region may include slots that divide the wall into conductive structures between the first and second continuous regions. A tuning element for an antenna in the device may be formed from the conductive structures and the slots in the patterned region. The slots and the conductive structures in the patterned region may be configured to mitigate any excessive capacitances between the first and second continuous regions in one or more desired frequency bands to optimize antenna efficiency. The slots may be narrow enough so as to be invisible to the un-aided human eye. This may configure the first and second continuous regions to appear to a user as a single continuous piece of conductor.
US10200103B2 Method and apparatus to enable multi-resolution CSI reporting in advanced wireless communication systems
A method of user equipment (UE) for channel state information (CSI) feedback in a wireless communication system. The method comprises receiving, from a base station (BS), CSI feedback configuration information for a pre-coding matrix indicator (PMI) feedback indicating a linear combination (LC) pre-coding matrix that corresponds to a linear combination of a plurality of L beams and a plurality of coefficients, determining the first PMI (i1) and the second PMI (i2), and transmitting, to the BS, the CSI feedback including the first PMI (i1) and the second PMI (i2) over an uplink channel.
US10200101B2 Methods and apparatus for channel state information sounding and feedback
Methods and apparatus for channel state information feedback are provided. In various aspects, a message is transmitted to one or more wireless communication devices requesting channel state information. In some aspects, a first portion of the message is transmitted according to a first or second, and contains first information intended for a first or second set of wireless communication devices compatible with the first or second format respectively. In some aspects, a second portion of the first message is transmitted according to the second format, and contains second information intended for the second set of wireless communication devices compatible with the second format. In some aspects, this information may comprise at least one of a list of identifiers, a set of parameters for estimating the channel state information estimation, and uplink transmission allocation information.
US10200100B2 Method for transmitting and receiving feedback information in wireless communication system and device for same
A method by which a base station receives feedback information on beamforming in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: transmitting an omni-directional beam formed uniformly in all directions, on the basis of a non-precoded first signal; transmitting a plurality of directional beams through a plurality of antenna ports on the basis of second signals precoded in different directions; and receiving feedback information from a terminal, wherein the feedback information includes a gain difference between a first directional beam among the plurality of directional beams and the omni-directional beam, and an index of a first antenna port used in transmitting the first directional beam among the plurality of antenna ports.
US10200099B2 Method for designing hierarchical structure precoder in vehicle-to-vehicle communication system, and device therefor
The present specification relates to a method by which a terminal designs a hierarchical structure precoder in a vehicle-to-vehicle communication system. The method for designing a hierarchical structure precoder can comprise the steps of: receiving group information indicating a terminal group on the basis of a direction of a first-type beam; feeding back preference information on the first-type beam on the basis of the group information; receiving first-type beam information determined on the basis of the preference information; designing a hierarchical structure precoder including a first precoder and a second precoder, on the basis of the received first-type beam information; and feeding back channel information on the basis of the hierarchical structure precoder, wherein the first precoder can be precoder information on the first-type beam direction, and the second precoder can be precoder information on a second-type beam direction in the first-type beam direction.
US10200098B2 Phased array with beamforming integrated circuit having two signal chains
A beamforming integrated circuit has a single channel with a transmit chain and a receive chain. The transmit chain is configured to transmit an output signal and, in a corresponding manner, the receive chain is configured to receive an input signal. The integrated circuit also has separate horizontal and vertical polarity ports, and a double pole, double throw switch operably coupled between the chains and the ports. The double pole, double throw switch is configured to switch between operation in a first mode and a second mode.
US10200087B2 Wireless power receiving coil along a loop of a device
Techniques for wireless charging are described herein. For example, an apparatus includes a device formed in a loop. The apparatus may also include a receiving coil disposed around an entire length of the loop. Each turn of the wireless power receiving coil follows the entire length of the loop.
US10200082B2 Methods, devices and systems for processing a signal in the presence of narrowband interference
A method is disclosed for processing a received signal in the presence of an interference of a first type within the bandwidth of a desired signal of the received signal. The method comprises filtering the received signal using at least a first filter having at least a first filter characteristic to produce a filtered signal wherein the interference of the first type is suppressed. Furthermore, the method comprises determining a desired data stream from the filtered signal, basing the determination at least on the first filter characteristic. A method is also disclosed for processing a signal where the method comprises receiving an indication of whether interference of a first type is present in a frequency interval within the bandwidth of the signal, filtering the signal using at least a first filter having at least a first filter characteristic to produce a filtered signal wherein the filtered signal is suppressed in the frequency interval; and transmitting the filtered signal. Corresponding devices, systems and computer program products are also disclosed.
US10200079B2 Transceiver arrangement and communication device
A transceiver arrangement comprises a receiver arranged for frequency-division duplex communication; a transmitter arranged for frequency-division duplex communication; a transmission port for connecting to an antenna; a balancing impedance circuit arranged to provide an impedance arranged to mimic the impedance at the transmission port; and a filtering arrangement, which comprises filters of a first type and filters of a second type, connecting the receiver, transmitter, transmission port and balancing impedance circuit. The filters of the first type are arranged to pass signals at transmitter frequency and attenuate signals at receiver frequency and are connected between the transmitter and the transmission port and between the receiver and the balancing impedance circuit. The filters of the second type are arranged to attenuate signals at transmitter frequency and pass signals at receiver frequency and are connected between the transmitter and the balancing impedance circuit and between the receiver and the transmission port. A communication device is also disclosed.
US10200078B2 Multiplexer and mobile communication device comprising a multiplexer
A multiplexer with excellent electrical properties and a low number of electrical components is provided that may be used in a communication device with two TX paths and two RX paths. The multiplexer comprises three hybrids and two duplexers. Further, a mobile communication device comprising such a multiplexer is provided.
US10200077B2 Shielded diversity receive module
Described herein are radio-frequency (RF) modules that include shielding for improved RF performance. The RF modules including a packaging substrate with a receiving system implemented thereon. The RF module includes a shield implemented to provide RF shielding for at least a portion of the receiving system. The receiving system can include any combination of pre-amplifier or post-amplifier bandpass filters, amplifiers, switching networks, impedance matching components, phase-shifting components, input multiplexers, and output multiplexers. The shielding can include a conductive layer within a conformal shielding on an upper side and side walls of the RF module. The shielding can be an overmold formed over the packaging substrate. The conductive layer can be connected to one or more ground planes. The packaging substrate can include contact features on an underside of the substrate for mounting an underside component.
US10200062B2 Optimized code table signaling for authentication to a network and information system
In various embodiments, a system comprising a network interface, a processor, and a non-transient memory medium operatively coupled to the processor is disclosed. The memory medium is configured to store a plurality of instructions configured to program the processor to receive a digital bit stream, transform the digital bit stream to an encoded digital bit stream. The encoded digital bit stream comprises at least one of a gateway channel, a composite channel, or a data channel, and any combination thereof, and provides the encoded digital bit stream to the network interface for transmission. A non-transitory computer-readable memory medium and a computer-implemented method also are disclosed.
US10200059B2 Digital to analog converter
A device includes a resistor string that includes a plurality resistors with voltage taps disposed therebetween. The device may select one particular voltage tap of the plurality of voltage taps based on received gray level data for a pixel of a display. The device also includes a first amplifier that may be coupled to a first terminal end of the resistor string. The device additionally includes a second amplifier that may be coupled to a second terminal end of the resistor string, wherein the plurality of voltage taps may each supply a tap voltage derived from a voltage between the first amplifier and the second amplifier, wherein any tap amplifier of the device coupled to a voltage tap of the plurality of voltage taps provides a reference voltage thereto.
US10200058B1 Analog-to-digital conversion with magnetic tunnel junctions
Analog-to-digital conversion circuits are presented which employ magnetic tunnel junction (MTJ) elements that change state probabilistically in response to application of electrical pulses. Some implementations form a multi-channel analog-to-digital conversion circuit, with each channel comprising a magnetic tunnel junction (MTJ) element, and a pulse generator that determines characteristics of perturbation pulses to be applied to an MTJ element based at least on an analog input. The pulse generator also applies read pulses to the MTJ element to produce indications of magnetization state changes for the MTJ element due to application of the perturbation pulses. Each channel of the multi-channel analog-to-digital conversion circuit can include count circuitry that counts the indications of the magnetization state changes for an associated MTJ element. Outputs from each single-channel analog-to-digital converter are combined to determine a digital output representative of the analog input.
US10200049B2 Multi-loop PLL structure for generating an accurate and stable frequency over a wide range of frequencies
A multiloop PLL circuit comprising: a first PLL loop comprising a first VCO, a first phase detector having a first input receiving a reference frequency (Fref) and a second input receiving the output of a first programmable divider, which input receives the signal generated by the first VCO and a first loop filter connected between said first phase detector and said first VCO; at least one auxiliary PLL loop comprising a second VCO, a second phase detector, a second (R1) and a third (N1) programmable dividers, and a second loop filter a main loop for generating a desired output frequency Fout comprising a third VCO, a third phase detector, a fourth (Rn) and a fifth (Nn) programmable divider, a main loop filter and a mixer additional possible auxiliary PLL loop each comprising a forth VCO, a forth phase detector, a sixth (Ri) and a seventh (Ni) programmable divider, a third auxiliary loop filter and a mixer whereby the desired output frequency Fout is generated in accordance with the relation: Fout=(N1/R1+ . . . +Nn/Rn)*Fcro where N1 and R1 are the dividing values of the first auxiliary loop and Ni and Ri with i=2 . . . n−1 being the dividing ratios of any possible further auxiliary loop; and Fcro is the frequency generated by VCO, whereby the multiloop circuit is configured with dividing values which optimizes a cost function F.
US10200048B2 Phase-locked loop (PLL) circuit
One example includes a phase-locked loop (PLL) circuit. The circuit includes a frequency divider and phase detector configured to generate a plurality of non-overlapping switching signals based on an input signal and a PLL output signal. The circuit also includes a linear frequency-to-current (F2I) converter configured to generate a control current having an amplitude that is based on the plurality of non-overlapping switching signals. The circuit further includes a linear current-controlled oscillator configured to generate the PLL output signal to have a frequency and phase to be approximately equal to the input signal based on the amplitude of the control current.
US10200047B2 DTC-based PLL and method for operating the DTC-based PLL
The disclosure provides a phase locked loop, PLL, for phase locking an output signal to a reference signal. The PLL comprises a reference path providing the reference signal to a first input of a phase detector, a feedback loop providing the output signal of the PLL as a feedback signal to a second input of the phase detector, a controllable oscillator generating the output signal based on at least a phase difference between reference and feedback signal, a digital-to-time converter, DTC, delaying a signal that is provided at one of the first and second input, a delay calculation path for calculating a DTC delay value. The PLL further comprises a randomization unit for generating and adding a random offset, i.e. a pseudo-random integer, to the delay value. The offset is such that a target output of the phase detector remains substantially unchanged.
US10200046B1 High resolution and low power interpolator for delay chain
A delay-locked loop includes multiple inverters coupled together, wherein the inverters receive an input clock signal and output a first clock signal and a second clock signal. The input clock signal passes through a first set of inverters having a first number of inverters to generate the first clock signal. The input clock signal also passes through a second set of inverters having a second number of inverters one inverter greater than the first number of inverters to generate the second clock signal. The delay-locked loop also includes a polarity matching block that receives the first clock signal and the second clock signal and changes polarity of one of the first clock signal and the second clock signal.
US10200038B2 Bootstrapping circuit and unipolar logic circuits using the same
Exemplary embodiments of the present disclosure are directed to a bootstrapping module and logic circuits utilizing the bootstrapping module to compensate for a weak high condition. The bootstrapping module can be implemented using transistors have a single channel type that is the same as the channel type of transistors utilized in the logic circuits such that a truly unipolar circuit can be realized while addressing the weak high problem of such unipolar circuits.
US10200033B2 Generic randomized mesh design
In one embodiment, an apparatus may include a first mesh of conductive material covering an area corresponding to at least a portion of the touch sensor. The first mesh includes a number of mesh cells. Each of the mesh cells has a number of vertices. Each of the vertices has a substantially randomized location within an inner portion of one of a number of polygons. The polygons collectively and contiguously covers the area corresponding to at least a portion of the touch sensor. One or more dimensions of the polygons is based at least in part on a pre-determined distance threshold between one or more pairs of opposing vertices. The apparatus also includes a computer-readable non-transitory storage medium coupled to the touch sensor and embodying logic that is configured when executed to control the touch sensor.
US10200025B2 Pulse-amplitude modulated hybrid comparator circuit
Some embodiments include apparatus and methods using a first latch to receive an input signal at a gate of a transistor of the first latch and compare the input signal with a reference signal to provide a first output signal at an output node of the first latch, and a second latch coupled to the output node of the first latch, the second latch including a complementary metal-oxide semiconductor (CMOS) inverter to generate a second output signal at an output node of the second latch based on the first output signal. The second output signal has a signal swing greater than a signal swing of the first output signal.
US10200020B2 Semiconductor device and electronic device
A semiconductor device has a clock signal generation circuit that generates a clock signal, and a processing circuit that operates in accordance with the clock signal. The semiconductor device can also include an external terminal and a power source terminal that is coupled to the processing circuit. The clock signal generation circuit changes the frequency of the clock signal to be generated in accordance with the voltage value of a current consumption signal supplied to the external terminal. Further, the voltage value of the current consumption signal is changed in accordance with current consumption flowing in the power source terminal. The clock signal generation circuit can change the frequency of the clock signal to be generated in accordance with a value of an analog signal supplied to the external terminal.
US10200014B2 Receiver, communication unit, and method for down-converting a radio frequency signal
There is provided a communication receiver comprising: an input for receiving a radio frequency, RF, input signal; and at least one finite impulse response, FIR, discrete time filter, DTF. The at least one FIR DTF comprises: an input circuit comprising an input port for sampling the RF input signal at a sampling frequency that is comparable to the input RF input signal; and N parallel branches, each branch having a set of input unit sampling capacitances, where each unit sampling capacitance is independently selectively coupleable to an output summing node. The input circuit is configured to convert an equivalent input impedance of the at least one FIR DTF around the sampling frequency to a real impedance.
US10200008B2 High isolation power combiner/splitter and coupler
A power combiner has at least two uncommon ports and at least one common port. Isolation between the uncommon ports over a broad band is achieved through a lossy band response circuit having a phase and amplitude response effective to compensate for changes in phase and amplitude between the uncommon ports with change in frequency of an input signal. The lossy band response circuit may have a resistance approximating a resistance effective to isolate the uncommon ports over a bandwidth at a center frequency. A coupler may likewise increase the band for which an input port is isolated from the isolated port by coupling a lossy circuit between the input port and isolated port. The lossy circuit may be embodied as a lossy band response circuit.
US10200007B2 Filter chip
A filter chip includes a substrate, a plurality of external terminals formed on the substrate for external connection, and a plurality of passive element forming regions provided in the regions between the plurality of external terminals in plan view when viewed along a direction normal to the surface of the substrate, the plurality of passive element forming regions including at least a resistor forming region where a resistor is formed. The resistor forming region includes a resistive conductive film formed on the substrate with one end and the other end thereof electrically connected to different ones of the external terminals, and a fuse portion integrally formed with the resistive conductive film. The fuse portion is cuttably provided to electrically connect a part of the resistive conductive film to the external terminals, or to electrically separate a part of the resistive conductive film from the external terminals.
US10200005B2 Output noise reduction device
An object is to provide an output-noise reduction device in which a component encapsulated through insert molding can be appropriately protected.In a noise filter module (output-noise reduction device), a conducting bar and a magnetic body core are protected with a molded member formed through insert molding. The molded member is formed of a resin material with a molding shrinkage rate of 0.5% or less. Thus, the amount of shrinkage after the molded member is molded and stress as a result of the shrinkage can be made small, whereby damage on the magnetic body core, deformation of a lead frame, and the like can be prevented from occurring.
US10200002B1 RF peak detection method using a sequential baseband scheme
Systems, devices, and techniques for performing peak detection are described. A described receiver includes a first amplifier to amplify an input signal to generate a first amplified signal; a mixer to downconvert the first amplified signal to generate a downconverted signal; a second amplifier to amplify the downconverted signal to generate a second amplified signal; a filter, being selectably engageable by the receiver, a peak detector configured to perform voltage measurements of the second amplified signal; and switch circuitry. The switch circuitry is configured to selectably disengage the filter during a first measurement phase during which a first voltage measurement performed by the peak detector is indicative of an output voltage swing of the first amplifier, and to selectably engage the filter during a second measurement phase during which a second voltage measurement performed by the peak detector is indicative of an output voltage swing of the second amplifier.
US10199999B1 Transconductor systems
One example includes a transconductor system. The system includes a first transconductance amplifier that generates a control current in response to a first input voltage. The system also includes a second transconductance amplifier that generates an output signal in response to a second input voltage. The system further includes an intermediate amplifier that generates a control voltage in response to the control current and a third input voltage. The control voltage can be provided to the first and second transconductance amplifiers to set a transconductance of each of the first and second transconductance amplifiers to be approximately equal.
US10199996B2 Optimized multi-LNA solution for wideband auxiliary inputs supporting multiple bands
A high performance low noise amplifier integrated circuit having multiple low noise amplifiers enabling operation over a wide range for frequencies is disclosed. In particular, an auxiliary input is provided to the low noise amplifier integrated circuit that can be routed to one of several low noise amplifiers, each tuned to operate efficiently in different frequency ranges.
US10199995B2 Programmable amplifier circuit capable of providing large or larger resistance for feedback path of its amplifier
A programmable amplifier circuit includes an amplifier, an input capacitor coupled to an input of the amplifier, a feedback capacitor coupled to the input of the amplifier and an output of the amplifier, and a switched-capacitor resistor circuit. The switched-capacitor resistor circuit is coupled between the input of the amplifier and the output of the amplifier, and configured for simulating a feedback resistor element to provide a resistance for a feedback path of the amplifier by using at least one capacitor placed between the input of the amplifier and the output of the amplifier to avoid leakage current(s) flowing back to an input of the amplifier.
US10199994B2 Doherty amplifier and power amplifier
A Doherty amplifier used in a Z ohm based system is provided with a carrier amplifier, a peak amplifier, and an impedance transforming line for transforming the load of the carrier amplifier when an input signal is small. The impedance transforming line has a characteristic impedance lower than Z ohms and equal to the optimum load impedance of the carrier amplifier. The load of the Doherty amplifier is lower than Z ohms. A power amplifier that obtains large output power by combining output powers from a plurality of Doherty amplifiers by a power coupling circuit is constructed.
US10199992B2 Wideband single-ended IM3 distortion nulling
System-on-chip (SOC) products using high frequency, wideband, highly linear, CMOS and BiCMOS processes will be the next evolution of wireless and wireline communications integrated circuits. Aspects described herein can provide enhanced overall performance over existing prior art single-ended, wideband RF amplifier topologies. A single-ended third order intermodulation distortion nulling circuit can extend the dynamic range for wideband amplifiers up to an order-of-magnitude, without a DC power or noise figure (NF) penalty. The application of distortion nulling can be extended to all the building blocks used in CMOS/BiCMOS RF transceivers to improve performance. The application of this concept to all of the building blocks in an RF transceiver will allow the dynamic range of the transceiver to be increased without suffering a DC power dissipation increase or a significant noise increase.
US10199988B2 Method for controlling power grid frequency of multiple energy storage systems, and system therefor
The present invention relates to a power management system (PMS) for multiple energy storage systems (ESS) that is for integrated management of the system having multiple ESS for controlling a frequency and having a hierarchical control structure. The PMS for ESS comprises: a plurality of ESS; a local management system (LMS) for managing one or more ESS of the plurality of ESS for each local unit; an ESS Controller (ESSC) for general management of the LMS, judging a state of the LMS and determining an output value of one or more ESS in the LMS, and transmitting the determined output value to the respective ESS; and a PMS for general management of the entire system comprising the plurality of ESS, the LMS and the ESSC, judging the state of the entire system and participating in a power grid frequency control market through a grid operator contract, controlling the output of the LMS, and adjusting a control parameter for output control.
US10199987B2 Self-reconfigurable returnable mixer
A self-reconfigurable returnable mixer includes a self-reconfigurable transconductance stage. The input RF voltage signal is converted into RF current through the self-reconfigurable transconductance stage. The RF current is converted into an IF signal through down-conversion and low-pass filtering. The IF signal is fed back to the reconfigurable transconductance stage; the self-reconfigurable transconductance stage presents an open-loop structure to the input RF voltage signal, and the self-reconfigurable transconductance stage presents the topology structure of the negative feedback amplifier to the fed-back IF signal. The self-reconfigurable transconductance stage circuit achieves a high-linearity IF gain while providing a high bandwidth for the RF signal, effectively alleviating the contradiction between the conversion gain and the IF linearity in the conventional returnable structure.
US10199983B2 Roof attachment assembly for solar panels and installation method
Disclosed herein is a roof attachment assembly for mounting a solar panel on a roof without the use of rails. The assembly includes a splice member includes grounding elements for electrically grounding the solar panel and is removably connected to the array skirt. Also disclosed is a method of using the assembly and an assembly kit.
US10199976B2 Vibration and noise manipulation in switched reluctance machine drivetrains
Systems and methods are disclosed for manipulating the noise and vibration of a switched reluctance machine (SRM). By use of vibration sensors and real-time optimization methods, the noise and vibration profile of an SRM and associated load may be modified to meet one or more control objectives, such as torque ripple mitigation (TRM), harmonic spectrum shaping, and/or efficiency improvement.
US10199975B2 Power supply assembly and associated method
Subsea power supply assembly (10, 20) supplying electric power to a motor (11) at a second location (90) from a first location (80), comprising a variable speed drive (13) (VSD) and a step-up transformer (15) connected to it. At a subsea location the assembly comprises a first step-down transformer (17) with input (17a) and output (17b) and an uninterruptable power supply (25) having an input (25a). A step-out cable (19) supplies power from the step-up transformer (15) to the motor (11). The cable (19) connects to the first step-down transformer (17). The speed of the electric motor (11) is proportional to the output frequency of the VSD (13). The power receiving input (25a) of the uninterruptable power supply (25) connects to the output (17b) of the first step-down transformer (17), thereby receiving electrical power with frequency equal to the output frequency of the VSD (13).
US10199971B2 Motor controller, flux command generator, and method for generating flux command
A motor controller includes a driver, a current detector, and a command generator. The driver is configured to drive a power converter based on a flux command on which an exploration signal is superimposed. The current detector is configured to detect an output current output from the power converter that has been driven by the driver. The command generator is configured to generate the flux command so as to reduce a current component, among current components included in the output current detected by the current detector, that corresponds to the exploration signal.
US10199969B2 Turbogenerator system
A method of operation of a turbogenerator system is described. The system comprises a plurality of turbogenerators provided in parallel and in fluid communication with a gas stream. The method comprises identifying one or more of the turbogenerators which are currently operating closest to their maximum power output, and adjusting the speed of one or more of the turbogenerators to cause the power outputs of the plurality of turbogenerators to become more similar. In this way, it is possible to match the power output of the plurality of turbogenerators.
US10199967B2 Motor controller, motor driving apparatus, motor driving system, image forming apparatus, and conveying device
A motor controller that controls a motor in a first control method based on a first current command value and a second control method based on a second current command value. The motor controller includes an analog-to-digital converter to generate the second current command value based on a reference signal externally input to the motor controller and a current limit generator to generate an upper limit value of the first current command value based on the second current command value.
US10199959B2 Piezoelectric actuator, ceramic component polarizing method and piezoelectric motor system
The piezoelectric actuator of the present invention has at least one ceramic component. The ceramic component has an output surface and two driving surfaces. The ceramic component has a height and the output surface is rectangular in shape, wherein the length of the short axis side of the output surface is shorter than the height. Therefore, when a pulse wave input voltage is applied on the driving surfaces, the output surface generates an elliptical motion.
US10199955B2 Electrical converter and control method
An electrical multi-phase converter and method for controlling an electrical multi-phase converter is disclosed. In one form a method provides for controlling the electrical multi-phase converter comprises: determining at least two supply voltages for the at least two converter cells of the at least two phase branches; determining a potential zone for each phase branch based on the at least one supply voltage of the at least one converter cell of the phase branch, the potential zone bounding a possible actual phase voltage producible by the phase branch; receiving a reference voltage for each phase branch; and, if the reference voltage for a phase branch is not within the potential zone of the phase branch, setting the reference voltage to a bound of the potential zone and shifting reference voltages of other phase branches, wherein the reference voltages are set and shifted such that a minimal common mode voltage between the output voltages of the multi-phase converter is generated.
US10199954B2 Voltage source converter
A voltage source converter includes DC terminals, a plurality of single-phase limbs, and a controller. Each single-phase limb includes a phase element and switching elements. Each limb is connected between the DC terminals and is controllable to generate an AC voltage at the AC side of the corresponding phase element so as to draw a respective phase current from a multi-phase AC electrical network. The controller is configured to selectively generate a modified AC voltage demand for at least one limb in response to an imbalance in the phase currents and/or a change in electrical rating of at least one limb. The controller is configured to selectively control, in accordance with the or the respective modified AC voltage demand, the or each corresponding limb independently of the or each other limb to modify the voltage at the AC side of its phase element and thereby modify the corresponding phase current.
US10199952B2 Quad-T transformer to convert AC single-phase to three-phase power
A quad-T transformer in some embodiments includes a first split winding, a second split winding, and two orthogonal closed-loop windings coupled between the first split winding and the second split winding. Wires can be wound around magnetic cores. A first of the two orthogonal closed-loop windings is coupled to a first portion of each of the first split winding and the second split winding. A second of the two orthogonal closed-loop windings is coupled to a second portion of each of the first split winding and the second split winding. A bi-directional single-phase/three-phase converter includes the quad-T transformer and a Scott-T transformer with an output connected to a three-phase connection. The Scott-T transformer also has a 90-degree input connected to the quad-T transformer and a zero-degree input connected to a single-phase connection.
US10199950B1 Power distribution architecture with series-connected bus converter
Apparatus for power conversion are provided. One apparatus includes a power converter including an input circuit and an output circuit. The power converter is configured to receive power from a source for providing power at a DC source voltage VS. The power converter is adapted to convert power from the input circuit to the output circuit at a substantially fixed voltage transformation ratio KDC=VOUT/VIN at an output current, wherein VIN is an input voltage and VOUT is an output voltage. The input circuit and at least a portion of the output circuit are connected in series across the source, such that an absolute value of the input voltage VIN applied to the input circuit is approximately equal to the absolute value of the DC source voltage VS minus a number N times the absolute value of the output voltage VOUT, where N is at least 1.
US10199948B2 Standby power control for a flyback USB device using primary side frequency and data port sensing
A secondary controller applied to a secondary side of a power converter includes a detector and a standby signal generation circuit. The detector is used for detecting a first signal and a second signal of a universal serial bus device, and a frequency of a synchronization signal corresponding to a primary side of the power converter. The standby signal generation circuit is coupled to the detector for delaying a first predetermined time to generate a standby signal to a primary controller of the primary side of the power converter when the detector fails to detect the first signal and the second signal, and the frequency of the synchronization signal is less than a first predetermined frequency, wherein the primary controller enters a standby mode according to the standby signal.
US10199946B2 Systems and methods for adjusting peak frequencies with duty cycles
Systems and methods are provided for regulating a power converter. An example system controller includes: a first controller terminal configured to output a drive signal to a switch to affect a current flowing through a primary winding of a power converter, the drive signal being associated with a switching period corresponding to a switching frequency; and a second controller terminal configured to receive a feedback signal associated with an output voltage related to a secondary winding of the power converter. The first controller terminal is further configured to: output the drive signal to close the switch during the on-time period; and output the drive signal to open the switch during the off-time period. The system controller is configured to set the switching frequency to one or more frequency magnitudes, each of the one or more frequency magnitudes being smaller than or equal to an upper frequency limit.
US10199944B2 Systems and methods for flyback power converters with switching frequency and peak current adjustments
System and method for regulating a power converter. The system includes a comparator configured to receive a first signal and a second signal and generate a comparison signal based on at least information associated with the first signal and the second signal. The first signal is associated with at least an output current of a power converter. Additionally, the system includes a pulse-width-modulation generator configured to receive at least the comparison signal and generate a modulation signal based on at least information associated with the comparison signal, and a driver component configured to receive the modulation signal and output a drive signal to a switch to adjust a primary current flowing through a primary winding of the power converter. The modulation signal is associated with a modulation frequency corresponding to a modulation period.
US10199939B1 Multi-phase DC-DC converters with open-loop PWM for transient performance enhancement
A multi-phase switching power converter includes a panic mode detector that triggers the activation of each phase in an open-loop mode of operation in which an open-loop duty cycle is used that is greater than a closed-loop duty cycle used during closed-loop operation for the active phases.
US10199936B2 DC to DC converter
Pre-conditioners (or line-conditioners) are used to convert electrical power having first characteristics into electrical power having second characteristics. For example, a pre-conditioner may connect electrical equipment forming a load, which requiring only a conventional mains supply level to a utility three-phase supply. This means that the power components of the load may be de-rated, making the load electrical equipment cheaper. Such circuits may be further improved. Components in the down-converter itself still need to be rated to interface with the higher voltage. An approach is proposed in which two interleaved down-converters (36, 38) can be used to supply voltages. An energy recovery element (50) connects snubbers of the interleaved down-converters, thus enabling some de-rating of the pre-conditioner circuitry.
US10199933B2 Circuit for clamping current in a charge pump
A circuit for clamping current in a charge pump is disclosed. The charge pump includes switching circuitry having a number of switching circuitry transistors. Each of first and second pairs of transistors in the circuit can provide an additional path for current from its associated one of the switching circuitry transistors during off-switching of that transistor so that a spike in current from the switching circuitry transistor is only partially transmitted through a path extending between the switching circuitry transistor and a capacitor of the charge pump.
US10199932B1 Precharge circuit using non-regulating output of an amplifier
A reference signal generator includes a voltage reference, an amplifier coupled to the voltage reference, and a precharge circuit coupled to the amplifier. The voltage reference is configured to generate a constant voltage. The amplifier is configured to receive the constant voltage from the voltage reference and generate a regulating primary output signal and a non-regulating secondary output signal. The precharge circuit is configured to charge a noise reduction capacitor with the non-regulating secondary output signal.
US10199931B2 Device and method for hybrid feedback control of a switch-capacitor multi-unit voltage regulator
A device and method for hybrid feedback control of a switch-capacitor multi-unit voltage regulator are presented. A multi-unit switched-capacitor (SC) core includes a plurality of SC converter units, each unit with a capacitor and a plurality of switches controllable by a plurality of switching signals. Power switch drivers provide a switching signal to each SC converter unit. A secondary proactive loop circuit includes a feedback control circuit configured to control one or more of the plurality of switches. A comparator is configured to compare the regulator output voltage with a reference voltage and provide a comparator trigger signal. Ripple reduction logic is configured to receive the comparator trigger signal and provide an SC unit allocation signal. A multiplexer is configured to receive a first clock signal, a second clock signal, and the SC unit allocation signal and provide a signal to the power switch drivers.
US10199926B2 Power router and operation control method thereof, power network system, and non-transitory computer readable media storing program
A management or control of a power router is more appropriately performed when a power network system in which power cells are asynchronously connected with each other. A plurality of power conversion legs bi-directionally convert power, one ends thereof are connected with a direct current bus and the other ends thereof are connected with an external connection partner as an external connection terminal. A control unit controls operations of the plurality of power conversion legs. The control unit receives a control instruction including a designation of a stopping target leg. The control unit performs an adequacy determination of whether the stopping target leg can be stopped. The control unit stops the stopping target leg when the stopping target leg can be stopped.
US10199925B2 Overcurrent protection apparatus
An overcurrent protection apparatus that protects, from overcurrent, a load drive system including a load circuit having an electric load and a semiconductor switch electrically connected to the load circuit so as to control a drive of the load circuit is provided. The overcurrent protection apparatus includes: an energization state acquisition part that is configured to acquire an energization state of load current flowing through the semiconductor switch and the load circuit when the semiconductor switch is ON; a change part that is configured to change an acquisition condition of the energization state at the energization state acquisition part in accordance with a driving state of the load circuit; and a protection operator that is configured to execute overcurrent protective operation of protecting the load drive system from the overcurrent based on the energization state acquired by the energization state acquisition part.
US10199924B2 Converter apparatus and method with auxiliary transistor for protecting components at startup
An apparatus and associated method are provided involving a converter circuit. The converter circuit includes an inductor including a first terminal configured to be coupled to a power source, and a second terminal. Also included is a pair of serially-coupled transistors coupled to the second terminal of the inductor. The pair of serially-coupled transistors have a transistor intermediate node therebetween. Further included is a pair of serially-coupled diodes coupled to the second terminal of the inductor. The pair of serially-coupled diodes have a diode intermediate node therebetween. A first capacitor is coupled in parallel with the serially-coupled transistors and the serially-coupled diodes. Further, the converter circuit includes a sub-circuit having a second capacitor serially-coupled with an auxiliary transistor. The sub-circuit is coupled between the transistor intermediate node and the diode intermediate node.
US10199922B2 Sub-module of a modular braking unit, braking unit, and method for operating the braking unit
A sub-module of a modular braking unit that is connected to a DC transmission network. Each sub-module has an inverse diode, and a storage capacitor connected in parallel with the inverse diode via a free-wheeling diode. An energy-consuming switching unit is connected to the storage capacitor. In order to provide a sub-module of this type such that the braking unit can function with relatively low losses in the stand-by and idle state, the sub-module is provided with an actively switchable semiconductor bypass path in parallel with the inverse diode. A braking unit has a plurality of series-connected sub-modules and we disclose a method for operating a braking unit of this type.
US10199921B2 Load detecting device
A load detecting device for detecting whether a load is connected to a power supply device includes a no-load condition detector configured to detect a no-load condition using a sensing voltage having a frequency variant with a switching frequency of the power supply device, a circuit configured to acquire a signal having a waveform differing according to a connection or detachment between the load and the power supply device after the no-load condition is detected by the no-load condition detector, and a detachment detector configured to detect whether the load is detached by sensing the signal acquired by the circuit.
US10199917B2 Current mode hysteretic buck converter with auto-selectable frequency locking circuit
A current mode hysteretic buck converter employing an auto-selectable frequency locking circuit is disclosed. The auto-selectable frequency locking type buck converter include a current mode hysteretic buck converter for converting an input DC voltage into a lower DC voltage, and a frequency locking unit for locking a switching frequency of the current mode hysteretic buck converter wherein the switching frequency is locked through adjusting a locking value of the switching frequency to be a predetermined value according to a size of a load. The buck converter is, based on the current mode hysteretic control, related to a circuit that locks the switching frequency of the converter to reduce the difficulty of designing electromagnetic interference (EMI) filters in the converter. In addition, the buck converter can improve the efficiency at light load by adjusting the switching frequency which is locked according to the load current.
US10199916B2 Resistor emulation and gate boost
A power switch driver for driving a control terminal of a power switch to drive a load, the power switch driver having a negative feedback circuit to control current delivered to the control terminal. The negative feedback circuit has a current output circuit having a current source and a current sink and serving for providing the current of the control terminal and configured to receive an output current control signal to control a magnitude of the current provided by the current output circuit, a terminal voltage input circuit for receiving a voltage from the control terminal and to output an indication of the voltage, an amplifier coupled to the terminal voltage input circuit for amplifying the terminal voltage indication to generate an amplifier output, and a reference voltage input circuit for receiving a reference voltage, having at least one resistor, and coupled to a charge supply input of the amplifier.
US10199914B2 Closed loop leveraging electromagnetic motor
The invention is a high torque and energy efficient electric motor. With a larger diameter shaft and shortened length, the design of the motor is pancaked. With high torque, the electric motor can operate efficiently by taking advantage of repelling and attracting forces from magnetic fields. Two embodiments of the invention for the high torque motor are designed to be energy efficient utilizing lifting design electromagnets, and low current flow in relation to the magnetic field produced is a key element of the invention.
US10199898B2 Rotary electric machine stator having a resin molded portion
A rotary electric machine includes a stator core, a coil, and a molded portion. The stator core includes an annular yoke and a plurality of teeth. The teeth protrude radially inward from the annular yoke. The coils are wound around the teeth respectively. The coil includes a coil end that protrudes toward an axially outer side from an axially end surface of the stator core. The molded portion is a resin member that covers the coil end. The molded portion includes a first member. The first member includes a communication portion that communicates inside of the molded portion with outside of the molded portion.
US10199896B2 Direct current machine
A direct current machine comprises a stator and a rotor, one of them having a plurality of magnets alternatively magnetized north and south and the other one of them having a plurality of coils formed by winding insulated wire around teeth in order to provide a three-phase winding, wherein slots are formed between said coils and the coils are grouped in coil groups of four coils each, and a current controlled inverter for driving said machine, wherein each coil group has the same winding pattern so that each first coil of a coil group, seen in a direction of rotation, is wound in the same winding direction and two, in the direction of rotation, consecutive coil groups of the same phase are connected such that current flows through one in the direction of rotation and through the other one in a direction opposite to the direction of rotation.
US10199895B2 Permanent magnet type motor and electric power steering apparatus
To obtain a permanent magnet type motor capable of securing controllability of a motor and utilizing reluctance torque. An armature winding is a plurality of sets of polyphase windings; the plurality of sets of the armature winding is supplied with current from each individual inverter; the rotor core is provided with permanent magnets on a surface portion thereof, the permanent magnets being circumferentially arranged and the adjacent permanent magnets having polarities opposite to each other; a protrusion portion is provided between the adjacent permanent magnets, the protrusion portion being provided in a protruding condition from the rotor core and being made of a magnetic substance; and a non-magnetic gap portion is interposed between the protrusion portion and the permanent magnet in a rotating shaft direction.
US10199893B2 Rotor of rotary electric machine
A rotor of a rotary electric machine, which is supported by a rotating shaft, includes a rotor core, and a permanent magnet embedded in the rotor core. At least one in-core cooling medium passage that leads a cooling medium supplied from an in-shaft cooling medium passage formed inside the rotating shaft to an outer peripheral end of the rotor core, and discharges the supplied cooling medium into a gap between the rotor core and a stator, is formed in the rotor core. The at least one in-core cooling medium passage includes a center cooling medium passage, a pair of inner peripheral side cooling medium passages, and an outer peripheral side cooling medium passage that is communicated with the gap. A radially outside end portion of the center cooling medium passage has a slope that extends toward a radially outer side closer to a center in the axial direction.
US10199892B2 Spoke permanent magnet rotor
The present invention relates to a spoke-type permanent magnet rotor (1) used in brushless direct current electric motors (12), forming the rotating part inside the stator (13) that forms the stationary part thereof and having an air gap (14) between the inner surface of the stator (13) and itself, comprising a cylindrical core (2) produced from ferromagnetic laminations or ferromagnetic powder metal, a shaft (3) fixed to the core (2) and forming the rotational axis of the rotor (1), a hub (5) disposed at the center of the core (2) and having a shaft hole (4) that bears the shaft (3), more than one pole segment (6) disposed all around the hub (5), more than one magnet slot (7) disposed between the pole segments (6), more than one magnet (8) tangentially magnetized, placed in the magnet slots (7) and extending outwards in the radial direction, and two end rings (9) produced from non-magnetic materials such as aluminum and plastic and fixed on the front and rear planar surfaces of the core (2) by the injection molding method.
US10199889B2 Electric machine having rotor with slanted permanent magnets
An electric machine including a rotor and an annularly-shaped first stator is provided. The rotor includes an annularly-shaped rotor body and permanent magnets positionally-fixed relative to the rotor body. The first stator includes circumferentially-spaced stator poles. The rotor and the first stator are concentric and axially-aligned relative to an axial centerline of the electric machine. Each of the permanent magnets creates a magnetic dipole. Each magnetic dipole extends along a dipole axis that passes through the respective permanent magnet. Each dipole axis extends in a first plane. The centerline of the electric machine extends in a second plane that is at least substantially perpendicular to the first plane. Each of the permanent magnets is positioned so that a magnet angle that is between 15° and 75° is defined between the respective dipole axis and a radial axis that extends between the respective permanent magnet and the centerline.
US10199888B2 Rotor of a dynamoelectric rotary machine
A reluctance rotor of a dynamoelectric rotary machine has an even number of poles constructed of a material having structural magnetic anisotropy. The magnetic anisotropy of the material is characterized by a first magnetic resistance, a magnetic permeability of μr>20 and a saturation polarization of >1T in a first spatial direction, and by a second magnetic resistance which is greater than the first magnetic resistance with a magnetic permeability of μr<1.6 in spatial directions perpendicular to the first spatial direction.
US10199887B2 Rotary electric machine armature core and rotary electric machine
A core segment linked body when opened out rectilinearly is configured: such that a distance between adjacent width reduced portions is greater than a width dimension of width expanded portions when adjacent core segments are in an expanded position, and the distance between the adjacent width reduced portions is less than the width dimension of the width expanded portions when the adjacent core segments are in a contracted position; and so as to satisfy (te−tn)/τs′>0, and 0<(te−tn)/te≤0.27, where τs′ is a distance between center lines of the adjacent magnetic pole teeth in the expanded position, te is a width dimension of tooth main portions, and tn is the width dimension of the width reduced portions.
US10199886B2 Single phase brushless motor and power tool utilizing same
A single phase brushless motor and a power tool are provided. The single phase brushless motor includes a stator and a rotor. The stator includes a stator core and windings wound around the stator core. The stator core includes a yoke and at least two teeth. The tooth includes a tooth body and a tooth tip. The tooth tip includes first and second pole shoes. The two pole shoes of each tooth are symmetrical about a center line of the tooth body. Each tooth defines a positioning groove facing the rotor between the two pole shoes. Pole shoes of adjacent two of the at least two teeth are spaced apart by a slot opening. A width of the positioning groove is greater than a width of the slot opening. The peak value of the cogging torque of the motor is increased, and the motor has a large startup torque.
US10199885B2 Methods and apparatus utilizing multi-filar alignment assistance in wireless power transfer applications
An implementation provides an apparatus for determining an alignment of a wireless power coupler of a vehicle with a wireless power transmitter. The apparatus comprises a sensing circuit configured to measure a current in a plurality of separate conductors of the wireless power coupler. The apparatus comprises a controller configured to determine information related to an alignment of the wireless power coupler with the wireless power transmitter based at least in part on the measured current in the plurality of separate conductors. The controller is configured to determine the information related to the alignment of the wireless power coupler with the wireless charging power transmitter based on a difference between the measured current in the plurality of separate conductors. The information comprises a direction and distance of offset between the wireless power coupler and the wireless power transmitter. The measured current is a short circuit current.
US10199883B2 Power supply apparatus and method for wireless power transmission
Provided is an apparatus and method that may stably perform wireless transmission. According to one general aspect, a power supply for a wireless power transmitter may include: a detecting unit configured to detect voltage, current, or both supplied to a power amplifier (PA); a controller configured to determine power supplied to the PA based on the detected voltage, the detected current, or both, and to determine a reference current based on the determined power supplied to the PA; and a breaker configured to cut off the power supplied to the PA based on a comparison of current supplied to the PA and the reference current.
US10199882B2 Object detection system and method for detecting foreign objects in an inductive power transfer system
The invention relates to an object detection system for an inductive power transfer system, in particular for transferring power to a vehicle on a surface of a route, wherein the inductive power transfer system includes a primary winding structure and a secondary winding structure, wherein a charging volume is assigned to the inductive power transfer system during inductive power transfer, wherein the object detection system includes at least one sensing device, wherein the sensing device has a detection volume, wherein the at least one sensing device is arranged such that the detection volume is fully arranged outside the charging volume or includes only an edge portion of the charging volume. Furthermore, the invention relates to a method for detecting a foreign object, an inductive power transfer system and a vehicle.
US10199878B2 Wireless power transceiver and wireless power transceiving system including the same
A wireless power transceiver includes input generator, inverter, battery, antenna, impedance matching circuit, and mode voltage changer. The input generator outputs an input voltage as a primary input voltage and a secondary input voltage in a power transmitting mode. The input generator outputs a power supply voltage as a primary input voltage and outputs a ground voltage as a secondary input voltage in a power receiving mode. The inverter outputs to the second node, an inverted version of the input voltage in the power transmitting mode, and outputs to the first node, a rectified voltage of the second node in power receiving mode. The impedance matching circuit is connected between the second node and the antenna. The mode voltage changer converts a battery voltage of the battery to output the power supply voltage in the power transmitting mode, and charges the battery with a voltage converted from the power supply voltage in the power receiving mode.
US10199869B2 Nonlinear resonance circuit for wireless power transmission and wireless power harvesting
A nonlinear resonator is presented that enhances the bandwidth while providing high resonance amplitude. The nonlinear resonance circuit is comprised of an inductor electrically coupled to a capacitor, where either the inductor or capacitor is nonlinear. Response of the nonlinear resonance circuit to an excitation signal is described by a family of second-order differential equations with cubic-order nonlinearity, known as Duffing equations.
US10199866B2 Control circuit for wireless power receiver and control method
A rectifier circuit is coupled to a reception coil, and generates a rectified voltage. A charger circuit receives the rectified voltage, and charges a secondary battery. A modulator coupled to the reception coil modulates a voltage or a current applied to the reception coil based on a control value, and transmits a control packet including the control value to a wireless power transmitter. A charging control unit controls a charging current supplied from the charger circuit to the secondary battery. A power control unit generates a control error value indicating a power transmission rate for the wireless power transmitter, based on the difference between the present rectified voltage and its target value, and outputs the control error value as the control value to the modulator. When the absolute value of the difference is smaller than a predetermined threshold value, the charging control unit changes the charging current.
US10199865B2 High efficiency wireless power system
In accordance with some embodiments, a transmitter for wireless transfer includes a rectifier that receives an AC voltage and provides a DC voltage; a capacitor that receives and smooths the DC voltage; a regulator that receives the DC voltage and outputs an input voltage; and a wireless transmitter that receives the input voltage and transmits wireless power.
US10199859B2 Uninterruptible power supply system with precharge converter
An uninterruptable power supply system is disclosed with a precharge converter for connecting to a DC link of the uninterruptable power supply system to a DC power supply, whereby the DC link comprises a first and a second DC bus line, which are both coupled to a common reference point, whereby the common reference point can be an AC power supply neutral of the uninterruptable power supply system, comprising power connectors for connecting to the DC power supply, a first and second output connector for connecting to the first and the second DC bus line, respectively, a converter circuit for receiving DC power from the power connectors and providing DC power to the first and second output connector, and a control unit for controlling operation of the converter circuit.
US10199857B2 Transformer circuit and method of reducing idling power consumption
Disclosed are a transformer circuit and a method of reducing idling power consumption. The transformer circuit comprises a transformer and an auxiliary winding circuit. The transformer comprises a core, a primary winding, a secondary winding and an auxiliary winding. The auxiliary winding circuit is connected to the auxiliary winding. The auxiliary winding circuit comprises a first power supply circuit and a second power supply circuit. The auxiliary winding comprises a first end, a second end and a tap located between the first end and the second end. The present invention can reduce idling power consumption.
US10199856B2 Power tool battery pack wireless charger
A power tool system includes a power tool, a power tool battery pack and a battery pack charger. The power tool battery pack is separable from and attachable to the power tool, and electrically connectable to the power tool electrical terminals when attached to the power tool. The power tool battery pack has at least one battery cell, a receiver coil, and a control circuit for controlling the amount of power that is provided to the at least one battery cell. The battery pack charger has at least one transmitter coil for generating a magnetic field which induces a voltage in the receiver coil, and a control circuit for controlling the amount of power that is provided to the transmitter coil.
US10199853B2 Wireless charging apparatus based on three-dimensional (3D) wireless charging zone
Provided is a wireless charging apparatus for performing wireless charging of an electronic device including a receiving coil located in a three-dimensional (3D) wireless charging zone using a plurality of transmitting coils arranged in the 3D wireless charging zone and at least one power source configured to supply a current to the plurality of transmitting coils.
US10199850B2 Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
Embodiments disclosed herein may generate and transmit power waves that, as result of their physical waveform characteristics (e.g., frequency, amplitude, phase, gain, direction), converge at a predetermined location in a transmission field to generate a pocket of energy. Receivers associated with an electronic device being powered by the wireless charging system, may extract energy from these pockets of energy and then convert that energy into usable electric power for the electronic device associated with a receiver. The pockets of energy may manifest as a three-dimensional field (e.g., transmission field) where energy may be harvested by a receiver positioned within or nearby the pocket of energy.
US10199842B2 Power supply control system
A method and apparatus for controlling the power supply for a system. In one embodiment, a power supply apparatus comprises a rechargeable battery; and a battery charger coupled to the battery and comprising a first circuit to generate an output that controls whether the battery is to provide power to the system to supplement the power provided by the power source when an input voltage from the power source of undetermined output power is less than a predetermined level.
US10199836B2 Storage battery pack, method for controlling storage battery pack, and method for controlling information terminal
A method performed by an information terminal is provided. Profile information of an electrical device connected to a storage battery pack is received from the storage battery pack. The profile information includes device identification information of the electrical device and an item of state information indicating a state of the electrical device. A value of the item of state information of the electrical device is received from the storage battery pack. When a first instruction that causes the item of state information and the value of the item of state information to be displayed is received, a first display screen is displayed on the display of the information terminal. The first display screen depicts the item of state information and the value of the item of state information by using the received profile information and the received value of the item of state information.
US10199834B2 Method for controlling the supply of power to a power system for an aircraft
A method for controlling the supply of power to a power system for an aircraft having a plurality of power-consuming components includes supplying power to the power system with a generator having a power output, determining a power requirement of the power system, and supplying the power to the power-consuming components.
US10199830B2 Method and a system for controlling energy supply to different units
A method for controlling energy supply to different units includes receiving, by an aggregator, the demand request signal, and performing, by the aggregator, an allocation of the requested demand modification to the units based on a negotiating process with the units for minimizing an impact of the allocation on a future operation of another utility or of other utilities. Each unit is connected to multiple utilities for receiving enemy for operating its energy systems. A demand request signal is provided by at least one operational entity and/or by at least one utility for requesting a demand modification of a utility and/or of one form of energy.
US10199827B2 Device for controlling a power load in an electrical network, and associated method and system
A device (1) for controlling the operation of a power load comprised in an apparatus (12) belonging to a terminal electrical installation (2) of an electrical network (16) on the basis of events that are related to the operation or management of the electrical distribution network. A method and the use of same for managing the power required in an electrical network via a plurality of devices, and a system including a plurality of devices for controlling the operation of a power load and an electrical distribution network are also described.
US10199825B2 Control of a microgrid
A method performed in an electrical microgrid for facilitating connection of a first and second AC power networks. The method includes, when the power networks are disconnected, from the second power network, controlling the AC frequency of the first power network based on the AC frequency of the second power network for ensuring that when the first and second networks are connected power will flow from the power network of the first and second power networks having a higher frequency to the power network of the first and second power networks having a lower frequency. The method also includes, after the controlling, connecting the first power network to the second power network, whereby power, at the instant of connecting, flows from the power network of the first and second power networks having a higher frequency to the power network of the first and second power networks having a lower frequency.
US10199824B2 Inter-island power transmission system and method
In a particular illustrative embodiment of the present invention, an inter-island power transmission system is disclosed. An electronic box is placed on each end of a medium voltage three phase power cable running between two islands. The electronic box senses an open cable on the three phase cable and switches to direct current power transmission on the remaining two good cables. The direct current power is converted back to three phase power transmission on the receiving end of the direct current power.
US10199820B2 Delay circuit for circuit interrupting device
A delay circuit configured to delay the disconnection of one or more line conductors from one or more load conductors, wherein the one or more line conductors are disconnected from the one or more load conductors in a tripped condition. The delay circuit includes a first switch, a second switch, and a third switch. The first switch is configured to receive a fault detection signal and trigger in response to receiving the fault detection signal. Wherein the triggering of the second switch and the third switch is delayed for an amount of time, and after the amount of time has elapsed, the second switch and the third switch are activated to place the one or more line conductors and the one or more load conductors in the tripped condition.
US10199816B2 Wind turbine rotor blade having a lightning receptor base and method for making the same
A wind turbine rotor blade has a blade root, a lightning protection conductor for dissipating a lightning current toward the blade root, a suction side, a pressure side, a lightning receptor arranged on the suction side, a lightning receptor arranged on the pressure side, and an integrally formed lightning receptor base, which is arranged in the wind turbine rotor blade and on which the two lightning receptors and the lightning protection conductor are fastened, wherein the lightning receptor base includes two fastening rings, which each have an internal thread, into which one of the two lightning receptors is screwed, and an outer diameter and an outer side, wherein the outer sides of the fastening rings are arranged with a spacing of less than one outer diameter from one another.
US10199814B2 Outdoor weather resistant outlet cover
An in-use outlet cover includes a base configured to be positioned over an electrical receptacle. The base having a recessed portion at least partially defining a chamber configured to receive a plug to connect a load to the outlet. A cover assembly is pivotally connected to the base. An expandable member can positioned in a central opening of the base and moveable between a first position where the expandable member has a first volume and a second position where the expandable member has a second volume greater than the first volume, and wherein movement of the expandable member varies the size of the chamber. The cover assembly can additionally or alternatively include a lower cover pivotally connected to the base and an upper cover pivotally connected to the lower cover.
US10199813B2 Fixing structure and electrical connection box
A fixing structure includes an attaching portion, a nut, and a spacer. The attaching portion has an attaching hole through which an attaching bolt provided to a vehicle body is inserted. The nut fixes the attaching portion to the vehicle body by being tightened to the attaching bolt with a washer interposed between the nut and the attaching portion. The spacer is disposed between an inner circumferential surface of the attaching hole and an outer circumferential surface of the attaching bolt, and is in contact with the vehicle body and the washer in an axial direction of the attaching bolt in a state where the attaching bolt and the nut are tightened. The spacer has an opening on a cylindrical side surface thereof and is capable of rotating around the axial direction of the attaching bolt in a state where the attaching bolt is inserted into the opening.
US10199812B2 Shielded conductive path for shielding a plurality of electrical wires
A shielded conductive path (Wa) includes: a shielding pipe that encloses first and second electrical wires together; a first insertion path that is formed inside the shielding pipe and into which the first electrical wire is inserted; a second insertion path that is formed inside the shielding pipe, is separated from the first insertion path by a partition wall, and into which the second electrical wire is inserted; and a shielding tube that includes at least a portion of a flexible shielding member that is tubular. The shielding tube is connected to an end portion of the first insertion path so as to prevent the first and second electrical wires from being affected by electromagnetic noise therefrom.
US10199808B2 Variable length offshore cable and method of installation
The present invention provides an elongated, flexible conduit precut to an intended target length. Within the flexible conduit is arranged a cable. The elongated flexible conduit according to one aspect is a fiber-reinforced polymer conduit, and the conduit and cable are arranged to be hung-off and terminated at a first end to a first structure. The flexible conduit and internally-arranged cable are pre-cut and pre-terminated to a predetermined target length, whereby, under expected cable-laying conditions, a first or primary hang-off collar at a second end of the conduit will optimally reach the hang-off interface at a second installation such as, for example a hang-off interface arranged in a corresponding deck at a second Monopile foundation. The second end of the flexible conduit comprises a primary, or a main, hang-off interface collar arranged at an intended forecast length. However, to provide for a margin of error, the second end also comprises one or more preinstalled extension segments, each having its own hang-off collar.
US10199805B2 Injection electrical connector
A high-pressure connector for use with a cable accessory having an injection port with an opening into an interior chamber defined by one or more sidewalls. The connector includes a body portion and one or more fluid seals. The body portion has an inner fluid chamber, an outer surface, and an aperture. The inner fluid chamber is configured to allow a conductor of a cable to pass therethrough. The fluid seal(s) are positionable between the outer surface of the body portion and the one or more sidewalls to define an outer fluid chamber. The outer fluid chamber is positioned such that the opening of the injection port is positioned within the outer fluid chamber so that a fluid exiting the injection port through the opening enters the outer fluid chamber. The aperture connects the outer and inner fluid chambers and allows the fluid to flow therebetween.
US10199804B2 Busbar locating component
A busbar locating component includes: one or more first attachments configured for attaching a busbar layer to the busbar locating component; one or more bays each configured to contain and position an assembly of transistors essentially perpendicular to the busbar layer for connection; and a plurality of slots, each slot configured to contain and position a busbar relative to the busbar layer for connection.
US10199803B2 Ball stud strategy for hand-replaceable components requiring electric power
A conductive ball stud fastener arrangement for providing energy to a removable electrified component having an electrified element when the component is attached to an electrified substrate is disclosed. The ball stud fastener includes an insulating body, an electrified conductor having a conductive tip that is continuous with a conductive, centrally formed conductive stem, and a conductive attachment portion for attachment to the electrified substrate. The electrified component includes grommets having conductive elements. The ball stud fasteners are easily removed from and attached to the grommets. The conductive elements of the grommets are part of a circuit to which the electrified element of the electrified component is attached. According to one embodiment, the conductive ball stud fastener arrangement and its associated circuit includes a photoelectric sensor that opens and closes the circuit. In another embodiment, the ball studs themselves act as switches to open and close the circuit.
US10199800B2 Light emitting element
A light emitting element includes a stacked structure 20 in which a first compound semiconductor layer 21, an active layer 23 and a second compound semiconductor layer 22 made of GaN-based compound semiconductors are stacked, a mode loss acting portion 54 provided on the second compound semiconductor layer 22 and configuring a mode loss acting region 55 that acts upon increase or decrease of oscillation mode loss, a second electrode 32, a second light reflection layer 42, a first light reflection layer 41, and a first electrode 31. A current injection region 51, a current non-injection inner side region 52 that surrounds the current injection region 51 and a current non-injection outer side region 53 that surrounds the current non-injection inner side region 52 are formed on the stacked structure 20, and a projection image of the mode loss acting region 55 and a projection image of the current non-injection outer side region 53 overlap with each other.
US10199798B2 Downhole laser systems, apparatus and methods of use
Systems, apparatus and methods for performing laser operations in boreholes and other remote locations, such operations including laser drilling of a borehole in the earth, and laser workover and completion operations. Systems, apparatus and methods for generating and delivering high power laser energy below the surface of the earth and within a borehole. Laser operations using such down hole generated laser beams.
US10199794B1 Electrically isolating adjacent vertical-emitting devices
A vertical cavity surface emitting laser (VCSEL) array may comprise a doped substrate layer. The VCSEL array may comprise a plurality of VCSELs on the doped substrate layer. The VCSEL array may comprise a buffer structure between the doped substrate layer and the plurality of VCSELs. The buffer structure, or a combination of the buffer structure and a layer of the plurality of VCSELs, may provide electrical isolation from the plurality of VCSELs to the doped substrate layer. The VCSEL array may comprise an isolation structure between adjacent VCSELs of the plurality of VCSELs. The isolation structure may provide electrical isolation between a first VCSEL, of the adjacent VCSELs, and a second VCSEL of the adjacent VCSELs. The first VCSEL and the second VCSEL may be different VCSELs.
US10199793B2 Method and system for pumping of an optical resonator
A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
US10199789B2 Metal-carbonaceous brush and method of manufacturing the same
A carbonaceous material is fabricated by a mixture of carbon powder and a binder. 10% by weight or more and 60% by weight or less of metal powder to the fabricated carbonaceous material is mixed. The mixed carbonaceous material and metal powder are pressurized and formed. A brush base material is fabricated by burning of the pressurized and formed carbonaceous material and metal powder. The fabricated brush base material is impregnated with oil. An impregnation rate of the oil to the mixed carbonaceous material and metal powder may be 0.5% by weight or more, for example.
US10199788B1 Monolithic MAX phase ternary alloys for sliding electrical contacts
The present invention relates to monolithic structures for use as an electrical contact. In particular, these structures are formed from a laminate alloy, which in turn is composed of a Mn+1AXn compound. Electrical contact assemblies and electrical components having such contacts are also described herein. In some example, such monolithic structures display increased wear resistance, which is useful for sliding electrical contacts.
US10199787B2 Arrangement for electrical lines mounted in a motor vehicle
An arrangement for electrical lines is set forth which is mounted in a steering column switching module and/or in a steering wheel mounted on the module, equipped with its ends electrically conductively connected to one of the electrical components, which is fixedly mounted in the steering wheel switching module or in the steering wheel mounted thereon. At least two of the lines are connected with their other free ends to electrical contacts, which are arranged in at least one coupling body of insulation material in such a way that they are accessible on the plug-in side thereof. The coupling body is accessible from the outside connected with a plug-in side on or in the steering column switching module of the motor vehicle and, in the assembly position, an electrical line leading to the coupling body is connected through an electrical line leading to the onboard network.
US10199785B2 Adapter for a power outlet and a power plug
An adapter is placed between a power outlet and a power plug to electrically connect them. The adapter includes a pair of blade slots and a pair of terminal slots arranged in correspondence with a pair of blades and a pair of earth terminals protruding from a power plug. The pair of blade slots is arranged on a first reference line passing through a center of an adapter body in a radial direction, and is arranged laterally symmetrical with respect to a second reference line. The pair of terminal slots is arranged on the second reference line, and is arranged vertically symmetrical with respect to the first reference line.
US10199780B2 Electric shielding contact device
An electric shielding contact device in the form of a hollow cylinder that has a contact section and a crimping section. The contact section serves to electrically contact the electric shielding contact device with an electric counter contact. The crimping section serves to attach the electric shielding contact device to an electrical cable upon crimping of the crimping section and has a gaping opening shaped and sized to become a slit when the crimping section of is crimped and the electric shielding contact device attached to the electrical cable.
US10199779B2 Shield connector
A shield connector (1) includes wires (W) extending out from a housing (8) through a tube (11). A braided wire (12) surrounds the wires (W). An end part of the braided wire (12) on the side of a housing body is mounted on the tube (11). A rubber boot (13) covers the tube (11) and parts of the wires (W) extending out from the tube (11) from above the braided wire (12), and a shield shell (17) covers the housing body (9) and part of the boot (13) covers the tube (11). The rubber boot (13) is fixed to the shield shell (17). An end part of the braided wire (12) on the side of the housing body (9) extends out from an opening of the rubber boot (13) on the side of the housing body (9) and is sandwiched between the rubber boot (13) and the shield shell (17).
US10199777B2 Electrical connector having a middle shielding plate avoiding a power contact
An electrical connector includes: an insulative housing having a base and a tongue; an upper and lower rows of contacts mounted in the insulative housing and exposed to the tongue, the upper and lower rows of contacts including at least one power contact; a shielding shell (4) enclosing the insulative housing; and a shielding plate (3) mounted in the insulative housing and shielded between the upper row of contacts and the lower row of contacts; wherein the shielding plate has a center portion (33), a pair of opposite side portions (34) integrally connected with the center portion, and a pair of slits (321) between the center portion and the side portions; and the slit is aligned with the at least one power contact.
US10199773B2 Systems and methods for automatic detection of misconnected cables
Systems and methods for automatic detection of misconnected cables are described herein. In one or more embodiments, a test circuit sends a signal through a first pin of a first connector that is coupled to a first cable of a plurality of cables. The test circuit monitors a second pin of a second connector that is coupled to a second cable of the plurality of cables to determine whether the signal is detected on the second pin of the second connector. Responsive to determining that the signal is not detected on the second pin, an alert signal is generated to indicate that at least one cable of the plurality of cables is misconnected.
US10199771B2 High-current plug with clip lock
A plug system with a plug connector, such as a high-current plug, and a mating plug connector, such as a high-current socket, for coupling to the plug connector by a lock device which counteracts a withdrawal of the plug connector from the mating plug connector in a locked position (I), wherein the lock device has a lever part which is secured to the plug connector in a pivotal manner and a securing clip which is attached to the lever part in an articulated manner for engaging into an engagement portion of the mating plug connector in the locked position (I).
US10199767B2 Plug-in connector with latching element
A plug-in connector comprises a first connecting part with at least one first contact element and a second connecting part with at least one second contact element. The first connecting part is configured for being connected with and disconnected from the second connecting part. The first connecting part comprises a latching element with a snap-in member, and the second connecting part comprises a retaining sleeve configured for accepting the latching element. The latching pin and the retaining sleeve constitute a mechanical mechanism provided in addition to the at least one first contact element and the at least one second contact element. A mechanical interaction between the latching pin and the retaining sleeve enforces a predetermined motion pattern of the at least one first contact element relative to the at least one second contact element during a process of connecting or disconnecting the first connecting part and the second connecting part.
US10199764B2 Waterproof electrical connector having a shielding shell with a stepped and recessed structure
An electrical connector includes: an insulative housing having a rear base and a front tongue; an upper and lower rows of contacts mounted in the insulative housing and exposed to the tongue; a shielding shell enclosing the insulative housing; and a sealing element sealing a junction between the insulative housing and the shielding shell; wherein the shielding shell includes a rear step located immediately adjacent the junction and a recess at a corner of the step, and the base of the insulative housing includes a step fitting the rear step of the shielding shell.
US10199759B2 Touch-protected socket, plug, and plug-in connection
A socket has a housing, which is composed of an electrically insulating material and an elongate plug-receiving region. A contact spring is arranged in the plug-receiving region. A lever loads the contact spring in the open position of the lever such that a dimension of the contact spring transverse to the longitudinal direction of the plug-receiving region is reduced and relaxes the contact spring in the closed position of the lever. A plug is provided for such a socket.
US10199756B2 Electrical connector
An electrical connector for electrically connecting a chip module to a circuit board includes: a body, configured to upward support the chip module, where the body is provided with a plurality of accommodating holes; and multiple terminals, respectively accommodated in the accommodating holes correspondingly. Each of the terminals includes a flat plate portion along a vertical direction and a connecting portion connected to the flat plate portion. An elastic arm is formed by bending and extending from at least one end of the connecting portion so as to abut the chip module or the circuit board. When the chip module presses the terminal downward, a side edge of the elastic arm abuts the flat plate portion. The structure of an elastic arm can be simplified to reduce the processing difficulty thereof.
US10199755B2 Electrical connective device
An apparatus that is used to enclose and stack electrical components in varying configurations. The configurations are achieved by easily manipulating the way the apparatus is stacked. The stacking of apparatus' is achieved easily, and with little cost in manufacturing.
US10199753B2 Multi-pin connector block assembly
A radio frequency (RF) connector block assembly having a plurality of connector pin assemblies mounted within a multi-connector block is disclosed. Each connector pin assembly has a dielectric and a contact pin positioned in a housing. Multiple housings may be independently removably mounted in the multi-connector block with independently movable contact pins. A first end of each contact pin is adapted to provide electrical continuity with an external component, for example, a connector, and a second end of each contact pin terminates distally in a connection feature, which may be connected to an external structure, for example, a printed circuit board (PCB). Each contact pin moves axially in response to movement of the connection feature by engagement with the PCB.
US10199749B2 Underwater connecting apparatus and assemblies
A cable termination apparatus for an underwater cable that includes a cable crimp for electrically connecting the underwater cable to a pin; a conductive crimp screen; and an insulating portion molded on the conductive crimp screen and located radially outwardly of the conductive crimp screen.
US10199748B2 Electrical connector and terminal thereof
An electrical connector, used for electrically connecting a chip module to a circuit board, comprising: an insulating body, provided with a plurality of accommodating openings; and a plurality of terminals, correspondingly accommodated in the accommodating openings respectively, wherein each terminal has a connection portion, two sides of the connection portion bend and extend to form a first clamping arm and a second clamping arm, respectively, the first clamping arm and the second clamping arm together clamp a solder material, the first clamping arm has a first upper edge and a first lower edge arranged opposite to each other, and the length of the first upper edge is not equal to the length of the first lower edge. Under conditions of not increasing the length of a metal billet, the length of the first upper edge is increased, and the length of the first lower edge is decreased.
US10199747B2 Antenna and antenna array
An antenna includes a radiator, a first feeding portion, a second feeding portion, a first grounding portion, a second grounding portion, and a loading portion. The radiator is parallel to the base board to radiate signals. A first end of the first feeding portion is electrically coupled to a central position of the radiator. A second end of the first feeding portion receives a first feeding signal to generate a first radiation pattern. A first end of the second feeding portion is electrically coupled to a first corner of the radiator. A second end of the second feeding portion receives a second signal to generate a second radiation pattern. The first grounding portion is electrically coupled between a second corner of the radiator and a ground plane of the base board. The second grounding portion is electrically coupled between a third corner of the radiator and the ground plane.
US10199746B2 Antenna apparatus, vehicle having the antenna apparatus, and method for controlling the antenna apparatus
An antenna apparatus includes an omni-directional antenna for omni-directionally transmitting or receiving a signal, and a directional antenna module including a plurality of directional antennae having different radiation angles, wherein each of the directional antennae includes a feed unit to provide a signal, at least one waveguide through which the provided signal is propagated, and at least one radiation slot designed to radiate the signal propagated through the waveguide.
US10199745B2 Omnidirectional antenna system
An antenna system may include a first antenna, and a second antenna opposite the first antenna, wherein the first antenna and the second antenna are configured to provide omnidirectional coverage.
US10199744B2 Directional MIMO antenna using electro-polarization
A directional MIMO antenna using electro-polarization is provided to realize a MIMO antenna capable of maintaining directivity utilizing an antenna using electro-polarization formed by disposing a metal strip antenna on a circuit board. The directional MIMO antenna includes a horizontal polarization line formed by disposing a plurality of horizontal polarization strips for generating horizontal polarization on one surface of a circuit board, a vertical polarization line formed by disposing a plurality of vertical polarization strips for generating vertical polarization on the other surface of the circuit board to correspond to a position of the horizontal polarization line, and a radiation antenna connected to the horizontal polarization line and the vertical polarization line.
US10199734B2 Antenna for satellite communication having structure for switching multiple band signals
The present invention discloses an antenna for satellite communication having a structure for switching multiband signals. The antenna for satellite communication according to an embodiment of the present invention includes a main reflecting plate configured to be rotatable in a predetermined direction so as to be oriented in a direction in which a satellite is located, a first feed horn configured to be detachably installed in a region of an edge of the main reflecting plate, a sub-reflecting plate configured to be installed so as to be spaced apart from a reflecting surface of the main reflecting plate by a predetermined distance by at least one support means provided in a region of the main reflecting plate, and a second feed horn configured to be detachably installed on a side opposite to the reflecting surface of the sub-reflecting plate, wherein an installation position of the sub-reflecting plate is changeable.
US10199733B1 Multiband multifilar antenna
Multi-band quadrifilar antennas that are suitable for satellite communication include composite elements each of which include multiple conductors operating at different frequencies connected to a bus bar. Each composite element is coupled to a signal feed and to a ground structure.
US10199731B2 Electronic component
An electronic component is provided, which includes a substrate having opposite first and second surfaces and an antenna structure combined with the substrate. The antenna structure has at least a first extending portion disposed on the first surface of the substrate, at least a second extending portion disposed on the second surface of the substrate, and a plurality of connecting portions disposed in the substrate for electrically connecting the first extending portion and the second extending portion. Any adjacent ones of the connecting portions are connected through one of the first extending portion and the second extending portion. As such, the antenna structure becomes three-dimensional. The present invention does not need to provide an additional region on the substrate for disposing the antenna structure, thereby reducing the width of the substrate so as to meet the miniaturization requirement of the electronic component.
US10199730B2 Coupled antenna system for multiband operation
A radiating system configured to operate electromagnetic wave signals from first and second frequency regions, wherein the lowest frequency of the second frequency region is above the highest frequency of the first frequency region: the radiating system comprising a radiating structure, a radiofrequency system, and an external port. The radiating structure comprises a first boosting element electrically connected to a first conductive element, a second boosting element electrically connected to a second conductive element, and a ground plane layer. The radiofrequency system comprises a first matching network connected to the first conductive element and the external port, and a second matching network connected to the second conductive element and a ground port. The first and second matching networks are configured to modify the impedance of the radiating structure providing impedance matching to the radiating system, at the external port, in the first and second frequency regions.
US10199726B2 Systems and methods providing assisted aiming for wireless links through a plurality of external antennas
Systems and methods which provide local sensor and/or external information derived proactive aiming assistance with respect to wireless nodes for facilitating desired wireless links are shown. Embodiments provide an aiming assistance user interface providing guidance with respect to properly altering the orientation of the plurality of external antennas to provide a desired wireless link. To facilitate providing aiming assistance, embodiments of a plurality of sensors, placed at the plurality of external antennas respectively, operable to provide information useful in environmental analysis for determining proactive orientation guidance information.
US10199720B2 Network allocation vector operations to reduce channel access delay
Computing readable media, apparatuses, and methods for network allocation vector operations to reduce channel access delay. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry configure to: select a first one or more directional multi-gigabit (DMG) antennas from DMG antennas of the wireless device. The processing circuitry further configured to configure the wireless device to perform a clear channel assessment (CCA) for each of a plurality of CCA configurations applicable to the first one or more DMG antennas, where each CCA configuration comprises a second one or more of the DMG antennas. The processing circuitry further configured to if each CCA configuration applicable to the first one or more DMG antennas indicate the channel is idle, decrease a backoff time, and, if the backoff time is zero, configure the wireless device to transmit a packet on the channel using the first one or more DMG antennas.
US10199716B2 Electronic device and antenna of the same
An electronic device and an antenna of an electronic device are provided. The electronic device includes a metal shell, and the antenna includes: a radiating surface formed by metal shell and having a slot group penetrated therethrough in an up and down direction of the metal shell, the slot group including a plurality of slots; a medium filling layer including a body part disposed on a lower surface of the metal shell and a plurality of filling parts disposed on an upper surface of the body part and filled in the plurality of slots respectively; and an excitation sheet disposed on a lower surface of the medium filling layer.
US10199708B2 Multiport distribution network
A multiport distribution network is provided that supports N inputs and N outputs, where N>1, the multipart distribution network providing an independent distribution path extending from each input to each output, each path being formed from a sequence of at least two fundamental units. Each fundamental unit comprises a circuit formed of multiple resonator cavities and having n input ports for receiving respective input signals, and n output ports for outputting respective output signals, where n>1, and wherein the circuit is configured to: (i) at each input port, split an input signal received at that input port into n equal signal components and provide each of the n signal components to a respective output port of the circuit; and (ii) at each output port, combine the signal components received from the n input ports to form an output signal for that output port. The multipart distribution network is configured to apply the same filter transfer function along each independent distribution path.
US10199699B2 Low profile battery assembly for electrified vehicles
A battery assembly includes a plurality of battery cells and a support structure positioned about the plurality of battery cells. The support structure includes at least one sidewall and the at least one sidewall includes a first flange that extends adjacent a top surface of each of the plurality of battery cells and a second flange that extends beyond a bottom surface of each of the plurality of battery cells.
US10199697B2 Sealed battery pack designs
An exemplary battery pack includes a battery assembly and an enclosure assembly housing the battery assembly. The enclosure assembly is arranged to dissipate heat from at least two sides of the battery assembly.
US10199696B2 Module housing of unit module having heat dissipation structure and battery module including the same
Disclosed herein is a module housing of a unit module including battery cells, the module housing including a first cover member and a second cover member coupled to each other for covering entire outer surfaces of the battery cells, mounting grooves formed at an inside end of at least one of the first and second cover members such that the battery cells are mounted in the respective mounting grooves, and an injection port formed at the module housing such that a thermoplastic resin is injected to interfaces between the mounting grooves and the battery cells through the injection port in a state in which the battery cells are mounted in the module housing.
US10199683B2 Polyether copolymer, crosslinkable polyether copolymer composition and electrolyte
Provided is a material which exhibits excellent ion conductivity and excellent processability and which can provide an electrolyte that exhibits excellent water-resistant shape retention properties after processing. A polyether copolymer having polyether segment blocks having cationic groups and hydrophobic polyether segment blocks. The polyether segments having cationic groups preferably have oxirane monomer units represented by general formula (1). The polyether copolymer may have oxirane monomer units having crosslinkable groups. An electrolyte is obtained by crosslinking a composition containing the polyether copolymer and a crosslinking agent. (In general formula (1), A+ denotes a group having an onium cation structure having a cationic nitrogen atom, and X− denotes an anion).
US10199682B2 Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
Described are solid-state electrochemical energy storage devices and methods of making solid-state electrochemical energy storage devices in which components of the batteries are truly solid-state and do not comprise a gel. Nor do they rely on lithium-containing electrolytes. Electrolytes useful with the solid-state electrochemical energy storage described herein include, for example, ceramic electrolytes exhibiting a crystal structure including voids or crystallographic defects that permit conduction or migration of oxygen ions across a layer of the ceramic electrolyte. Disclosed methods of making solid-state electrochemical energy storage devices include multi-stage deposition processes, in which an electrode is deposited in a first stage and an electrolyte is deposited in a second stage.
US10199676B2 Secondary battery pack comprising movable wall and elastic member
A secondary battery pack including end plates capable of suppressing a deformation caused by an expansion force of unit cells, a movable wall disposed between at least one end plate and one side face of a unit cell, elastic members disposed between at least one end plate and the movable wall, and connecting bars configured to connect the end plates with each other disposed on both opposite end sides of the at least one unit cell.
US10199670B2 Power generator having reference pressure chamber
A device includes a case having a surface with a perforation and a first cavity containing a gas generating fuel. A first membrane is supported by the case inside the first cavity. The first membrane has an impermeable valve plate positioned proximate the perforation. The first membrane is water vapor permeable and gas impermeable and flexes responsive to a difference in pressure between the cavity and outside the cavity to selectively allow water vapor to pass through the perforation to the fuel as a function of the difference in pressure. A second membrane that is water vapor permeable gas impermeable is coupled between an outside of the case exposed to ambient atmospheric gas and the valve plate creating a reference pressure second cavity configured to reduce the effects of ambient pressure transients on the difference in pressure. A fuel cell membrane may be included in the device to produce electricity.
US10199669B2 Power modulation for fuel cell powered datacenters
A fuel cell power controller tracks load current and fuel cell output voltage, and alerts on excessive fuel cell ramp rate, so another power source can supplement the fuel cell and/or the load can be reduced. A power engineering process makes efficient use of available fuel cell power by ramping up power flow rapidly when power is available, while respecting the ramp rate and other power limitations of the fuel cell and safety limitations of the load. Power flow decreases after an alert indicating an electrical output limitation of the fuel cell. Permitted power flow increases in response to a power demand increase (actual or requested) from the load in the absence of the alert. Power flow may increase or decrease in a fixed amount, a proportional amount, or per a sequence. A power controller relay may trip open on a low fuel cell output voltage or high load current.
US10199666B2 Fuel cell system
An object is to reduce the noise and the vibration caused in operation of an injector in a non-power generation state of a fuel cell. There is provided a fuel cell system comprising fuel cells configured such that each fuel cell includes an anode, an electrolyte membrane and a cathode; an injector that is configured to supply hydrogen to the anode; and a controller that is configured to control operation of an injector to make pressure of the anode reach a target pressure. In a non-power generation state that is after a start of the fuel cell system but is before power generation of the fuel cells, the controller sets a second target pressure that is higher than a first target pressure to the target pressure and controls operation of the injector to make the pressure of the anode equal to the second target pressure. After the pressure of the anode is increased to be higher than the first target pressure, the controller sets the first target pressure to the target pressure and controls operation of the injector to make the pressure of the anode equal to the first target pressure. The first target pressure is a pressure required to supply hydrogen over the entire anodes in the fuel cell stack.
US10199658B2 Wound thermal batteries and methods of manufacturing the same
A thermal battery includes a first conductive layer containing an anode material separated from a second conductive layer containing a cathode material by a separator layer containing a separator material; and a flexible pyrotechnic heat source, wherein the first conductive layer, the separator layer, and the second conductive layer are rolled together to form the spiral wound configuration. A method of manufacturing a thermal spiral wound battery includes preparing three slurries, each containing one of an anode material, a cathode material, and a separator material, depositing each of the materials from the slurries onto conductive substrates to form three layers, stacking the layers, and winding the layers together into a spiral wound configuration.
US10199657B2 Alkaline metal-air battery cathode
A metal-air battery and a component air cathode including a solid ionically conductive polymer material.
US10199656B2 Battery grid, battery cell comprising the battery grids and storage battery comprising the battery cells
Battery grid (1) comprising a grid structure (4) containing grid arms (2, 2′) and bordering arms (3), a supporting element (5) and lugs (6), as well as lead paste (7) spread on the surface of the supporting element (5).The invention also relates to a battery cell (35) comprising the battery grids (1) with separator plates (38) placed between them. The invention further relates to a storage battery (42) comprising battery cells (35) filled with acid. The supporting element (5) comprises fiberglass based material onto which the grid structure (4) is secured through chemical bond formed between the lead and the fiberglass. The lead paste (7) is secured to the supporting element (5) through chemical bond and the grid structure (4) has more than one lug (6). The battery cell (35) is composed of the battery grids (1). The lugs (41, 42) are connected to a jointing element (8). The storage battery (42) comprises the battery cells (35).
US10199654B2 Graphene composite, method for producing graphene composite and electrode for lithium ion battery containing graphene composite
Provided is a graphene composite primarily used as a conductive additive for forming an electrode for lithium ion batteries, which has performance equal to or higher than conventional dispersants and is deceased in cost by using an inexpensive and easily available dispersant. The graphene composite includes a graphene powder and a compound having a structure of pyrazolone.
US10199652B2 Binder for electrochemical cells, paste for electrochemical cells, and method for producing electrode for electrochemical cells
The invention of the present application addresses the problem of providing a binder for electrochemical cells which exhibits sufficient adhesive properties with respect to collectors and active materials, which is electrochemically stable, which is not readily swelled by electrolytes, and with which battery cycle characteristic can be sufficiently improved. Accordingly, provided is a binder for electrochemical cells which comprises a polyolefin copolymer (A) including structural units derived from an olefin, and structural units derived from (meth)acrylic acid. The carboxylic acid included in the structural units derived from the (meth)acrylic acid is neutralized by at least one non-volatile alkali compound and at least one volatile alkali compound.
US10199649B2 Lithium rich nickel manganese cobalt oxide (LR-NMC)
Set forth herein are positive electrode active material compositions, e.g., lithium-rich nickel manganese cobalt oxides. The lithium-rich nickel manganese cobalt oxides set forth herein are characterized, in some examples, by an expanded unit cell which maximizes the uniform distribution of transition metals in the crystalline oxide. Also set forth herein are positive electrode thin films including lithium-rich nickel manganese cobalt oxide materials. Disclosed herein are novel and inventive methods of making and using lithium-rich nickel manganese cobalt oxide materials for lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these materials.
US10199645B2 Producing method for composite active material
The present disclosure provides a method for producing a composite active material with the capability of improving coating efficiency. The present disclosure achieves an object by providing a method for producing a composite active material having an oxide active material, an oxide solid electrolyte layer that coats a surface of the oxide active material, and a sulfide solid electrolyte layer that coats a surface of the oxide solid electrolyte layer, where the method comprises a coating step of forming the sulfide solid electrolyte layer by conducting a mixing treatment such that a sulfide solid electrolyte material is mixed with the oxide active material coated with the oxide solid electrolyte layer while plastically deforming the sulfide solid electrolyte material, under a pressure decompressed to less than an atmospheric pressure.
US10199644B2 Lithium secondary battery
Disclosed is a lithium secondary battery, including a cathode, an anode and a non-aqueous electrolyte, wherein the cathode includes a cathode active material containing lithium-metal oxide of which at least one of metals has a concentration gradient region between a core part and a surface part thereof, and the anode includes hard carbon having an average lattice distance (d002) in the range of 3.6 to 3.8 Å and graphite having-an average lattice distance (d002) in the range of 3.356 to 3.360 Å, such that output and high-temperature storage properties may be improved.
US10199641B2 Mixed positive electrode active material, positive electrode comprising same, and secondary battery
Provided is a mixed positive electrode active material comprising a large-grain positive electrode active material with an average diameter of 10 μm or greater and a small-grain positive electrode active material with an average diameter of 5 μm or smaller, in which the large-grain positive electrode active material and the small-grain positive electrode active material are coated with different materials between lithium triborate and metal oxide, respectively.
US10199640B2 Negative electrode material for secondary battery and secondary battery using the same
Alloy particles for negative electrode active material are proposed, which can impart anti-oxidation property to Si-containing alloy particles, and suppress oxidation of the negative electrode active material due to electrolyte at a considerably high level. A negative electrode material of secondary battery is achieved by a negative electrode material of secondary battery which is capable of intercalating and de-intercalating lithium and which consists of alloy particles including a silicon phase, a metal phase and bismuth, in which a crystallite size of the silicon phase is 10 nm or smaller, and the metal phase includes at least one kind of metal alloying with silicon but not with lithium, and the negative electrode material includes primary particles formed at least by the silicon and the metals.
US10199628B2 Prismatic secondary battery
A prismatic secondary battery in which a deformation plate becoming deformed when a pressure inside the battery becomes equivalent to or higher than a predetermined value is disposed in a conductive path between a positive electrode plate and a positive electrode terminal. A positive electrode collector electrically connected to the positive electrode plate includes a collector body portion disposed on an electrode body side of the deformation plate, a collector connection that extends from an end of the collector body portion in a longitudinal direction of a sealing plate towards the sealing plate, and a lead portion that extends from the collector connection in the longitudinal direction of the sealing plate. A positive electrode tab portion is connected to the lead portion.
US10199616B2 Battery pack including cell frames coupled to each other
A battery pack includes a plurality of battery cells, each battery cell of the plurality of battery cells including a top surface from which a pair of electrode tabs are drawn, a bottom surface facing the top surface, and a pair of long side surfaces having relatively large areas and a pair of short side surfaces having relatively small areas, among surfaces connecting the top surface and the bottom surface, and a plurality of cell frames, each cell frame of the plurality of cell frames individually accommodating a respective one of the battery cells and exposing portions of the long side surfaces of the respective one of the battery cells. The cell frames are coupled to each other in a line. Edges of the cell frames include fixing parts extending parallel with the long side surfaces of the battery cells and covering portions of the long side surfaces.
US10199615B2 Top cover structure of power battery and power battery
The top cover structure of the power battery includes a cap plate, a cathode column, a conducting piece and a reversing piece, the conducting piece is electrically connected with the cathode column, the cathode column is insulatedly assembled with the cap plate; the reversing piece includes a welding part, a embossment with a solid core structure and a joint part arranged between the welding part and the embossment, the embossment is arranged at the center of the joint part, the welding part is arranged on the outer margin of the joint part; the welding part is electrically connected with the cap plate, the embossment does not contact the conducting piece, when the pressure inside the power battery increases, the reversing piece receives the pressure inside the power battery, and moves upwards, so that the embossment is electrically connected to the conducting piece.
US10199609B2 Organic electroluminescent display panel including light-isolating members, method for manufacturing the same and display apparatus
Disclosed is an organic electroluminescent display panel, a method for manufacturing the same and a display apparatus. The organic electroluminescent display panel comprises a plurality of luminescent units, wherein light-isolating members are disposed between the plurality of luminescent units for isolating light emitted from the respective luminescent units. Therefore, the organic electroluminescent display panel, the method for manufacturing the same and the display apparatus according to the present invention can prevent mutual interference between the light from the respective luminescent units of the organic electroluminescent display panel.
US10199603B2 Adhesive barrier film construction
The present disclosure relates to forming a bond with a high peel resistance between a bonding layer and an adjacent barrier layer. Such articles are particularly useful in the preparation of a device, in particular a luminescent device, and a method is described for assembly of the luminescent device. The luminescent device includes an encapsulation system using flexible transparent barrier film and an ultraviolet (UV) radiation curable (meth)acrylate matrix. The moisture sensitive luminescent material can be, for example, a quantum dot material disposed in a film, or a film construction that includes an OLED structure.
US10199600B2 Display device and method for fabricating the display device
A display device may include a display panel that includes a plurality of display elements. The display device may further include a protective member overlapping the display panel. The display device may further include an optical member disposed between the display panel and the protective member and configured to prevent light reflected by the display panel from reaching the protective member. The optical member may include a plurality of directional members. The plurality of directional members may have an optic axis.
US10199591B2 Display device
An organic EL display device has a TFT formed on the substrate, and an organic EL layer formed on the TFT. A protective layer is formed on the organic EL layer, and a first barrier layer which contains AlOx is formed between the substrate and the TFT.
US10199588B2 Planar mixed-metal perovskites for optoelectronic applications
A planar mixed-metal perovskite solar cell can exhibit many favorable properties including high efficiencies and tunable electronic properties. The incorporation of different metal species (i.e. Co, Cu, Fe, Mg, Mn, Ni, Sn, Sr, and Zn) into the film is made possible by the solubility of either each metal's divalent acetate or halide compound in a solvent.
US10199586B2 Device comprising dielectric interlayer
A process for preparing a device and a device including a substrate; an interlayer disposed on the substrate, wherein the interlayer comprises a cured film formed from an interlayer composition, wherein the interlayer composition comprises: an epoxy compound; a polyvinyl phenol; a melamine resin; a solvent; an optional surfactant; and an optional catalyst; a source electrode and a drain electrode disposed on a surface of the interlayer; a semiconductor layer disposed on the interlayer, wherein the semiconductor layer is disposed into a gap between the source and drain electrode; a back channel interface comprising an interface between the semiconductor layer and the interlayer, wherein the interlayer serves as a back channel dielectric layer for the device; a dielectric layer disposed on the semiconductor layer; a gate electrode disposed on the dielectric layer. Also an interlayer composition and an organic thin film transistor comprising the interlayer composition.
US10199585B2 Light-emitting device having plurality of spacers connected to each other through an elastic body
A highly portable and highly browsable light-emitting device is provided. A light-emitting device that is less likely to be broken is provided. The light-emitting device has a strip-like region having high flexibility and a strip-like region having low flexibility that are arranged alternately. In the region having high flexibility, a light-emitting panel and a plurality of spacers overlap with each other. In the region having low flexibility, the light-emitting panel and a support overlap with each other. When the region having high flexibility is bent, the angle between normals of facing planes of the two adjacent spacers changes according to the bending of the light-emitting panel; thus, a neutral plane can be formed in the light-emitting panel or in the vicinity of the light-emitting panel.
US10199581B2 Organic electroluminescent materials and devices
A compound having an ancillary ligand L1 having the formula: Formula I is disclosed. The ligand L1 is coordinated to a metal M having an atomic number greater than 40, and two adjacent substituents are optionally joined to form into a ring. Such compound is suitable for use as emitters in organic light emitting devices.
US10199580B2 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
An organic EL device includes an anode, an emitting layer, an electron transporting zone and a cathode in this sequence, in which the electron transporting zone contains an aromatic heterocyclic derivative represented by a formula (1) below. In the formula (1), X1 to X3 are a nitrogen atom or CR1, and A is represented by a formula (2) below. In the formula (2), L1 is s single bond or a linking group, and HAr is represented by a formula (3) below. In the formula (3), Y1 is an oxygen atom, a sulfur atom or the like, and one of X11 to X18 is a carbon atom bonded to L1 by a single bond and the rest of X11 to X18 are a nitrogen atom or CR13
US10199579B2 Self-powered GHZ solution-processed hybrid perovskite photodetectors
Organic-inorganic hybrid perovskite (OIHP) based photo-responsive devices include an OIHP active layer disposed between a cathode layer and an anode layer, and an electron extraction layer disposed between the cathode layer and the active layer. The electron extraction layer includes a layer of C60 directly disposed on the active layer. The active layer includes an organometal trihalide perovskite layer (e.g., CH3NH3PbI2X, where X includes at least one of Cl, Br, or I).
US10199572B2 Integrated magnetic random access memory with logic device
Device and methods of forming a device are disclosed. The method includes providing a substrate defined with at least first and second regions. A first dielectric layer is provided over the first and second regions of the substrate. The first dielectric layer corresponds to pre-metal dielectric (PMD) or CA level which comprises a plurality of contact plugs in the first and second regions. A first interlevel dielectric (ILD) layer is provided over the first dielectric layer. The first ILD layer accommodates a plurality of metal lines in M1 metal level in the first and second regions and via contact in V0 via level in the first region. A magnetic random access memory (MRAM) cell is formed in the second region. The MRAM cell includes a magnetic tunnel junction (MTJ) element sandwiched between the M1 metal level and CA level.
US10199571B2 Methods of manufacturing magnetoresistive MTJ stacks having an unpinned, fixed synthetic anti-ferromagnetic structure
A magnetoresistive magnetic tunnel junction (MTJ) stack includes a free magnetic region, a fixed magnetic region, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, including cobalt, (ii) a multi-layer region including a plurality of layers of ferromagnetic materials, wherein the plurality of layers of ferromagnetic materials include a layer of one or more ferromagnetic materials including cobalt, and (iii) an anti-ferromagnetic coupling layer disposed between the first layer and the multi-layer region. The free magnetic region may include a circular shape, the one or more ferromagnetic materials of the first layer may include cobalt, iron and boron, and the dielectric layer may be disposed on the first layer.
US10199566B2 Semiconductor device having magnetic tunnel junction structure and method of forming the same
A semiconductor device includes a magnetic tunnel junction structure on a lower electrode, an intermediate electrode on the magnetic tunnel junction structure, and an upper electrode on the intermediate electrode, wherein the intermediate electrode includes a lower portion and an upper portion having a side surface profile different from that of the lower portion.
US10199565B2 Device using a piezoelectric element and method for manufacturing the same
An inkjet printing head 1 includes an actuator substrate 2 having pressure chambers (cavities) 7, a movable film formation layer 10 including movable films 10A disposed above the pressure chambers 7 and defining top surface portions of the pressure chambers 7, and piezoelectric elements 9 formed above the movable films 10A. Each piezoelectric element 9 includes a lower electrode 11 formed above a movable film 10A, a piezoelectric film 12 formed above the lower electrode 11, and an upper electrode 13 formed above the piezoelectric film 12. The piezoelectric film 12 includes an active portion 12A with an upper surface in contact with a lower surface of an upper electrode 13 and an inactive portion 12B led out in a direction along a front surface of the movable film formation layer 10 from an entire periphery of a side portion of the active portion 12A and having a thickness thinner than that of the active portion 12A.
US10199564B2 Method for manufacturing niobate-system ferroelectric thin-film device
This method for manufacturing a lead-free niobate-system ferroelectric thin film device includes: a lower electrode film formation step of forming a lower electrode film on a substrate; a ferroelectric thin film formation step of forming a niobate-system ferroelectric thin film on the lower electrode film; an etch mask pattern formation step of forming an etch mask in a desired pattern on the niobate-system ferroelectric thin film; and a ferroelectric thin film etching step of shaping the niobate-system ferroelectric thin film into a desired fine pattern by wet etching using an etchant comprising: a predetermined chelating agent including at least one selected from EDTMP, NTMP, CyDTA, HEDP, GBMP, DTPMP, and citric acid; an aqueous alkaline solution containing an aqueous ammonia solution; and an aqueous hydrogen peroxide solution.
US10199563B2 Ultrasound probe
Provided is a method of manufacturing an ultrasound probe. The method includes: preparing a backing layer having first and second surfaces with different heights due to forming a groove in the backing layer, wherein first and second electrodes are exposed on the first and second surfaces, respectively; forming a third electrode that is in contact with the first electrode; forming a base piezoelectric unit on the third electrode, the base piezoelectric unit including a piezoelectric layer; forming a piezoelectric unit by removing an upper region of the base piezoelectric unit; and forming a fourth electrode on the backing layer and the piezoelectric unit.
US10199562B2 Electronic device and method of fabricating the same
A method of fabricating an electronic device, the method including: arranging a device chip with no bump located on a lower surface of the device chip on a mounting substrate including a bump located on an upper surface of the mounting substrate; and bonding a pad located on the lower surface of the device chip and the bump by applying an ultrasonic wave to the device chip from an upper surface of the device chip.
US10199559B2 Piezoelectric element and piezoelectric element applied device
There is provided a piezoelectric element which includes a first electrode which is formed on a substrate, a piezoelectric layer which is formed on the first electrode, and is formed from a compound oxide having an ABO3 type perovskite structure in which potassium (K), sodium (Na), niobium (Nb), and manganese (Mn) are provided, and a second electrode which is formed on the piezoelectric layer. The manganese includes bivalent manganese (Mn2+), trivalent manganese (Mn3+), and tetravalent manganese (Mn4+). A molar ratio (Mn2+/Mn3++Mn4+) of the bivalent manganese to a sum of the trivalent manganese and the tetravalent manganese is equal to or greater than 0.31.
US10199556B2 Unit, oscillator and electronic apparatus
A quartz crystal resonator unit has an overall length less than 2.1 mm and a base portion having a length less than 0.5 mm and a width less than 0.55 mm, vibrational arms, and mounting arms connected to the base portion through connecting portions. Each vibrational arm has a first vibrational portion including a first width and a first length within a range of 0.32 mm to 0.72 mm and a second vibrational portion including a second width greater than the first width and a second length less than the first length. A groove is formed in at least one main surface of the first vibrational portions of the vibrational arms, a width of the groove being less than 0.07 mm and a distance in the width direction of the groove being less than 0.015 mm. A width of the mounting arms is less than 0.45 mm and a width of the connecting portion is less than 0.41 mm.
US10199552B2 Light emitting device and electronic component
A light emitting device includes a wiring substrate, a light emitting element disposed on a front surface of the wiring substrate, and a conductor pattern formed on a rear surface of the wiring substrate. The conductor pattern includes a slit or a hole that fails to separate the conductor pattern into two parts.
US10199547B2 Red phosphor and light emitting device including the same
A red phosphor including the composition represented by the following general formula. (x−a)MgO.(a/2)Sc2O3.yMgF2.cCaF2.(1−b)GeO2.(b/2)Mt2O3:zMn4+ where x, y, z, a, b, and c satisfy 2.0≤x≤4.0, 0
US10199546B2 Color-filter device
A micro-transfer color-filter device comprises a color filter, an electrical conductor disposed in contact with the color filter, and at least a portion of a color-filter tether attached to the color filter or structures formed in contact with the color filter. In certain embodiments, a color filter is a variable color filter electrically controlled through one or more electrodes and can be responsive to heat, electrical current, or an electrical field to modify its optical properties, such as color, transparency, absorption, or reflection. In certain embodiments, A color-filter device includes connection posts and can be provided in or on a source wafer suitable for micro-transfer printing. In some embodiments, a color-filter device is disposed on a device substrate and can include a control circuit for controlling the color filter. An array of micro-transfer color-filter devices can be disposed on a display substrate in order to form a display.
US10199545B2 Substrate for light emitting element and module
A substrate for a light emitting element including a resin substrate exhibiting flexibility and a metal wiring portion being formed on at least one surface side of the resin substrate via an adhesive layer, in which a reflective layer composed of a thermosetting resin is disposed between the resin substrate and the adhesive layer, in which the reflective layer contains a light reflective filler at 10% by mass or more and 85% by mass or less and has a reflectance to light at a wavelength of 450 nm of 80% or more.
US10199543B2 LEDs with efficient electrode structures
Aspects include Light Emitting Diodes that have a GaN-based light emitting region and a metallic electrode. The metallic electrode can be physically separated from the GaN-based light emitted region by a layer of porous dielectric, which provides a reflecting region between at least a portion of the metallic electrode and the GaN-based light emitting region.
US10199541B2 Light-emitting device
A light-emitting device is provided. The light-emitting device comprises The light-emitting device comprises a light-emitting stack comprising a first semiconductor layer, a second semiconductor layer and an active layer between the first semiconductor layer and the second semiconductor layer; and a third semiconductor layer on the light-emitting stack and comprising a first sub-layer, a second sub-layer and a roughened surface, wherein the first sub-layer has the same composition as that of the second sub-layer, and the second sub-layer is farther from the light-emitting stack than the first sub-layer; wherein the first sub-layer and the second sub-layer each comprises a Group III element and a Group V element, and an atomic ratio of the Group III element to the Group V element of the first sub-layer is less than an atomic ratio of the Group III element to the Group V element of the second sub-layer.
US10199540B2 Light emitting diode, light emitting diode package including same, and lighting system including same
A light emitting diode according to one embodiment comprises: a substrate; a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, which are on the substrate; a first pad electrode part on the first conductive semiconductor layer; a current blocking layer on the second conductive semiconductor layer; a second electrode on the first conductive semiconductor layer and the current blocking layer; and a second pad electrode part on the second electrode, wherein the width of the current blocking layer can become thicker as the current blocking layer becomes closer to the first pad electrode part from the second pad electrode part.
US10199539B2 Vertical ultraviolet light emitting device
A UV light emitting device is disclosed. The UV light emitting device includes: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on then-type semiconductor layer; a hole injection layer disposed on the active layer and comprising Al; an Al-delta layer disposed on the hole injection layer and comprising Al; and a first p-type contact layer disposed on the Al-delta layer and having a higher doping concentration of p-type dopants than the hole injection layer, wherein the first p-type contact layer has a lower Al content than the hole injection layer, a band-gap of the first p-type contact layer is lower than or equal to energy of light emitted from the active layer, and the Al-delta layer has a higher Al content than the hole injection layer and allows holes to enter the active layer by tunneling therethrough.
US10199538B2 Light emitting diode and fabrication method thereof
A light-emitting diode includes a conductive mask layer planted over a substrate surface. An epitaxial laminated layer is formed over the conductive mask layer via epitaxial growth; and a current channel is formed over the epitaxial laminated layer; during injection, current is firstly conducted to the conductive mask layer through the current channel, and then to the epitaxial laminated layer after horizontal spreading over the conductive mask layer, which effectively improves current spreading uniformity and reduces working voltage of device. Meanwhile, the conductive mask layer reflects light to further improve extraction efficiency and light-emitting luminance.
US10199537B2 Semiconductor structure with stress-reducing buffer structure
A semiconductor structure comprising a buffer structure and a set of semiconductor layers formed adjacent to a first side of the buffer structure is provided. The buffer structure can have an effective lattice constant and a thickness such that an overall stress in the set of semiconductor layers at room temperature is compressive and is in a range between approximately 0.1 GPa and 2.0 GPa. The buffer structure can be grown using a set of growth parameters selected to achieve the target effective lattice constant a, control stresses present during growth of the buffer structure, and/or control stresses present after the semiconductor structure has cooled.
US10199535B2 Semiconductor structure with stress-reducing buffer structure
A semiconductor structure comprising a buffer structure and a set of semiconductor layers formed adjacent to a first side of the buffer structure is provided. The buffer structure can have an effective lattice constant and a thickness such that an overall stress in the set of semiconductor layers at room temperature is compressive and is in a range between approximately 0.1 GPa and 2.0 GPa. The buffer structure can be grown using a set of growth parameters selected to achieve the target effective lattice constant a, control stresses present during growth of the buffer structure, and/or control stresses present after the semiconductor structure has cooled.
US10199534B2 Light-emitting diode, light-emitting diode package, and lighting system including same
A light emitting diode according to an embodiment includes: a substrate; a first conductive semiconductor layer on the substrate; an active layer on the first conductive semiconductor layer; and a light emitting structure including a second conductive semiconductor layer on the active layer, wherein the active layer includes at least one quantum well layer and at least one quantum barrier layer, and each of the quantum well layers includes a plurality of well layers having different indium composition ratios, thereby improving internal quantum efficiency.
US10199531B2 Semiconductor heterostructure with stress management
A heterostructure for use in fabricating an optoelectronic device is provided. The heterostructure includes a layer, such as an n-type contact or cladding layer, that includes thin sub-layers inserted therein. The thin sub-layers can be spaced throughout the layer and separated by intervening sub-layers fabricated of the material for the layer. The thin sub-layers can have a distinct composition from the intervening sub-layers, which alters stresses present during growth of the heterostructure.
US10199529B2 Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
A method is disclosed for making semiconductor films from a eutectic alloy comprising a metal and a semiconductor. Through heterogeneous nucleation said film is deposited at a deposition temperature on flexible substrates, such as glass. Specifically said film is vapor deposited at a fixed temperature in said deposition temperature where said deposition temperature is above a eutectic temperature of said eutectic alloy and below a temperature at which the substrate softens. Such films are nearly to entirely free of metal impurities and have widespread application in the manufacture and benefit of photovoltaic and display technologies.
US10199528B2 Mesoscopic solar cell based on perovskite light absorption material and method for making the same
A mesoscopic solar cell, including: a conductive substrate, a hole blocking layer, a mesoporous nanocrystalline layer, an insulation separating layer, and a hole collecting layer, and perovskite light absorption materials. The hole blocking layer, the mesoporous nanocrystalline layer, the insulation separating layer, and the hole collecting layer are sequentially laminated on the conductive substrate. The perovskite semiconductor materials are filled in the mesoporous nanocrystalline layer, the insulation separating layer, and the hole collecting layer, which enables the mesoporous nanocrystalline layer to be an active light absorption layer operating as a photoanode, and enables the insulation separating layer to be a hole transporting layer.
US10199526B2 Radiation detector and a method for forming a semiconductor device
A method for forming a semiconductor device includes forming an amorphous semiconductor layer adjacent to a lightly doped region of a semiconductor wafer. The lightly doped region forms at least part of a back side of the semiconductor wafer, and the lightly doped region has a first conductivity type. The method further includes incorporating dopants into the amorphous semiconductor layer during or after forming the amorphous semiconductor layer. The method further includes annealing the amorphous semiconductor layer to transform at least a part of the amorphous semiconductor layer into a substantially monocrystalline semiconductor layer and to form a highly doped region in the monocrystalline semiconductor layer at the back side of the semiconductor wafer. The highly doped region has the first conductivity type.
US10199524B2 Field-effect photovoltaic elements
Photovoltaic devices such as solar cells having one or more field-effect hole or electron inversion/accumulation layers as contact regions are configured such that the electric field required for charge inversion and/or accumulation is provided by the output voltage of the photovoltaic device or that of an integrated solar cell unit. In some embodiments, a power source may be connected between a gate electrode and a contact region on the opposite side of photovoltaic device. In other embodiments, the photovoltaic device or integrated unit is self-powering.
US10199523B2 Photovoltaic device structure and method
A surface region of a semiconductor material on a surface of a semiconductor device is doped during its manufacture, by coating the surface region of the semiconductor material with a dielectric material surface layer and locally heating the surface of the semiconductor material in an area to be doped to locally melt the semiconductor material with the melting being performed in the presence of a dopant source. The heating is performed in a controlled manner such that a region of the surface of the semiconductor material in the area to be doped is maintained in a molten state without refreezing for a period of time greater than one microsecond and the dopant from the dopant source is absorbed into the molten semiconductor.The semiconductor device includes a semiconductor material structure in which a junction is formed and may incorporate a multi-layer anti-reflection coating. The anti-reflection coating is located on a light receiving surface of the semiconductor material structure and comprises a thin layer of thermal expansion mismatch correction material having a thermal expansion coefficient less than or equal to that of the semiconductor material, to provide thermal expansion coefficient mismatch correction. An anti-reflection layer is provided having a refractive index and thickness selected to match the semiconductor material structure so as to give good overall antireflection properties to the solar cell.
US10199521B2 Thick damage buffer for foil-based metallization of solar cells
Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. A method involves patterning a first surface of a metal foil to provide a plurality of alternating grooves and ridges in the metal foil. Non-conductive material regions are formed in the grooves in the metal foil. The metal foil is located above a plurality of alternating N-type and P-type semiconductor regions disposed in or above a substrate to provide the non-conductive material regions in alignment with locations between the alternating N-type and P-type semiconductor regions and to provide the ridges in alignment with the alternating N-type and P-type semiconductor regions. The ridges of the metal foil are adhered to the alternating N-type and P-type semiconductor regions. The metal foil is patterned through the metal foil from a second surface of the metal foil at regions in alignment with the non-conductive material regions.
US10199515B2 Vacuum package, electronic device, and vehicle
A vacuum package includes a substrate, a pair of through electrodes that penetrates the substrate, each of the pair of the trough electrodes having first end portion, and a getter that is joined to the first end portions of the pair of the through electrodes, and is heated by electronic conduction via the pair of the through electrodes A portion of the getter between the through electrodes is spaced apart from the substrate.
US10199513B2 Schottky diode including an insulating substrate and Schottky diode unit
A Schottky diode includes a first electrode, a second electrode and a semiconducting structure. The first electrode includes a first metal layer and a second metal layer. The second electrode includes a third metal layer and a fourth metal layer. The semiconductor structure includes a first end and a second end. The first end is sandwiched by the first metal layer and the second metal layer, the second end is sandwiched by the third metal layer and the fourth metal layer. The semiconductor structure is a nano-scale semiconductor structure.
US10199511B1 Semiconductor memory device
A semiconductor memory device includes a semiconductor substrate, a stacked body including a plurality of electrode films stacked on the substrate and spaced from each other in a first direction, an end portion in a second direction has a staircase shape, a conductive member adjacent to the stacked body and connected to the semiconductor substrate, a first semiconductor pillar connected to the substrate and extending through a central portion of the stacked body, a second semiconductor pillar connected to the substrate and extending through the end portion of the stacked body, a charge storage member between the first semiconductor pillar and the electrode films, an insulating member between the second semiconductor pillar and an electrode film in the end portion of the stacked body, and an insulating layer between the semiconductor substrate and the second portion of the stacked body.
US10199508B2 Semiconductor device and method for manufacturing the same
A miniaturized transistor, a transistor with low parasitic capacitance, a transistor with high frequency characteristics, or a semiconductor device including the transistor is provided. The semiconductor device includes a first insulator, an oxide semiconductor over the first insulator, a first conductor and a second conductor that are in contact with the oxide semiconductor, a second insulator that is over the first and second conductors and has an opening reaching the oxide semiconductor, a third insulator over the oxide semiconductor and the second insulator, and a fourth conductor over the third insulator. The first conductor includes a first region and a second region. The second conductor includes a third region and a fourth region. The second region faces the third region with the first conductor and the first insulator interposed therebetween. The second region is thinner than the first region. The third region is thinner than the fourth region.
US10199505B2 Transistors incorporating metal quantum dots into doped source and drain regions
Metal quantum dots are incorporated into doped source and drain regions of a MOSFET array to assist in controlling transistor performance by altering the energy gap of the semiconductor crystal. In a first example, the quantum dots are incorporated into ion-doped source and drain regions. In a second example, the quantum dots are incorporated into epitaxially doped source and drain regions.
US10199501B2 Method for forming semiconductor structure
A method for manufacturing a semiconductor structure includes the following steps. First, a semiconductor substrate including a first semiconductor material is provided. The semiconductor substrate includes a dielectric structure formed thereon, and the dielectric structure includes at least a recess formed therein. A first epitaxial layer is then formed in the recess. The first epitaxial layer includes at least a second semiconductor material that a lattice constant of the second semiconductor material is larger than a lattice constant of the first semiconductor material. Subsequently, a thermal oxidation process is performed to the first epitaxial layer thereby forming a semiconductor layer at a bottom of the recess and a silicon oxide layer on the semiconductor layer. After removing the silicon oxide layer, a second epitaxial layer is formed on the semiconductor layer in the recess.
US10199498B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a pillar structure, at least one charge storage film, and a first electrode. The stacked body includes electrode films stacked separately from each other. The pillar structure is provided in the stacked body and includes a semiconductor layer extending in stacking direction of the stacked body. The charge storage film is provided between the semiconductor layer and the electrode films. The first electrode is provided in the stacked body, spreads in the stacking direction and a first direction along a surface of the substrate, and contacting the substrate. The first electrode includes a first portion containing a material having conductivity and a second portion containing a material that a linear expansion coefficient is lower than a linear expansion coefficient of silicon, and positioned at a substrate side than the first portion in the stacking direction.
US10199496B2 Semiconductor device capable of high-voltage operation
A semiconductor device capable of high-voltage operation includes a semiconductor substrate, a first well region, a second well region, a first gate structure, a first doped region, a second doped region, and a second gate structure. The first well region is formed in a portion of the semiconductor substrate. The second well region is formed in a portion of the first well region. The first gate structure is formed over a portion of the second well region and a portion of the first well region. The first doped region is formed in a portion of the second well region. The second doped region is formed in a portion of the first well region. The second gate structure is formed over a portion of the first gate structure, a portion of the first well region, and a portion of the second doped region.
US10199485B2 Semiconductor device including quantum wires
A semiconductor device includes a substrate including a first semiconductor material, a gate structure formed on the substrate, and a source stressor and a drain stressor formed in the substrate respectively in a recess at two sides of the gate structure. The source stressor and the drain stressor respectively include at least a first quantum wire and at least a second quantum wire formed on the first quantum wire. The first quantum wire includes the first semiconductor material and a second semiconductor material, and a lattice constant of the second semiconductor material is larger than a lattice constant of the first semiconductor material. And the second quantum wire includes the second semiconductor material.
US10199484B2 Semiconductor device and manufacturing method thereof
An improvement is achieved in the performance of a semiconductor device. The semiconductor device includes a first trench gate electrode and second and third trench gate electrodes located on both sides of the first trench gate electrode interposed therebetween. In each of a semiconductor layer located between the first and second trench gate electrodes and the semiconductor layer located between the first and third trench gate electrodes, a plurality of p+-type semiconductor regions are formed. The p+-type semiconductor regions are arranged along the extending direction of the first trench gate electrode in plan view to be spaced apart from each other.
US10199477B2 Complementary gallium nitride integrated circuits
An embodiment of a complementary GaN integrated circuit includes a GaN layer with a first bandgap. A second layer with a second bandgap is formed on the GaN layer, resulting in a 2DEG in a contact region between the GaN layer and the second layer. The second layer has a relatively thin portion and a relatively thick portion. A third layer is formed over the relatively thick portion of the second layer. The third layer has a third bandgap that is different from the second bandgap, resulting in a 2DHG in a contact region between the second layer and the third layer. A transistor of a first conductivity type includes the 2DHG, the relatively thick portion of the second layer, and the third layer, and a transistor of a second conductivity type includes the 2DEG and the relatively thin portion of the second layer.
US10199472B2 Neuromorphic device including gating lines with different widths
A neuromorphic device includes a row line extending in a first direction; a column line disposed over the row line, the column line extending in a second direction perpendicular to the first direction; a plurality of gating lines disposed between the row line and the column line; and a synapse disposed between the row line and the column line, the synapse passing through the plurality of gating lines.
US10199471B2 Semiconductor device with field effect transistors and method of fabricating the same
Provided is a semiconductor device including a substrate with an active pattern, a gate electrode crossing the active pattern, a source/drain region in an upper portion of the active pattern at a side of the gate electrode, the source/drain region including a recess region at an upper region thereof, a contact electrically connected to the source/drain region, the contact including a lower portion provided in the recess region, and a metal silicide layer provided at a lower region of the recess region and between the source/drain region and the contact.
US10199470B2 Field effect transistor having staggered field effect transistor cells
A Field Effect Transistor (FET) having a substrate; a plurality of active regions disposed on the substrate; and a laterally extending finger-like control electrode disposed on a portion of a surface of the substrate. The active regions are laterally spaced one from the other successively along the laterally extending finger-like control electrode. The laterally extending finger-like control electrode controls a flow of carriers through each one of the plurality of active regions between a source electrode and a drain electrode.
US10199469B2 Semiconductor device including metal-semiconductor junction
A semiconductor device includes a silicon semiconductor layer including at least one region doped with a first conductive type dopant, a metal material layer electrically connected to the doped region, and a self-assembled monolayer (SAM) between the doped region and the metal material layer, the SAM forming a molecular dipole on an interface of the silicon semiconductor layer in a direction of reducing a Schottky barrier height (SBH).
US10199467B2 Semiconductor device having plated metal in electrode and process to form the same
A process to form an electrode of a semiconductor device is disclosed. The process includes steps of: forming the first electrode on the semiconductor layer; forming the first insulating film on the first electrode, where the first insulating film provides an opening that exposes a portion of the first electrode but fully covers the semiconductor layer; fully filling the opening by the second electrode; forming the mask so as to expose the second electrode but fully cover the sides of the second electrode; forming the third electrode in a region exposing from the mask; and removing the mask.
US10199465B2 Cellular layout for semiconductor devices
A method of fabricating a semiconductor device cell at a surface of a silicon carbide (SiC) semiconductor layer includes forming a segmented source and body contact (SSBC) of the semiconductor device cell over the surface of the SiC semiconductor layer. The SSBC includes a body contact portion disposed over the surface of the semiconductor layer and proximate to a body contact region of the semiconductor device cell, wherein the body contact portion is not disposed over the center of the semiconductor device cell. The SSBC also includes a source contact portion disposed over the surface of the semiconductor layer and proximate to a source contact region of the semiconductor device cell, wherein the at least one source contact portion only partially surrounds the body contact portion of the SSBC.
US10199462B2 Semiconductor integrated circuits (ICs) employing localized low dielectric constant (low-K) material in inter-layer dielectric (ILD) material for improved speed performance
Semiconductor integrated circuits (ICs) employing localized low dielectric constant (low-K) material in inter-layer dielectric (ILD) material for improved speed performance are disclosed. To speed up performance of selected circuits in an IC that would otherwise lower overall speed performance of the IC, low-K dielectric material is employed during IC fabrication. The low-K dielectric material is provided in selected, localized areas of ILD material in which selected circuits are disposed. In this manner, the IC will experience an overall increased speed performance during operation, because circuit components and/or circuit element interconnects of selected circuit(s) that are disposed in the low-K ILD material will experience reduced signal delay. Also, by use of low-K dielectric material in only selected, localized areas of ILD material of selected circuits, mechanical and/or thermal stability concern issues that would arise from use of low-K dielectric material in all of the ILD material in the IC are avoided.
US10199461B2 Isolation of circuit elements using front side deep trench etch
An integrated circuit is formed by forming an isolation trench through at least a portion of an interconnect region, at least 40 microns deep into a substrate of the integrated circuit, leaving at least 200 microns of substrate material under the isolation trench. Dielectric material is formed in the isolation trench at a substrate temperature no greater than 320° C. to form an isolation structure which separates an isolated region of the integrated circuit from at least a portion of the substrate. The isolated region contains an isolated component. The isolated region of the integrated circuit may be a region of the substrate, and/or a region of the interconnect region. The isolated region may be a first portion of the substrate which is laterally separated from a second portion of the substrate. The isolated region may be a portion of the interconnect region above the isolation structure.
US10199460B2 Semiconductor device and method of manufacturing semiconductor device
An n-type region and a p-type region of a first parallel pn layer are arranged parallel to a base front surface, in a striped planar layout extending from an active region over an edge termination region. In the n-type region, a gate trench extending linearly along a first direction is provided. In an intermediate region, in a surface region on the base front surface side of the first parallel pn layer, a second parallel pn layer is provided. The second parallel pn layer is arranged having a repetition cycle shifted along a second direction ½ a cell with respect to a repetition cycle of the n-type region and the p-type region of the first parallel pn layer. A gate trench termination portion terminates in the intermediate region between the active region and the edge termination region, and is covered by the p-type region of the second parallel pn layer.
US10199458B2 Semiconductor device
Provided is a semiconductor device having a superjunction structure formed by a first conduction type column and a second conduction type column, including a first region of the superjunction structure in which a PN ratio increases in a direction from a first surface side to a second surface side of the superjunction structure; and a second region of the superjunction structure that contacts the first region and is adjacent to a channel region of the semiconductor device, wherein a PN ratio of the second region is less than the PN ratio at an end of the first region on the second surface side and thickness of the second region is less than thickness of the first region.
US10199449B2 Display device
A display device includes: a substrate; pixels, the pixels each including at least one transistor and a light emitting device connected to the transistor; data lines and scan lines connected to the pixels; and a power line supplying power to the light emitting device. The transistor includes an active pattern on the substrate, source and drain electrodes each connected to the active pattern, a gate electrode on the active pattern, an interlayer insulating layer covering the gate electrode, the interlayer insulating layer including a first interlayer insulating layer, a second interlayer insulating layer, and a third interlayer insulating layer, which are sequentially stacked, and a protective layer provided on the interlayer insulating layer. The third interlayer insulating layer includes a concave part in a region in which the light emitting device and the second conductive layer overlap with each other, and the second conductive layer is in the concave part.
US10199445B2 Flexible display device with reinforced area
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
US10199437B2 Organic light emitting diode display
An organic light emitting diode (OLED) display includes first pixels, second pixels, and third pixels. The OLED display includes a first column including a plurality of the first pixels alternately arranged with a plurality of the second pixels; and a second column adjacent to the first column and comprising a plurality of the third pixels. One of the first pixels and one of the second pixels in the first column correspond to more than two of the third pixels in the second column. Rendering driving is applied such that high resolution of more than 350 pixels per inch (PPI) may be realized without deterioration of the image quality while the total number of pixels is smaller than in a pentile matrix arrangement.
US10199434B1 Three-dimensional cross rail phase change memory device and method of manufacturing the same
A phase change memory device includes a vertical stack of multiple two-dimensional arrays of pillar structures. Each of the multiple two-dimensional arrays of pillar structures is located within a respective array level. Each two-dimensional array among the multiple two-dimensional arrays of pillar structures is contacted by a respective overlying one-dimensional array of conductive rails laterally extending along a first horizontal direction and a respective underlying one-dimensional array of conductive rails laterally extending along a second horizontal direction different from the first direction. Each pillar structure within the multiple two-dimensional arrays of pillar structures includes a phase change memory element and a selector element in a series connection with the phase change memory element. A first set of dielectric isolation structures having a first homogeneous composition vertically extends continuously through two vertically neighboring array levels.
US10199432B2 Manufacturing methods of MOSFET-type compact three-dimensional memory
Manufacturing methods of MOSFET-type compact three-dimensional memory (3D-MC) are disclosed. In a memory level stacked above the substrate, an x-line extends from a memory array to an above-substrate decoding stage. A MOSFET-type transistor is formed on the x-line as a decoding device for the above-substrate decoding stage, where the overlap portion of the x-line with the control-line (c-line) is semi-conductive.
US10199431B2 Magnetic memory devices
A device that includes a magnetic memory device, includes a magnetic tunnel junction pattern on a substrate and a mask structure on the magnetic tunnel junction pattern. The mask structure includes a conductive pattern and a sacrificial pattern, where the conductive pattern is between the magnetic tunnel junction pattern and the sacrificial pattern, and the sacrificial pattern includes a material having an etch selectivity with respect to the conductive pattern. The device includes an upper contact plug in contact with a surface of the conductive pattern of the mask structure. The device includes a lower interlayered insulating layer covering a cell region and a peripheral circuit region of the substrate, where the lower interlayered insulating layer on the cell region has a recessed top surface between adjacent magnetic tunnel junction patterns.
US10199426B2 Optoelectronic modules that have shielding to reduce light leakage or stray light, and fabrication methods for such modules
Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
US10199423B2 CMOS image sensors including a vertical source follower gate
A complementary metal oxide semiconductor (CMOS) image sensor is provided that includes a substrate including a first surface, a second surface facing the first surface, and a first recess region that is recessed from the first surface toward the second surface. The CMOS image sensor further includes a transfer gate on the substrate, and a source follower gate on the first recess region. The source follower gate is within the first recess region and partially covers a portion of the first surface of the substrate.
US10199422B2 Semiconductor device
A plurality of pixel regions are aligned in a matrix in a semiconductor substrate, and each of the plurality of pixel regions includes an active region, two photoelectric conversion elements, two floating capacitance regions, and a first transistor. Each of the plurality of pixel regions includes two transfer transistors each having each of the two photoelectric conversion elements and each of the two floating capacitance regions. The first transistor is arranged within the pixel region, between one floating capacitance region and the other floating capacitance region of the two floating capacitance regions with respect to a direction in which the one floating capacitance region and the other floating capacitance region are aligned.
US10199421B2 Image sensors
An image sensor includes a substrate including unit pixels. Each of the unit pixels includes photoelectric conversion elements and storage diodes.
US10199420B2 Image-capturing unit and image-capturing apparatus
Provided is an image-capturing unit including an image-capturing chip that includes a first surface having a pixel and a second surface that is on an opposite side of the first surface and has provided thereon an output section that outputs a pixel signal read from the pixel; a transparent substrate that is arranged facing the first surface and includes a wire pattern; a mounting substrate that is arranged facing the second surface and supports the image-capturing chip; and a relay section that is arranged on the mounting substrate and relays, to the wire pattern, the pixel signal output from the output section. Also provided is an image-capturing apparatus including the image-capturing unit described above.
US10199411B2 Imaging device comprising photoelectric conversion element, operating method thereof, and electronic device
An imaging device whose dynamic range is broadened is provided. The imaging device includes a pixel including a first photoelectric conversion element and a first circuit including a second photoelectric conversion element. The first circuit switches the operation mode of the pixel to a normal imaging mode or a wide dynamic range mode and switches the operation region of the first photoelectric conversion element to a normal region or an avalanche region in accordance with the illuminance of light with which the second photoelectric conversion element is irradiated. When the illuminance of light with which the first photoelectric conversion element is irradiated is increased, the increase rate of a writing current flowing to the pixel is higher in the avalanche region than in the normal region. However, in the wide dynamic range mode, the increase rate of current can be lowered, and thus the dynamic range can be broadened.
US10199410B2 Method and system for pixel-wise imaging
There is provided a method and system for pixel-wise imaging of a scene. The method including: receiving a pixel-wise pattern, the pixel-wise pattern including a masking value for each pixel in an array of pixels of an image sensor; producing an electronic signal at each pixel when such pixel is exposed to light received from the scene; and directing the electronic signal at each pixel to one or more collection nodes associated with such pixel based on the respective masking value, the one or more collection nodes each capable of integrating the received electronic signal.
US10199408B2 Imaging device including first and second pixels
An imaging device includes: a first pixel cell including a first photoelectric conversion film having a first surface and a second surface opposite to the first surface, a first electrode on the first surface, a second electrode on the first surface, surrounding the first electrode, and a first counter electrode on the second surface, facing the first electrode and the second electrode; and a second pixel cell including a second photoelectric conversion film having a third surface and a fourth surface opposite to the third surface, a third electrode on the third surface, a fourth electrode on the third surface, surrounding the third electrode, and a second counter electrode on the fourth surface, facing the third electrode and the fourth electrode, wherein the second electrode and the fourth electrode are electrically separated from each other.
US10199403B2 Liquid crystal display panel having a first column, a second column, and a fourth color filter made of a same material
A liquid crystal display panel includes a first substrate and a second substrate facing each other, a liquid crystal layer disposed between the first substrate and the second substrate, and color filters disposed on the first substrate, each color filters respectively configured to transmit light of one of first through fourth colors, in which at least one of the color filters includes at least one column protruding from the first substrate.
US10199394B2 Display device
Provided is a display device with high display quality. The display device includes a transistor over a substrate, an inorganic insulating film over the transistor, an organic insulating film over the inorganic insulating film, a capacitor electrically connected to the transistor, and a pixel electrode over the organic insulating film. The transistor includes a gate electrode over the substrate, an oxide semiconductor film overlapping with the gate electrode, a gate insulating film in contact with one surface of the oxide semiconductor film, and a pair of conductive films in contact with the oxide semiconductor film. The capacitor includes a metal oxide film over the gate insulating film, the inorganic insulating film, and a first light-transmitting conductive film over the inorganic insulating film. The pixel electrode is formed of a second light-transmitting conductive film and in contact with one of the pair of conductive films and the first light-transmitting conductive film.
US10199393B2 Display device and method for manufacturing display device
A highly flexible display device and a method for manufacturing the display device are provided. A transistor including a light-transmitting semiconductor film, a capacitor including a first electrode, a second electrode, and a dielectric film between the first electrode and the second electrode, and a first insulating film covering the semiconductor film are formed over a flexible substrate. The capacitor includes a region where the first electrode and the dielectric film are in contact with each other, and the first insulating film does not cover the region.
US10199391B2 Semiconductor device and method of manufacturing the same
A semiconductor device includes an under layer, a stacked body comprising a plurality of conductive layers and insulating layers alternately stacked one over the other in a stacking direction, above the insulating layer, a columnar portion extending into the stacked body in the stacking direction of the stacked body, and a graphene film between at least one of the conductive layers and adjacent insulating layers and between the at least one of the conductive layers and the columnar portion.
US10199390B2 Nonvolatile memory device and method of manufacturing the same
A nonvolatile memory device includes gate electrodes three dimensionally arranged on a semiconductor substrate, a semiconductor pattern extending from the semiconductor substrate and crossing sidewalls of the gate electrodes, a metal liner pattern formed between the semiconductor pattern and formed on a top surface and a bottom surface of each of the gate electrodes, and a charge storage layer formed between the semiconductor pattern and the metal liner pattern.
US10199386B2 Semiconductor memory device and method for manufacturing same
According to one embodiment, a semiconductor memory device includes a substrate; a first stacked body; a second stacked body being larger in number of stacked layers than the first stacked body, the second stacked body including a plurality of electrode layers separately stacked each other; a third stacked body being smaller in number of stacked layers than the first stacked body. The first stacked body includes a plurality of first layers separately stacked each other, and a plurality of second layers provided between the first layers. The third stacked body includes a third layer including a same material as the material of the first layers, and a fourth layer including a same material as the material of the second layers.
US10199384B2 Ferroelectric memory device
The invention relates to a ferroelectric memory device comprising at least one layer comprising a ferroelectric polymer, and at least two electrodes either side thereof, the ferroelectric polymer being of general formula P(VDF-X-Y), wherein VDF is vinylidene fluoride motifs, X is trifluoroethylene or tetrafluoroethylene motifs, and Y is motifs from a third monomer, the molar proportion of Y motifs in the polymer being less than or equal to 6.5%.
US10199381B2 Pillar-shaped semiconductor memory device and method for producing the same
An SRAM includes three Si pillars. In upper parts of the Si pillars, a first load P-channel, a first driver N-channel, and a first selection N-channel are formed, and in lower parts of the Si pillars, a second load P-channel, a second driver N-channel, and a second selection N-channel are formed. At the same height in the Si pillars, a P+ layer and N+ layers that serve as drains are formed, and these layers are connected to connected gates surrounding the second load P-channel and the second driver N-channel. At the same height in the Si pillars, a P+ layer and N+ layers that serve as drains are formed, and these layers are connected to connected gates surrounding the first load P-channel and the first driver N-channel. Gates surrounding the first and second selection N-channels are connected to a word-line terminal.
US10199372B2 Monolithically integrated chip including active electrical components and passive electrical components with chip edge stabilization structures
An integrated circuit device including a chip die having a first area with a first thickness surrounding a second area with a second thickness, the first thickness is greater than the second thickness, the chip die having a front-side and a back-side, at least one passive electrical component provided at least one of in or over the chip die in the first area on the front-side, and at least one active electrical component provided at least one of in or over the chip die in the second area on the front-side.
US10199360B2 Wire bond free wafer level LED
A wire-bond free semiconductor device with two electrodes both of which are accessible from the bottom side of the device. The device is fabricated with two electrodes that are electrically connected to the oppositely doped epitaxial layers, each of these electrodes having leads with bottom-side access points. This structure allows the device to be biased with an external voltage/current source, obviating the need for wire-bonds or other such connection mechanisms that must be formed at the packaging level. Thus, features that are traditionally added to the device at the packaging level (e.g., phosphor layers or encapsulants) may be included in the wafer level fabrication process. Additionally, the bottom-side electrodes are thick enough to provide primary structural support to the device, eliminating the need to leave the growth substrate as part of the finished device.
US10199356B2 Semiconductor device assembles with electrically functional heat transfer structures
Semiconductor device assemblies having stacked semiconductor dies and electrically functional heat transfer structures (HTSs) are disclosed herein. In one embodiment, a semiconductor device assembly includes a first semiconductor die having a mounting surface with a base region and a peripheral region adjacent the base region. At least one second semiconductor die can be electrically coupled to the first semiconductor die at the base region. The device assembly can also include an HTS electrically coupled to the first semiconductor die at the peripheral region.
US10199354B2 Die sidewall interconnects for 3D chip assemblies
A stacked-chip assembly including an IC chip or die that is electrically interconnected to another chip and/or a substrate by one or more traces that are coupled through sidewalls of the chip. Electrical traces extending over a sidewall of the chip may contact metal traces of one or more die interconnect levels that intersect the chip edge. Following chip fabrication, singulation may expose a metal trace that intersects the chip sidewall. Following singulation, a conductive sidewall interconnect trace formed over the chip sidewall is to couple the exposed trace to a top or bottom side of a chip or substrate. The sidewall interconnect trace may be further coupled to a ground, signal, or power rail. The sidewall interconnect trace may terminate with a bond pad to which another chip, substrate, or wire lead is bonded. The sidewall interconnect trace may terminate at another sidewall location on the same chip or another chip.
US10199352B2 Wafer bonding edge protection using double patterning with edge exposure
Wafer bonding edge protection techniques are provided. In one aspect, a method of forming Cu interconnects in a wafer includes: forming a dielectric layer on the wafer; forming a first mask on the dielectric layer; patterning the first mask with a footprint/location of the Cu interconnects, wherein the patterning of the first mask is performed over an entire surface of the wafer; forming a second mask on the first mask, wherein the second mask covers a portion of the patterned first mask at an edge region of the wafer; patterning trenches in the dielectric layer through the first mask and the second mask, wherein the second mask blocks formation of the trenches at the edge region of the wafer and thereby provides edge protection during patterning of the trenches; and forming the Cu interconnects in the trenches. A wafer bonding method and interconnect structure are also provided.
US10199350B2 Apparatus for heating a substrate during die bonding
An apparatus for heating a substrate during die bonding is disclosed. The apparatus comprises: a substrate carrier configured to hold the substrate; a heating device configured to heat the substrate; a first actuator for effecting relative motion between the substrate carrier and the heating device such that the substrate is relatively indexed with respect to the heating device; a second actuator for effecting relative motion between the substrate carrier and the heating device such that the heating device contacts the substrate to heat different portions of the substrate. In particular, the second actuator is operative to separate the heating device from the substrate in order for the first actuator to relatively index the substrate across the heating device. A method of heating a substrate during die bonding is also disclosed.
US10199344B2 Side ported MEMS sensor device package and method of manufacturing thereof
A MEMS sensor device package comprises a sensor assembly comprising a sensor device and a sensor circuit communicating coupled to the sensor device, The MEMS sensor device package further comprises an assembly package housing having a top member and a bottom member attached to the top member for encapsulating the sensor assembly. A passageway fluidly coupled the sensor device to attributes outside the package housing the passageway is embedded into the package housing, wherein the top member comprising a top wall and side walls, the side walls are attached to the bottom member, and the passageway is embedded into at least one of the side walls.
US10199338B2 Semiconductor device and a method of manufacturing the same
A semiconductor device includes plural electrode pads arranged in an active region of a semiconductor chip, and wiring layers provided below the plural electrode pads wherein occupation rates of wirings arranged within the regions of the electrode pads are, respectively, made uniform for every wiring layer. To this end, in a region where an occupation rate of wiring is smaller than those in other regions, a dummy wiring is provided. On the contrary, when the occupation rate of wiring is larger than in other regions, slits are formed in the wiring to control the wiring occupation rate. In the respective wirings layers, the shapes, sizes and intervals of wirings below the respective electrode pads are made similar or equal to one another.
US10199337B2 Electronic component package and method of manufacturing the same
An electronic component package and a method of manufacturing the same are provided. The electronic component package includes a frame having a through-hole, an electronic component disposed in the through-hole of the frame, and a redistribution part disposed at one side of the frame and the electronic component. One or more first wiring layers of the frame are electrically connected to the electronic component through the redistribution part.
US10199333B2 Delamination-resistant semiconductor device and associated method
A delamination-resistant semiconductor device includes a conductive layer, a semiconductor layer, and a spacer. The conductive layer has a first side opposite a second side. The semiconductor layer is on the first side and defines an aperture therethrough spanned by the conductive layer. The spacer is on the second side and has a top surface, proximate the conductive layer, that defines a blind hole spanned by the conductive layer. A method for preventing delamination of a multilayer structure, includes a step of disposing a first layer on a substrate such that the first layer spans an aperture of the substrate. The method also includes a step of disposing a second layer on the first layer. The second layer has a blind hole adjacent to the first layer such that the first layer spans the blind hole.
US10199328B2 Semiconductor device and method for fabricating the same
A semiconductor device includes a first contact plug on a substrate, a first lower electrode disposed on the first contact plug and extended in a thickness direction of the substrate, a first supporter pattern on the first lower electrode and including an upper surface and a lower surface, the upper surface of the first supporter pattern being higher than a top surface of the first lower electrode, a dielectric film on the first lower electrode, the upper surface of the first supporter pattern and the lower surface of the first supporter pattern and an upper electrode disposed on the dielectric film.
US10199325B2 Semiconductor device and method of fabricating the same
A semiconductor device is provided. The semiconductor device includes first metal lines on a lower layer, a dielectric barrier layer provided on the lower layer to cover side and top surfaces of the first metal lines, an etch stop layer provided on the dielectric barrier layer to define gap regions between the first metal lines, an upper insulating layer on the etch stop layer, and a conductive via penetrating the upper insulating layer, the etch stop layer, and the dielectric barrier layer to contact a top surface of a first metal line. The etch stop layer includes first portions on the first metal lines and second portions between the first metal lines. The second portions of the etch stop layer are higher than the first portions.
US10199323B2 Flexible circuit substrate with temporary supports and equalized lateral expansion
An item may have a flexible support structure and may include a flexible component. The flexible component may have electrical components mounted on component mounting regions in a flexible circuit substrate. The component mounting regions may be interconnected by serpentine interconnect paths or other flexible interconnect paths. The flexible circuit substrate and component mounting regions may extend along a longitudinal axis of the flexible component or may form a two-dimensional array. Two-dimensional mesh-shaped flexible circuit substrates may be used in forming displays. The mesh-shaped flexible circuit substrates may be auxetic substrates that widen when stretched (e.g., structures with a negative Poisson's ratio that become thicker perpendicular to applied force when stretched) and that therefore reduce image distortion. Temporary tethers may help hold flexible circuit substrates together until intentionally broken following assembly of a flexible component into the flexible support structure.
US10199320B2 Method of fabricating electronic package
A method of fabricating an electronic package is provided, including: providing a carrier body having a first surface formed with a plurality of recessed portions, and a second surface opposing the first surface and interconnecting with the recessed portions; forming on the first surface of the carrier body an electronic structure that has a plurality of conductive elements received in the recessed portions correspondingly; and removing portion of the carrier body, with the conductive elements exposed from the second surface of the carrier body. Therefore, the carrier body is retained, and the fabrication cost is reduced since temporary material is required. The present invention further provides the electronic package thus fabricated.
US10199318B2 Semiconductor package assembly
The invention provides a semiconductor package assembly. The semiconductor package assembly includes a redistribution layer (RDL) structure. The RDL structure includes a conductive trace. A redistribution layer (RDL) contact pad is electrically coupled to the conductive trace. The RDL contact pad is composed of a symmetrical portion and an extended wing portion connected to the symmetrical portion. The extended wing portion overlaps at least one-half of a boundary of the symmetrical portion when observed from a plan view.
US10199312B1 Method of forming a packaged semiconductor device having enhanced wettable flank and structure
A packaged electronic device includes a substrate having a lead. The lead includes an outward facing side surface having a first height, and an inward facing side surface having a second height that is less than the first height. An electronic device is electrically connected to the lead. A package body encapsulates the electronic device and portions of the lead. The outward facing side surface is exposed through a side surface of the package body, and the inward facing side surface is encapsulated by the package body. A conductive layer is disposed on the outward facing side surface to provide the packaged electronic device with an enhanced wettable flank. In one embodiment, the electronic device is electrically connected to a thick terminal portion having the outward facing side surface. In another embodiment, the electronic device is electrically connected to a thin terminal portion having the inward facing side surface.
US10199309B2 Distribution and stabilization of fluid flow for interlayer chip cooling
A method of forming metallic pillars between a fluid inlet and outlet for two-phase fluid cooling. The method may include; forming an arrangement of metallic pillars between two structures, the metallic pillars are electrically connected to metallic connecting lines that run through each of the two structures, the arrangement of metallic pillars located between a fluid inlet and a fluid channel, the fluid channel having channel walls running between arrangements of the metallic pillars and a fluid outlet, whereby a fluid passes through the arrangement of metallic pillars to flow into the fluid channel.
US10199308B2 Liquid-cooled heat sink
A liquid-cooled heat sink includes a heat absorption module having a liquid storage container with one heat conductive side, a liquid inlet and a liquid; a liquid transport module including one inlet tube having a first end connected spatially with the liquid inlet of the storage container and a second end connected spatially with a pump unit, and an outlet tube having a first end connected spatially with the liquid outlet of the storage container and a second end connected spatially with a storage chamber; and a heat exchange module including a fin assembly, one connection passage extending through the fin assembly and one fan unit disposed on the fin assembly, which has two opposite ends respectively connected to the pump unit and the storage chamber, the connection passage having two opposite ends respectively connected to the pump unit and the liquid storage chamber.
US10199307B2 Cooling device for a current converter module
In order to prevent the formation of condensation in a cooling device for a current converter module, the cooling device has a cooling liquid channel, which conducts a liquid coolant and which is connected to a cooling circuit, a heat exchanger, which is connected in the cooling circuit and to which a power component is coupled in a thermally conductive manner, and a cooler for cooling the liquid coolant, which cooler is connected in the cooling circuit, wherein there is a heater in the cooling circuit such that the heat exchanger can be heated upon demand by heating the coolant.
US10199306B2 Air-cooling heat dissipation device
An air-cooling heat dissipation device includes a guiding carrier and a gas pump. The guiding carrier includes a pump-receiving recess, a first guiding chamber, a second guiding chamber, a communication structure and at least one discharge groove. The first guiding chamber is concavely formed in the pump-receiving recess, and is in communication with the first guiding chamber. The communication structure is communicating between the first guiding chamber and the second guiding chamber, while the electronic component is disposed within the second guiding chamber. The gas pump is disposed within the pump-receiving recess. When the gas pump is enabled, an ambient gas is driven to sequentially flow through the first guiding chamber, the communication structure and the second guiding chamber to remove the heat from the electronic component. Since the discharge groove is communicating between the second guiding chamber and exterior surroundings, the heated gas is outputted from the discharge groove.
US10199305B2 Semiconductor device and method of manufacturing semiconductor device
In a semiconductor device, a plurality of small depressions are formed to overlap each other in a first joining region of a back surface of a heat releasing plate. A streaky scratch or the like created on the back surface of the heat releasing plate is removed or reduced, by forming the small depressions overlapping each other on the heat releasing plate. In addition, when the small depressions are formed in the first joining region of the back surface of the heat releasing plate, the hardness of the first joining region of the back surface increases. Hence, the scratch is prevented from being created on the back surface of the heat releasing plate on which the depressions are formed to overlap each other in the first joining region of the back surface.
US10199300B2 Semiconductor package including a device and lead frame used for the same
A lead frame includes a first outer lead portion and a second outer lead portion which is arranged to oppose to the first outer lead portion with an element-mounting region between them. An inner lead portion has first inner leads connected to the first outer leads and second inner leads connected to the second outer leads. At least either the first or second inner leads are routed in the element-mounting region. An insulation resin is filled in the gaps between the inner leads located on the element-mounting region. A semiconductor device is configured with semiconductor elements mounted on both the top and bottom surfaces of the lead frame.
US10199299B1 Semiconductor mold compound transfer system and associated methods
Mold compound transfer systems and methods for making mold compound transfer systems are disclosed herein. A method configured in accordance with a particular embodiment includes placing a sheet mold compound in a containment area defined by a tray cover, and dispensing a granular mold compound over the sheet mold compound. The sheet mold compound can have a first density and the overall granular mold compound can have a second density less than the first density. The method further comprises transferring the solid sheet carrying the dispensed grains to a molding machine without using a release film.
US10199297B2 Semiconductor structure and fabrication method thereof
Semiconductor structures and fabrication methods thereof are provided. An exemplary semiconductor structure includes a semiconductor substrate having a device region and a protective region around the device region; a seal ring structure on the semiconductor substrate in the protective region; an electrical interconnect structure on the semiconductor substrate in the device region; an interlayer dielectric layer entirely covering the protective region on the seal ring structure and the electrical interconnect structure; a solder pad electrically connected with the electrical interconnect structure passing through a portion of the interlayer dielectric layer in the device region; a passivation layer on the interlayer dielectric layer and exposing the solder pad; and a conducive wire connected to the solder pad and across over a portion of the passivation layer in the protective region.
US10199289B1 Method for processing a semiconductor wafer using non-contact electrical measurements indicative of at least one chamfer short or leakage, at least one corner short or leakage, and at least one via open or resistance, where such measurements are obtained from non-contact pads associated with respective chamfer short, corner short, and via open test areas
A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one chamfer short or leakage, at least one corner short or leakage, and at least one via open or resistance, where such measurements are obtained from non-contact pads associated with respective chamfer short, corner short, and via open test areas.
US10199286B1 Method for processing a semiconductor wafer using non-contact electrical measurements indicative of at least one tip-to-side short or leakage, at least one chamfer short or leakage, and at least one corner short or leakage, where such measurements are obtained from non-contact pads associated with respective tip-to-side short, chamfer short, and corner short test areas
A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one tip-to-side short or leakage, at least one chamfer short or leakage, and at least one corner short or leakage, where such measurements are obtained from non-contact pads associated with respective tip-to-side short, chamfer short, and corner short test areas.
US10199284B1 Method for processing a semiconductor wafer using non-contact electrical measurements indicative of at least one tip-to-tip short or leakage, at least one tip-to-side short or leakage, and at least one chamfer short or leakage, where such measurements are obtained from non-contact pads associated with respective tip-to-tip short, tip-to-side short, and chamfer short test areas
A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one tip-to-tip short or leakage, at least one tip-to-side short or leakage, and at least one chamfer short or leakage, where such measurements are obtained from non-contact pads associated with respective tip-to-tip short, tip-to-side short, and chamfer short test areas.
US10199282B2 Inspection apparatus and method of manufacturing semiconductor device using the same
Disclosed are an inspection apparatus and a method of manufacturing a semiconductor device using the same. The inspection apparatus includes a stage configured to receive a substrate, an objective lens on the stage and configured to enlarge the substrate optically, an ocular lens on the objective lens and configured to form at its image plane an image of the substrate, and a plurality of sensors above the ocular lens and in the image plane of the ocular lens.
US10199276B2 Semiconductor and metal alloy interconnections for a 3D circuit
Fabrication of an integrated circuit comprising: at least one first transistor made at least partially in a first semiconducting layer, at least one second transistor made at least partially in a second semiconducting layer formed above the first semiconducting layer, an insulating layer formed between the first transistor and the second transistor, one or several connection elements passing through the insulating layer between the first and the second transistor, at least one connection element being connected to the first and/or the second transistor and being based on a metal-semiconductor alloy.
US10199274B2 Electrically conductive via(s) in a semiconductor substrate and associated production method
A method is provided for producing at least one electrical via in a substrate, the method comprising: producing a protective layer over a component structure which has been produced or is present on a front side of the substrate; forming at least one contact hole which extends from a surface of a backside of the substrate to a contact surface of the component structure; forming a metal-containing and thus conductive lining in the at least one contact hole creating a hollow electrically conductive structure in the at least one contact hole; and applying a passivation layer over the backside of the substrate, the passivation layer spanning over the hollow electrically conductive structure for forming the at least one electrical via. Also provided is a micro-technical component comprising at least one electrical via.
US10199273B2 Method for forming semiconductor device with through silicon via
A semiconductor device includes a substrate; an inter layer dielectric disposed on the substrate; a TSV penetrating the substrate and the ILD. In addition, a plurality of shallow trench isolations (STI) is disposed in the substrate, and a shield ring is disposed in the ILD surrounding the TSV on the STI. During the process of forming the TSV, the contact ring can protect adjacent components from metal contamination.
US10199272B2 Electronic device and method for fabricating the same
A semiconductor device may include: a plurality of first contacts arranged at a predetermined distance in a first direction and a second direction crossing the first direction; a plurality of second contacts alternately arranged between the first contacts and arranged at a predetermined distance in the first direction and the second direction; a plurality of dog bone-type conductive lines connected to the second contacts arranged in the second direction, respectively, among the plurality of second contacts, and having concave parts and convex parts; and a plurality of etching prevention patterns formed over the plurality of conductive lines so as to overlap the conductive lines, respectively.
US10199269B2 Conductive structure and method for manufacturing conductive structure
A conductive structure includes a substrate including a first dielectric layer formed thereon, at least a first opening formed in the first dielectric layer, a low resistive layer formed in the opening, and a first metal bulk formed on the lower resistive layer in the opening. The first metal bulk directly contacts a surface of the first low resistive layer. The low resistive layer includes a carbonitride of a first metal material, and the first metal bulk includes the first metal material.
US10199268B2 Film forming method and film forming system
In a film forming method for forming a cobalt film on a target substrate having a recess formed in a surface thereof to fill the recess with the cobalt film, the recess is partially filled by forming a cobalt film on the target substrate by an ALD method or a CVD method using an organic metal compound gas. The cobalt film is partially etched by supplying an etching gas containing β-diketone gas and NO gas to the target substrate. Then, the recess is further filled by forming a cobalt film on the target substrate by the ALD method or the CVD method using an organic metal compound gas.
US10199266B2 Integrated circuit interconnect structure having metal oxide adhesive layer
Integrated circuit interconnect structures having a metal oxide adhesive layer between conductive interconnects and dielectric material, as well as related apparatuses and methods are disclosed herein. For example, in some embodiments, an integrated circuit interconnect structure may include a dielectric layer having 60% or more filler, a conductive layer, and a metal oxide adhesive layer between the dielectric and conductive layers. In some embodiments, the metal oxide adhesive layer may include one or more of aluminum oxide, chromium oxide, and nickel oxide.
US10199252B2 Thermal pad for etch rate uniformity
Etch uniformity is improved by providing a thermal pad between an insert ring and electrostatic chuck in an etching chamber. The thermal pad provides a continuous passive heat path to dissipate heat from the insert ring and wafer edge to the electrostatic chuck. The thermal pad helps to keep the temperature of the various components in contact with or near the wafer at a more consistent temperature. Because temperature may affect etch rate, such as with etching hard masks over dummy gate formations, a more consistent etch rate is attained. The thermal pad also provides for etch rate uniformity across the whole wafer and not just at the edge. The thermal pad may be used in an etch process to perform gate replacement by removing hard mask layer(s) over a dummy gate electrode.
US10199251B2 Position detecting system and processing apparatus
A position detecting system has a transport device, a light source, at least one optical element, a reflective member, a drive unit, and a controller. The transport device transports and places an object on a placement table. The light source generates measurement light. The optical element projects the measurement light, as projection light, generated by the light source and receives reflected light. The reflective member is disposed on the transport device. The reflective member reflects the projection light toward the placement table, and reflects the reflected light of the projection light, which is projected toward the placement table, toward the optical element. The drive unit operates the transport device so that the reflective member scans a plurality of linear scanning ranges. The controller calculates positional relationship between the focus ring and the object placed on the placement table based on the reflected light within the plurality of linear scanning ranges.
US10199248B2 Integrated circuit package singulation assembly
A singulation assembly for molded leadframe sheets includes a saw chuck table having a flat upper surface with a plurality of holes therein. A vacuum source is in fluid communication with the plurality of holes. A mechanical clamping assembly operatively associated with the saw chuck table is adapted to be selectively engageable with predetermined portions of a warped molded leadframe sheet supported on the flat upper surface of the saw chuck table.
US10199245B2 Ceramic heater, heater electrode, and method for manufacturing ceramic heater
The electrostatic chuck includes a discoidal alumina ceramic substrate and a heater electrode and an electrostatic electrode embedded in the alumina ceramic substrate. The top surface of the alumina ceramic substrate is a wafer-mounting face. The heater electrode has a pattern, for example, of a single continuous line so as to realize electric wiring over the entire surface of the alumina ceramic substrate. Upon the application of a voltage, the heater electrode generates heat and heats the wafer W. The heater electrode is made of a complex oxide of titanium, aluminum, and magnesium (Ti—Al—Mg—O) dispersed in molybdenum.
US10199244B2 Imprint apparatus, and method of manufacturing article
An imprint apparatus includes a substrate holder including a plurality of chucking regions for chucking a substrate, and a controller that controls chucking forces of the chucking regions. The chucking regions include a first chucking region for chucking a periphery of a first substrate having a first diameter, a second chucking region for chucking a periphery of a second substrate having a second diameter larger than the first diameter, a third chucking region group divided into a plurality of regions inside the first chucking region, and a fourth chucking region group divided into a plurality of regions between the first chucking region and the second chucking region. The controller controls the chucking forces of each of the chucking regions.
US10199243B2 Substrate processing method and substrate processing apparatus
A substrate processing method is a substrate processing method which applies sequentially common etching processing which is common to each of a plurality of substrates. The common etching processing has an etching step and a high-temperature liquid discharge step. The substrate processing method further includes a piping heating step in which, of the plurality of common etching processings applied to the plurality of substrates, before the initial common etching processing, the pipe wall of the common piping is raised in temperature up to a predetermined second liquid temperature higher than a first liquid temperature and in each of the common etching processings, after each of high-temperature liquid discharge steps and before each of next etching steps, there is not performed a step in which the pipe wall of the common piping is lowered in temperature.
US10199239B2 Package structure and fabrication method thereof
A package structure is provided, which includes: a frame having a cavity penetrating therethrough; a semiconductor chip received in the cavity of the frame, wherein the semiconductor chip has opposite active and inactive surfaces exposed from the cavity of the frame; a dielectric layer formed in the cavity to contact and fix in position the semiconductor chip, wherein a surface of the dielectric layer is flush with a first surface of the frame toward which the active surface of the semiconductor chip faces; and a circuit structure formed on the surface of the dielectric layer flush with the first surface of the frame and electrically connected to the active surface of the semiconductor chip, thereby saving the fabrication cost and reducing the thickness of the package structure.
US10199237B2 Method for manufacturing bonded body and method for manufacturing power-module substrate
A method for manufacturing a power-module substrate includes a lamination step of laminating a ceramic member and a copper member through an active metal material and a filler metal having a melting point of 710° C. or lower, and a heating treatment step of heating the ceramic member and the copper member laminated together.
US10199236B2 Thin film transistor, manufacturing method thereof, and method for manufacturing array substrate
A thin film transistor, a manufacturing method thereof, and a method for manufacturing an array substrate are provided. The method for manufacturing the thin film transistor includes: forming an active layer film on a base; and forming a source electrode and a drain electrode of the thin film transistor using a conductive photoresist.
US10199234B2 Methods of forming metal silicides
A method of forming a metal silicide can include depositing an interface layer on exposed silicon regions of a substrate, where the interface layer includes a silicide forming metal and a non-silicide forming element. The method can include depositing a metal oxide layer over the interface layer, where the metal oxide layer includes a second silicide forming metal. The substrate can be subsequently heated to form the metal silicide beneath the interface layer, using silicon from the exposed silicon regions, the first silicide forming metal of the interface layer and the second silicide forming metal of the metal oxide layer.
US10199232B2 Conductor line structure
Exemplary metal line structure and manufacturing method for a trench are provided. In particular, the metal line structure includes a substrate, a target layer, a trench and a conductor line. The target layer is formed on the substrate. The trench is formed in the target layer and has a micro-trench formed at the bottom thereof. A depth of the micro-trench is not more than 50 angstroms. The conductor line is inlaid into the trench.
US10199229B2 SONOS stack with split nitride memory layer
A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.
US10199225B2 Substrate processing apparatus
Provided is a substrate processing apparatus. The substrate processing apparatus includes a first tube defining an inner space, a substrate holder in which a plurality of substrates are vertically stacked in the inner space of the first tube, the substrate holder defining a plurality of processing spaces in which the substrates are individually processed, a gas supply unit having a plurality of main injection holes each of which is vertically defined to correspond to each of the processing spaces to supply a gas into the first tube, and an exhaust unit configured to exhaust the gas supplied into the plurality of processing spaces in the first tube to the outside. The exhaust unit includes a plurality of exhaust holes facing the main injection holes and vertically arranged in a line to correspond to the processing spaces. Therefore, the gas may smoothly flow on the substrate.
US10199223B2 Semiconductor device fabrication using etch stop layer
An etch stop layer comprises a metal oxide comprising a metal selected from the group consisting of metals of Group 4 of the periodic table, metals of Group 5 of the periodic table, metals of Group 6 of the periodic table, and yttrium. The metal oxide forms exceptionally thin layers that are resistant to ashing and HF exposure. Subjecting the etch stop layer to both ashing and HF etch processes removes less than 0.3 nm of the thickness of the etch stop layer, and more preferably less than 0.25 nm. The etch stop layer may be thin and may have a thickness of about 0.5-2 nm. In some embodiments, the etch stop layer comprises tantalum oxide (TaO).
US10199222B2 Semiconductor device structure and methods of its production
The present document discloses a semiconductor device structure (1) comprising a SiC substrate (11), an Inx1Aly1Ga1-x1-y1N buffer layer (13), wherein x1=0-1, y1=0-1 and x1+y1=1, and an Inx2Aly2Ga1-x2-y2N nucleation layer (12), wherein x2=0-1, y2=0-1 and x2+y2=1, sandwiched between the SiC substrate (11) and the buffer layer (13). The buffer layer (13) presents a rocking curve with a (102) peak having a FWHM below 250 arcsec, and the nucleation layer (12) presents a rocking curve with a (105) peak having a FWHM below 200 arcsec, as determined by X-ray Diffraction (XRD).Methods of making such a semiconductor device structure are disclosed.
US10199221B2 Cleaning method
Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process, where at least one etching process gas comprising chlorine gas and an inert gas is used during the plasma etch process and forming an epitaxial layer on the surface of the silicon-containing substrate.
US10199213B2 Sulfur-containing thin films
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
US10199212B2 Selective growth of silicon oxide or silicon nitride on silicon surfaces in the presence of silicon oxide
Methods and apparatuses for selectively depositing silicon-containing dielectric or metal-containing dielectric material on silicon or metal surfaces selective to silicon oxide or silicon nitride materials are provided herein. Methods involve exposing the substrate to an acyl chloride which is reactive with the silicon oxide or silicon nitride material where deposition is not desired to form a ketone structure that blocks deposition on the silicon oxide or silicon nitride material. Exposure to the acyl chloride is performed prior to deposition of the desired silicon-containing dielectric material or metal-containing dielectric material.
US10199210B2 Semiconductor substrate treatment liquid, treatment method, and method for manufacturing semiconductor-substrate product using these
Provided is a semiconductor substrate treatment liquid which removes an organic material on the top of a semiconductor substrate from the semiconductor substrate having a Ge-containing layer that includes germanium (Ge) or cleans the surface thereof, and the treatment liquid includes a liquid chemical component which adjusts the pH of the treatment liquid to be in a range of 5 to 16 and an anticorrosive component which is used to prevent the Ge-containing layer.
US10199208B2 Ion beam mass pre-separator
An apparatus for separating ions includes an electrode arrangement having a length extending between first and second ends. The first end is configured to introduce a beam of ions into an ion transmission space of the arrangement. An electronic controller applies an RF potential and a DC potential to an electrode of the electrode arrangement, for generating a ponderomotive RF electric field and a mass-independent DC electric field. The application of the potentials is controlled such that a ratio of the strength of the ponderomotive RF electric field to the strength of the mass-independent DC electric field varies along the length of the electrode arrangement. The generated electric field supports extraction of ions having different m/z values at respective different positions along the length of the electrode arrangement. Ions are extracted in one of increasing and decreasing sequential order of m/z ratio with increasing distance from the first end.
US10199206B2 Interactive analysis of mass spectrometry data
This invention relates to graphical user-interactive displays for use in MS-based analysis of protein impurities, as well as methods and software for generating and using such. One aspect provides a user-interactive display comprising an extracted mass chromatogram (XIC), an MS1 spectrum and an MS2 spectrum, all simultaneously representing a user-selected peptide. Another aspect provides a user interactive display simultaneously presenting paired spectra (XIC, MS1 and/or MS2) for a variant peptide and its corresponding wildtype counterpart.
US10199205B2 Compact mass spectrometer
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionization source and a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. An ion detector is located in the third vacuum chamber. A first RF ion guide is located within the first vacuum chamber and a second RF ion guide is located within the second vacuum chamber. The ion path length from the atmospheric pressure sampling orifice or capillary to an ion detecting surface of the ion detector is ≤400 mm. The mass spectrometer further comprises a tandem quadrupole mass analyzer, a 3D ion trap mass analyzer, a 2D or linear ion trap mass analyzer, a Time of Flight mass analyzer, a quadrupole-Time of Flight mass analyzer or an electrostatic mass analyzer arranged in the third vacuum chamber. The product of the pressure P1 in the vicinity of the first RF ion guide and the length L1 of the first RF ion guide is in the range 10-100 mbar-cm and the product of the pressure P2 in the vicinity of the second RF ion guide and the length L2 of the second RF ion guide is in the range 0.05-0.3 mbar-cm.
US10199203B2 Cobalt, iron, boron, and/or nickel alloy-containing articles and methods for making same
Methods for making a high purity (>99.99%) and low oxygen (<40 ppm) sputtering target containing Co, CoFe, CoNi, CoMn, CoFeX (X═B, C, Al), Fe, FeNi, or Ni alloys with a column microstructure framed by boron intermetallics are disclosed. The sputtering target is made by directional casting a molten mixture of the metal alloy, annealing to remove residual stresses, slicing, and optional annealing and finishing to obtain the sputtering target.
US10199202B2 Plasma irradiation apparatus and plasma irradiation method
Provided are a plasma irradiation apparatus and plasma irradiation method capable of converting a silica precursor to a high quality silica film in a short time without thermal effects on the object being processed. This plasma irradiation apparatus 1 is provided with a plasma-generating unit 12 and an irradiation unit 80 for irradiating the plasma generated by the plasma-generating unit 12 on an object to be processed, and is characterized in that irradiation unit 80 comprises a coating part 85 capable of coating a liquid on the object being processed.
US10199200B2 Charged particle beam writing apparatus and charged particle beam writing method
A charged particle beam writing apparatus includes an area density calculation unit to calculate a pattern area density weighted using a dose modulation value, which has previously been input from an outside and in which an amount of correction of a dimension variation due to a proximity effect has been included, a fogging correction dose coefficient calculation unit to calculate a fogging correction dose coefficient for correcting a dimension variation due to a fogging effect by using the pattern area density weighted using the dose modulation value having been input from the outside, a dose calculation unit to calculates a dose of a charged particle beam by using the fogging correction dose coefficient and the dose modulation value, and a writing unit to write a pattern on a target object with the charged particle beam of the dose.
US10199195B2 Circuit breaker and method
A circuit breaker includes at least one coil for measuring electric current of an electrical conductor of an electrical circuit, connected to a control unit which compares the measured current or its equivalent with a first current limit value. Upon the first current limit value being exceeded, the control unit initiates an interruption of the electrical circuit. The two terminals of the coil are connected via a series circuit which has a first switch opened in its basic state, a voltage source and a voltage indicator. The control unit is designed such that, when a second current limit value is undercut and a first period of time is exceeded, the first switch is closed for a second period of time, the voltage indicator compares the voltage present with a first voltage value and, when the latter is exceeded, delivers information on the absence of faults of the coil.
US10199194B2 Electrical apparatus for disconnecting an electrical current
A disconnecting electrical apparatus includes a disconnecting block, including elements for disconnecting an electric current each able to be actuated with a coupling member, to switch this disconnecting element to a blocking state or a state allowing the electric current to pass, an actuator block, provided with a controllable electromagnet suitable for generating an electromagnetic force, a mobile container provided with a magnetic plate, which displaces the coupling members, under the effect of the electromagnetic force, so as to switch the disconnecting elements. The apparatus also includes a connection interface inserted between the disconnecting block and the actuator block, the mobile container being housed inside the connection interface.
US10199191B2 Cover of contactor of starter for motor vehicle
The present invention refers to a cover (17) of a contactor (1) of a starter for motor vehicle, comprising —a plastic portion (18) delimiting a contact chamber (15) volume, —two plugs (43, 45) in an electrical conductor material which cross the plastic portion, each of the two plugs (43, 45) having an end in the contact chamber (15), —a seal (37) which is arranged on the plastic portion (18) to isolate the contact chamber (15) when the cover (17) is assembled with a coil casing (5) of the contactor (1), the seal (37) being assembled in a fixed manner to the cover (17).
US10199190B2 Active electrical component
An active electrical component is disclosed. The active electrical component comprises a contact extending away from an outer side of the component in an insertion direction, and a force transmission structure extending to the contact in a continuous manner from a side of the component opposite the contact.
US10199188B2 Gas circuit breaker
A bidirectional driving mechanism 10 has a drive-side linkage rod 11, a driven-side linkage rod 13, two levers 12 that link the drive-side linkage rod with the driven-side linkage rod, and a guide 14 that regulates the operation of the drive-side linkage rod 11 and the driven-side linkage rod 13. A moveable pin 18 is passed through a first groove cam 16 of the drive-side linkage rod 11, a second groove cam 17 of the guide 14, and third groove cams 19 of the levers 12, and by operation of the drive-side rod 13, the moveable pin 18 moves within the respective groove cams 16, 17, 19, causing the levers 12 to rotate, the driven-side linkage rod 13 to be driven in a direction opposite to the drive-side linkage rod 11, and a driven-side arc electrode 5 to be driven in a direction opposite to a drive-side arc electrode 4.
US10199187B2 Luminous keyboard
A luminous keyboard comprises a key assembly, a thin-film switch circuit board assembly, a base plate and a light guide plate. The key assembly is disposed on the thin-film switch circuit board assembly. The thin-film switch circuit board assembly is disposed on the base plate. The base plate is disposed on the light guide plate. The base plate and the light guide plate together form an aperture structure. The thin-film switch circuit board assembly includes a thin-film switch circuit board and a light-emitting unit. The thin-film switch circuit board forms a protrusion protruding toward the aperture structure. The light-emitting unit is disposed at the bottom surface of the protrusion and extends downward such that a lower end of the light-emitting unit is lower than a lower surface of the base plate so that the light-emitting unit emits light into the light guide plate directly.
US10199182B1 Switch, in particular low-voltage circuit breaker, in plug-in technology with automatic unloading of the force store during withdrawal
A switch, in particular a low-voltage circuit breaker, in plug-in technology includes a withdrawal shaft to move the switch from an operating position into a removal position; a force store including a storage spring unloaded during withdrawal; and an unlatching shaft which, as the circuit breaker is withdrawn, is configured to rotate into an unlatching position, unloading of the storage spring taking place when the unlatching shaft is in the unlatching position. To permit unloading of the force store during the withdrawal, the unlatching shaft includes a driver element, spaced radially apart from its axis of rotation and configured to rest in a sliding manner on an outer contour of a rotatably mounted cam disk. The withdrawal shaft and the cam disk are connected via a connecting element which transforms the rotation of the withdrawal shaft into a corresponding rotation of the cam disk and therefore, of the unlatching shaft.
US10199180B2 Fabric supercapacitor
Fabric supercapacitors are disclosed herein. The fabric supercapacitor can include an ion permeable separator layer having two opposed surfaces; two electrode layers disposed on the opposed surfaces of the ion permeable separator layer; and two conducting layers disposed on outer surfaces of the two electrode layers and opposite the ion permeable separator layer. The electrode layers can comprise an activated carbon fiber fabric. The activated carbon fiber fabric can be derived from a precursor fabric which has been carbonized, activated, and coated with an electrolyte. The electrolyte can include a polymer gel. The conducting layers can include a non-activated carbon fiber fabric. The fabric supercapacitors disclosed herein exhibit great flexibility which allows the supercapacitors to find use in applications such as apparel products, outdoor activity products, sports wears, and other industrial end uses. Methods of making fabric supercapacitors are also disclosed.
US10199179B2 Electrolyte solution for electric double layer capacitors, and electric double layer capacitor
An electrolytic solution for electric double layer capacitors includes an organic solvent and quaternary ammonium salt dissolved in the organic solvent. The organic solvent consists of sulfolane and chain sulfone. The quaternary ammonium salt is at least one of diethyl dimethyl ammonium salt and ethyl trimethyl ammonium salt.
US10199178B2 Process of forming electrodes and products thereof from biomass
A flexible electrode comprises an activated cotton textile composite comprising activated carbon fibers, nickel sulfide nanoparticles and graphene and a process for making the flexible electrode. The process may comprise preparing a cotton textile containing Ni(NO3)2. Then, the cotton textile containing Ni(NO3)2 may be heated at a first temperature to produce an activated cotton textile composite comprising activated carbon fibers, nickel nanoparticles and graphene. The activated cotton textile composite may be then treated with sulfur to produce an activated cotton textile composite comprising activated carbon fibers, nickel sulfide nanoparticles and graphene. The nickel sulfide particles may be NiS2 nanoparticles in a form of nanobowls, and distributed on a surface and inside the activated carbon fibers. The activated carbon fibers and the nickel sulfide nanoparticles may be coated with graphene. Banana peels may be activated and treated with the similar processes to form electrodes for both supercapacitor and battery applications.
US10199177B2 Method for the synthesis of nanocomposites based on TiO2 and carbonated nanostructures
The invention relates to a method for the synthesis of a nanocomposite compound comprising TiO2 nanoparticles bound to carbon nanostructures, characterized in that it comprises the following steps: a) mixing carbon nanostructures and at least one TiO2 precursor in a first liquid in order to form a stock suspension; b) nebulizing said stock suspension and transporting it into a reaction chamber by means of a gaseous flow; and c) carrying out laser pyrolysis of said stock suspension in said reaction chamber in order to simultaneously form TiO2 nanoparticles and graft them onto the nano structures.
US10199174B2 Tantalum capacitor
There is provided a tantalum capacitor including: a tantalum capacitor body; a plurality of tantalum wires and an adhesive layer on a lower surface of the tantalum capacitor body; and a molding part enclosing the tantalum capacitor body, wherein the tantalum wire and the adhesive layer are connected to an anode lead frame and a cathode lead frame, respectively.
US10199167B2 Thin-film ceramic capacitor
A thin-film ceramic capacitor includes a body, a plurality of dielectric layers and first and second electrode layers alternately disposed on a substrate in the body, first and second electrode pads disposed on an external surface of the body, and a plurality of vias disposed in the body, the plurality of dielectric layers and first and second electrode layers having inclined etched surfaces exposed to the plurality of vias, a first via, of the plurality of vias, being connected to the inclined surface of the first electrode layer, and a second via, of the plurality of vias, being connected to the inclined surface of the second electrode layer.
US10199159B2 Insulation type step-down coverter
An insulation type step-down converter includes first and second step-down transformers each of which includes an input-side coil and an output-side coil. First, second, third, and fourth rectifier elements are connected in series with first, second, third, and fourth series coils, respectively, the first, second, third, and fourth series coils each having the output-side coil of the first step-down transformer and the output-side coil of the second step-down transformer connected in series. The first to fourth series coils are connected to smoothing coils. The connection is such that electric currents flow simultaneously only in one of the first and second series coils and one of the third and fourth series coils in an alternate manner, and electric currents flowing simultaneously in one of the first and second series coils and one of the third and fourth series coils are opposite in direction to each other.
US10199155B2 Variable magnetic coupling reactor having two integrated reactor elements, power supply system including the same, and method of use of composite magnetic component having two integrated reactor elements
A core has first to third magnetic leg portions. First and second windings wound on the first and second magnetic leg portions, respectively, are connected in series to constitute a first reactor. A third winding wound on the third magnetic leg portion constitutes a second reactor. A magnetic field produced from the first reactor and a magnetic field produced from the second reactor reinforce each other in the second magnetic leg portion, but weaken each other in the first magnetic leg portion. In accordance with increase in currents, the operation of the first and second reactors changes from a magnetically uncoupled mode in which the first and second reactors operate in a magnetically non-interfering state to a magnetically coupled mode in which the first and second reactors operate in a magnetically interfering state.
US10199151B2 Transformer system and system for measuring dielectric fluid level in a transformer tank
A transformer system includes a transformer and a transformer tank. The transformer tank houses the transformer in a bath of a dielectric fluid. The transformer system also includes a controller, and a fiber optic sensor communicatively coupled to the controller. The fiber optic sensor is disposed in the dielectric fluid and operative to provide an output that varies with the level of the dielectric fluid. The controller is operative to determine the level of the dielectric fluid based on the output of the fiber optic sensor.
US10199146B2 Removable fluid barrier
A removable fluid barrier comprises a generally planar flexible body fabricated of at least one resilient material and encapsulating a plurality of permanent magnets. The flexible body has an outer face defining a sealing surface of the removable fluid barrier.
US10199144B2 Data cable and stranded conductor
A data cable has a specially formed stranded conductor, as a result of which the transmission properties of the data cable are significantly improved. The stranded conductor is surrounded by insulation and has an unpressed assembly composed of a plurality of individual wires which are of a same type and being embodied as external wires and being disposed around a center. The external wires are embodied with a non-round cross section, with a result that when viewed in cross section an extent of the external wires increases radially outward from the center.
US10199143B2 Power cable
A power cable includes an insulation layer, itself, having high dielectric strength. An electric field to be applied to the insulation layer is effectively buffered, degradation of the insulation layer can be prevented during a cable connection step such that the life of the power cable is extended and simultaneously, the thickness of the insulation layer is minimized such that an outer diameter of the cable is reduced, thereby enabling flexibility, ease of installation, workability and the like of the cable to be improved.
US10199141B2 Flex flat cable structure and assembly of cable connector and flex flat cable
A flex flat cable (FFC) is proposed. The FFC comprises a plurality of first signal transmitting lines arranged in parallel with one another. Each of the plurality of first signal transmitting lines comprises a first transmitting conductor configured to transmit a signal, a first insulating layer enclosing the first transmitting conductor, and a second insulating layer, enclosing the first insulating layer. The FFC further includes a first insulating coat enclosing the plurality of first signal transmitting lines, a first ground conductor arranged at one side of the first insulating coat and configured to be grounded, a metallic shielding layer enclosing the first insulating coat and the first ground conductor and a second insulating coat enclosing the metallic shielding layer, and a second insulating coat enclosing the metallic shielding layer.The first ground conductor contacts the metallic shielding layer.
US10199140B2 High-power low-resistance electromechanical cable
A high-power low-resistance electromechanical cable constructed of a conductor core comprising a plurality of conductors surrounded by an outer insulating jacket. Each conductor has a center conductor element surrounded by a plurality of copper wires, wherein the plurality of copper wires is compacted to have a non-circular cross-section. The center conducting element may be one of a fiber optic strand, a copper wire having an indented outer surface, or a twisted conductor pair. Each conductor also includes a conductor insulating jacket encapsulating the plurality of copper wires and center conducting element. A first armoring layer of a plurality of strength members is wrapped around the outer insulating jacket. A second armoring layer of a plurality of strength members may also be wrapped around the first layer. A polymer jacket layer may encapsulate the first and/or second armoring layers of strength members.
US10199138B2 Insulated winding wire
Insulated winding wires and associated methods for forming winding wires are described. A winding wire may include a conductor and insulation formed around the conductor. The insulation may provide a partial discharge inception voltage greater than approximately 1,000 volts and a dielectric strength greater than approximately 10,000 volts. Additionally, the insulation may be capable of withstanding a continuous operating temperature of approximately 220° C. without degradation. The insulation may include at least one base layer formed around an outer periphery of the conductor, and an extruded thermoplastic layer formed around the base layer. The extruded layer may include at least one of polyetheretherketone (PEEK) or polyaryletherketone (PAEK).
US10199132B2 High strength Cu—Ni—Co—Si based copper alloy sheet material and method for producing the same, and current carrying component
A copper alloy sheet material comprises (by mass %) from 2.50 to 4.00% in total of Ni and Co, from 0.50 to 2.00% of Co, from 0.70 to 1.50% of Si, from 0 to 0.50% of Fe, from 0 to 0.10% of Mg, from 0 to 0.50% of Sn, from 0 to 0.15% of Zn, from 0 to 0.07% of B, from 0 to 0.10% of P, from 0 to 0.10% of REM, from 0 to 0.01% in total of Cr, Zr, Hf, Nb and S, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles (particle diameter of 5 mm or more) is 10 per mm2 or less. A number density of fine secondary phase particles (particle diameter of from 5 to 10 nm) is 1.0·109 per mm2 or more. A Si concentration in the parent phase is 0.10% by mass or more.
US10199131B2 Automatic transfer system
A sample transfer system for nuclear irradiation and a method of automatically irradiating sample containers is disclosed. The sample transfer system includes a conduit which may define a passage for transferring a plurality of sample containers, an input assembly which may be configured to allow the plurality of sample containers to pass through the conduit in a predefined order, and an exposure assembly which may be configured to receive the sample containers via the conduit and rotate the sample containers in front of a radiation source.
US10199125B2 Technique for linking electrodes together during programming of neurostimulation system
An external control device for use with a neurostimulator coupled to a plurality of electrodes capable of conveying electrical stimulation energy into tissue in which the electrodes are implanted. The external control device comprises a user interface including at least one control element, a processor configured for independently assigning stimulation amplitude values to a first set of the electrodes, for linking the first set of electrodes together in response to the actuation of the at least one control element, and for preventing the stimulation amplitude values of the first linked set of electrodes from being varied relative to each other, and output circuitry configured for transmitting the stimulation amplitude values to the neurostimulator.
US10199122B2 Short detection and inversion
In some examples, a memory device may be configured to store data in either an original or an inverted state based at least in part on a state associated with one or more shorted bit cells. For instance, the memory device may be configured to identify a shorted bit cell within a memory array and to store the data in the memory array, such that a state of the data bit stored in the shorted bit cell matches the state associated with the shorted bit cell.
US10199121B2 Simultaneous scan chain initialization with disparate latches
Provided is an integrated circuit that includes a reset electrically connected to a select line of a multiplexer and an OR gate. The multiplexer receives data from a power source. The multiplexer and the OR gate comprise a circuit. A clock is electrically connected to the OR gate. The OR gate is electrically connected to a clock input of a latch. The latch includes the clock input, a scan enable input, a data input, and a data output. A regular logic data path is electrically connected to the multiplexer, and the multiplexer is further electrically connected to the data port of the latch.
US10199119B2 Shift register unit, shift register, gate driving circuit and display device
A shift register unit, a shift register, a gate driving circuit and a display device are discloses. The shift register unit has an output node Out(n) of a current stage, a pull-up node PU and a pull-down node PD, and the shift register unit includes a first capacitor module C1, a pull-down module and a pull-down control module, and the pull-down control module is configured to output one of a high level signal and a low level signal to the pull-down node (PD) in accordance with a current operating phase.
US10199118B2 One-time programmable (OTP) memory device for reading multiple fuse bits
A one-time programmable (OTP) memory device includes an OTP cell array, a latch controller, a column selection circuit, and a latch circuit. The OTP cell array includes a plurality of OTP memory cells respectively connected to a plurality of bitlines. The latch controller generates a latch address signal indicating an address that is changed sequentially in an enable mode to initialize the OTP memory device. The column selection circuit electrically connects a plurality of bitline groups of the bitlines to a plurality of input-output lines sequentially based on the latch address signal in the enable mode. The latch circuit receives and stores fuse bits provided sequentially through the bitline groups and the input-output lines in the enable mode.
US10199114B2 Stress detection in a flash memory device
A flash memory device includes an array of non-volatile memory (NVM) cells, at least one detection NVM cell, and a sensing circuit. The array of NVM cells are configured to store data. The sensing circuit is coupled to the at least one detection NVM cell and is configured to measure a charge on the at least one detection NVM cell. The sensing circuit is also configured to compare the measured charge with a threshold charge level and to trigger a refresh of the array of NVM cells in response to the measured charge being less than the threshold charge level.
US10199113B2 Non-volatile semiconductor memory having multiple external power supplies
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
US10199111B1 Memory devices with read level calibration
Several embodiments of memory devices and systems with read level calibration are disclosed herein. In one embodiment, a memory device includes a controller operably coupled to a main memory having at least one memory region and calibration circuitry. The calibration circuitry is operably coupled to the at least one memory region and is configured to determine a read level offset value corresponding to a read level signal of the at least one memory region. In some embodiments, the calibration circuitry is configured to obtain the read level offset value internal to the main memory. The calibration circuitry is further configured to output the read level offset value to the controller.
US10199110B2 Method for reading data stored in a flash memory according to a voltage characteristic and memory controller thereof
A method for reading data stored in a flash memory. The flash memory comprises a plurality of memory cells and each memory cell has a particular threshold voltage. The method includes: obtaining a first threshold voltage distribution representing threshold voltages of a first group of the memory cells; obtaining a second threshold voltage distribution representing threshold voltages of a second group of the memory cells, wherein the second threshold voltage distribution is different from the first threshold voltage distribution, and the first group of the memory cells comprises at least a part of the second group of the memory cells; and controlling the flash memory to perform at least one read operation upon the first group of the memory cells according to the second threshold voltage distribution.
US10199108B2 Methods for read retries and apparatuses using the same
The invention introduces a method for read retries, performed by a processing unit, including at least the following steps: in boot time, generating and storing microcodes of a retry-read operation in an instruction buffer; and after a successful boot, receiving a retry-read command from a host device through a first access interface; and starting a state machine to execute the microcodes of the retry-read operation of the instruction buffer.
US10199106B2 Reducing errors caused by inter-cell interference in a memory device
A method includes, in one aspect, performing a read operation on a wordline of a memory device, wherein the wordline comprises a plurality of cells that are expected to be in a first state; based on the read operation, identifying one or more of the plurality of cells that are determined to be in a second state that differs from the first state; encoding data using information pertaining to the identified cells to generate a codeword comprising a plurality of bits to be written to the wordline, with at least one of the plurality of bits, which are to be written to at least one of the identified cells, having a value corresponding to the second state; and writing the generated codeword to the wordline.
US10199104B2 Method and apparatus for providing multi-page read and write using SRAM and nonvolatile memory devices
A memory device includes a static random-access memory (“SRAM”) circuit and a first nonvolatile memory (“NVM”) string, a second NVM string, a first and a second drain select gates (“DSGs”). The SRAM circuit is able to temporarily store information in response to bit line (“BL”) information which is coupled to at the input terminal of the SRAM circuit. The first NVM string having at least one nonvolatile memory cell is coupled to the output terminal of the SRAM. The first DSG is operable to control the timing for storing information at the output terminal of the SRAM to the first nonvolatile memory. The second NVM string having at least one nonvolatile memory cell is coupled to the output terminal of the SRAM. The second DSG controls the timing for storing information at the output terminal of the SRAM to the second nonvolatile memory string.
US10199103B2 Method for implementing memristive logic gates
An embodiment of the present invention provides a method for implementing Boolean functionality to create AND, OR, NAND, NOR, or NOT logic gates using a single memristor. In an embodiment, a first voltage is applied to the memristor within a predetermined range of one of the prescribed Boolean functions to be performed by the memristor. A second voltage is then applied within the predetermined range of the prescribed Boolean function. The memristor then provides an output based on the Boolean function that has been prescribed. In an embodiment, the resistance value of the memristor is then reset by a reset pulse, wherein the reset pulse is another applied voltage.
US10199102B2 Memory controller, memory system, and information processing system
Delay overhead in a memory device is eliminated.A command accepting unit accepts a read command requesting data reading from the memory device. A control unit selects, in accordance with a state of the memory device, one of a first mode in which a read request, requesting data reading from a memory cell array of the memory device and output of the read data, is issued to the memory device after completion of a preceding request and a second mode in which a sense request requesting data reading from the memory cell array is issued and then a data-out request requesting output of the data read by the sense request is issued to the memory device after a lapse of predetermined time from completion of the preceding request. A request issuing unit issues a request to the memory device in accordance with the first or the second mode selected by the control unit.
US10199101B2 Method for controlling resistive memory device
A method for controlling a resistive memory device is described. The resistive memory device including a memory cell provided between a first interconnection and a second interconnection crossing the first interconnection, and the memory cell transitions reversibly between a first resistance state and a second resistance state. The method includes detecting a first current flowing through a memory cell by applying a first voltage between the first interconnection and the second interconnection; comparing a value of the first current with a first criteria value; and determining whether the memory cell is in the first resistance state or the second resistance state. The method further includes comparing the value of the first current with a second criteria value greater than the first criteria value; and setting a first flag for the memory cell when the value of the first current is greater than the second criteria value.
US10199095B1 Bit line strapping scheme for high density SRAM
A structure includes a write bit switch device which includes a plurality of bit switch devices positioned at different positions of a memory cell array, and which is configured to enable write operations at a specified number of cells per bit line using a strapped bit line on a selected column of the memory cell array.
US10199091B2 Retention minimum voltage determination techniques
An apparatus is described. The apparatus includes a semiconductor chip. The semiconductor chip includes a memory having multiple storage cells. The storage cells are to receive a supply voltage. The semiconductor chip includes supply voltage retention circuitry. The supply voltage retention circuitry is to determine a level of the supply voltage at which the storage cells are able to retain their respective data. The supply voltage retention circuitry is to receive the supply voltage during a stress mode of the supply voltage retention circuitry. The supply voltage retention circuitry is to more weakly retain its stored information than the storage cells during a measurement mode at which the level is determined.
US10199079B2 Semiconductor memory device
A semiconductor memory device may include a memory cell array area, a peripheral area, and an interface area. The memory cell array area may include at least one memory plane. The peripheral area may be formed adjacent to one side of the memory cell array area. The interface area may be formed adjacent to one side of the peripheral area and include a plurality of data input/output pads. The peripheral area may include a data path logic area formed between the memory cell array area and the interface area. The interface area may include at least one SerDes (serializer/deserializer) area configured to transmit, to the memory cell array area, data inputted through the data input/output pads, or output, through the data input/output pads, data received from the memory cell array.
US10199077B2 Memory arrangement
A memory arrangement and method to arrange memories are disclosed. The memory arrangement comprises at least two memory chips (M1, M2) arranged on a Printed Circuit Board, PCB. A first memory chip (M1) is arranged on a first surface of the PCB, a second memory chip (M2) is arranged on a second surface of the PCB. The second memory chip (M2) is placed back to back to the first memory chip (M1) and oriented such that respective pins having the same function on the first memory chip (M1) and the second memory chip (M2) are placed opposite to each other and connected by vias to respective signal traces arranged between the first and second surfaces of the PCB.
US10199072B2 Editing method and recording and reproducing device
In order to provide a recording and reproducing device that allows a user to select and manage arbitrary play lists, a unit of management for managing all registered play list information and an upper management hierarchical level are added. The unit of management is adapted to be handled on the same level with unified information that indicates a reproduction range of all AV data. User-defined unified information is adapted to be handled on the added management hierarchical level. The user-defined unified information is formed to allow arbitrary reproduction ranges contained on a lower hierarchical level to be registered.
US10199070B2 Digital audio data user interface customization based on user expertise, content type, or testing
A digital medium environment includes an audio processing application that generates a user interface for editing audio data. Sound effects are displayed each with a single adjuster according to an ordered workflow based on a mix type of an audio clip, such as music, dialogue, etc. Adjustment of a single adjuster for a sound effect causes adjustment of multiple parameters of an effects processor underlying the sound effect. Furthermore, effects processors corresponding to selected sound effects are placed in an effects rack in a correct order, rather than in an order in which the sound effects are selected, thus correcting user mistakes. The techniques described herein allow users of varied skill levels to work on a same project, and provide a dynamic interface suitable to the user's skill level that also facilitates comparative testing with an audio effect disabled and subsequently enabled without dropouts in the rendered audio.
US10199069B1 Aggregation on related media content
Systems and methods for media aggregation are disclosed herein. The system includes a media system that can transform media items into one aggregated media item. A synchronization component synchronizes media items with respect to time. The synchronized media items can be analyzed and transformed into an aggregated media item for storage and/or display. In one implementation, the aggregated media item is capable of being displayed in multiple ways to create an enhanced and customizable viewing and/or listening experience.
US10199067B1 Adaptive cleaning of a media surface responsive to a mechanical disturbance event
Apparatus and method for proactively cleaning a data storage surface subjected to a mechanical disturbance. In some embodiments, data access commands are serviced by a data storage device to transfer user data between a host device and a rotatable data recording surface using a radially moveable data transducer. A media cleaning operation is scheduled and performed in response to the detection of a mechanical disturbance event externally applied to the data storage device. The media cleaning operation involves sweeping the data transducer across the data recording surface from a first radius to a second radius over a selected time duration. The entirety of the data recording surface is swept if sufficient time is available between pending commands to maintain a desired host data transfer rate. Otherwise, a partial cleaning operation is scheduled in which portions of the recording surface are successively cleaned between the servicing of the pending commands.
US10199063B2 Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular MTJ element, and perpendicular magnetic recording medium using the same
Disclosed is a perpendicularly magnetized film structure that uses a highly heat resistant underlayer film on which a cubic or tetragonal perpendicularly magnetized film can grow with high quality, the structure comprising any one substrate (5) of a cubic single crystal substrate having a (001) plane, or a substrate having a cubic oriented film that grows to have the (001) plane; an underlayer (6) formed on the substrate (5) from a thin film of a metal having an hcp structure, such as Ru or Re, in which the [0001] direction of the thin metal film forms an angle in the range of 42° to 54° with respect to the <001> direction or the (001) orientation of the substrate (5); and a perpendicularly magnetized layer (7) located on the metal underlayer (6) and formed from a cubic material selected from the group consisting of a Co-based Heusler alloy, a cobalt-iron (CoFe) alloy having a bcc structure, and the like, as a constituent material, and grown to have the (001) plane.
US10199061B2 Balanced delay and resolution for high density servo systems
A tape drive-implemented method, according to one embodiment, includes: determining a length of a window of a servo pattern to use for calculating a lateral position estimate, and determining a number of the windows of the servo pattern to use for calculating a lateral position value. A lateral position estimate is calculated for each of the number of the windows of the servo pattern. Moreover, the lateral position value is calculated by using the lateral position estimates. The lateral position value is used to control a tape head actuator. Other systems, methods, and computer program products are described in additional embodiments.
US10199059B2 Using head and/or drive performance information for predicting and/or ascertaining failures
A computer-implemented method, according to one embodiment, includes: collecting performance data corresponding to a tape drive and/or a magnetic tape head, storing the performance data in memory, and using the data to perform problem analysis. The performance data includes a resistance of the tape drive and/or magnetic tape head and a resolution of the tape drive and/or the magnetic tape head. Moreover, performing the problem analysis includes: determining a condition of the tape drive and/or the magnetic tape head, wherein the condition is selected from a group consisting of: wear, corrosion, defective leads and wire bonds. Other systems, methods, and computer program products are described in additional embodiments.
US10199056B1 Noise cancellation in multitransducer recording
In certain embodiments, an apparatus may comprise a first output driver connected to a first output via a first trace and a second output driver connected to a second output via a second trace. The first output driver may be configured to output a first drive signal to the first output to drive the first output and the first drive signal may cause first induced noise in the second trace. Further, the second output driver may be configured to output a second drive signal based on the first drive signal where the second drive signal may reduce the magnitude of the first induced noise at the second output.
US10199048B2 Bass enhancement and separation of an audio signal into a harmonic and transient signal component
A method for separating an audio signal into a harmonic signal component and a transient signal component is disclosed. The method includes the steps of: transferring the audio signal into a frequency space in order to obtain a transferred audio signal in dependence on frequency and time and applying a non-linear smoothing filter to the transferred audio signal over frequency to obtain a filtered transient signal in which the harmonic signal component is suppressed relative to the transient signal component. The method further includes applying the non-linear smoothing filter to the transferred audio signal over time to obtain a filtered harmonic signal in which the transient signal component is suppressed relative to the harmonic signal component and determining the harmonic signal component and the transient signal component based on the filtered harmonic signal and the filtered transient signal.
US10199045B2 Binaural rendering method and apparatus for decoding multi channel audio
Disclosed is a binaural rendering method and apparatus for decoding a multichannel audio signal. The binaural rendering method may include: extracting an early reflection component and a late reverberation component from a binaural filter; generating a stereo audio signal by performing binaural rendering of a multichannel audio signal base on the early reflection component; and applying the late reverberation component to the generated stereo audio signal.
US10199041B2 Speech recognition systems and methods for maintenance repair and overhaul
Methods and systems are provided for capturing information associated with a component of a system during a maintenance procedure. In one embodiment, a method includes: managing a dialog with a user via a wearable device based on a pre-defined dialog file, wherein the pre-defined dialog file is defined for at least one of a component and a procedure; receiving speech signals at the wearable device based on the dialog; processing the speech signals by the wearable device to identify component information; and transmitting the component information from the wearable device to a host component for use by a maintenance application. The managing, receiving, and transmitting are performed during a maintenance procedure.
US10199038B1 System and method for speech recognition using deep recurrent neural networks
Deep recurrent neural networks applied to speech recognition. The deep recurrent neural networks (RNNs) are preferably implemented by stacked long short-term memory bidirectional RNNs. The RNNs are trained using end-to-end training with suitable regularisation.
US10199037B1 Adaptive beam pruning for automatic speech recognition
A reduced latency system for automatic speech recognition (ASR). The system can use certain feature values describing the state of ASR processing to estimate how far a lowest scoring node for an audio frame is from a potential node likely be part of the Viterbi path. The system can then adjust its beam width in a manner likely to encompass the node likely to be on the Viterbi path, thus pruning unnecessary nodes and reducing latency. The feature values and estimated distances may be based on a set of training data, where the system identifies specific nodes on the Viterbi path and determines what feature values correspond to what desired beam widths. Trained models or other data may be created at training and used at runtime to dynamically adjust the beam width, as well as other settings such as threshold number of active nodes.
US10199036B2 Method and device for implementing voice input
A network device for implementing voice input comprises an input-obtaining module for obtaining voice input information, a sequence-determining module for determining an input character sequence corresponding to the voice input information based on a voice recognition model, an accuracy-determining module for determining appearance-probability information corresponding to word segments in the input character sequence so as to obtain accuracy information of the word segments, and a transmitting module for transmitting, to a user device, the input character sequence and the accuracy information of the word segments corresponding to the voice input information.
US10199033B1 Active noise control apparatus
An active noise control apparatus (100) includes: a sound source signal generating unit (1) generating a sound source signal from a control frequency determined in accordance with a noise source (400); a control signal filter (2) generating an original control signal by filtering the sound source signal; a stabilization processing unit (5) generating a control signal by filtering the original control signal to allow a signal in a frequency band including the control frequency to pass through, and to block a signal in a frequency band including disturbance added to the noise; a reference signal filter (3) generating a reference signal by filtering the sound source signal. The apparatus further includes: a filter coefficient updating unit (4) updating a filter coefficient sequence of the control signal filter using an error signal being an interference between a secondary noise generated from the control signal and the noise, and the reference signal.
US10199031B2 Active awareness control for a helmet
An active awareness control system and method for a helmet with a rigid shell that spatially divides a shell interior from a shell ambiance includes receiving at least one playback-sound signal, generating in the shell interior from the at least one playback-sound signal playback sound, and receiving and processing at least one ambient-sound signal representative of sound occurring in the shell ambience to detect the at least one desired-sound signal. The generation of the at least one playback sound is put on hold when the at least one desired-sound pattern is detected.
US10199030B2 Arraying speakers for a uniform driver field
A method and system for a noise cancellation comprises an amplifier in communication with the three or more speakers disposed in an area. A system controller produces a driver signal for each of the speakers in response to a signal from at least one microphone detecting sound in the area and communicates the driver signals to the amplifier. The amplifier drives each speaker with the driver signal produced for that speaker. In response to the driver signals, the speakers emit sound that combined produces a substantially uniform sound pressure field for a particular zone within the area. The substantially uniform sound pressure field produced by the speakers has a magnitude and phase adapted to attenuate a noise field in the area corresponding to the sound detected by the at least one microphone.
US10199028B2 Ultrasonic transducer mounting assembly
Disclosed is an ultrasonic transducer mounting assembly comprising an ultrasonic transducer element, a transducer housing inside which the ultrasonic transducer element is arranged, and an accommodation unit inside which the transducer housing is clamped in a clamping section. The disclosed assembly is characterized in that the clamping section comprises at least one bearing that has at least one rolling element, in particular at least one ball bearing that has at least one ball, for acoustically decoupling the transducer housing from the accommodation unit.
US10199024B1 Modal processor effects inspired by hammond tonewheel organs
Methods and apparatuses according the present embodiments derive the sound of a Hammond tonewheel organ from the equal-tempered tuning of its tonewheels and drawbar registration design, as well as its vibrato/chorus processing and pickup distortion. In embodiments, as a reverberation effect, the modal processor simulates a room response as the sum of resonant filter responses, providing precise, independent and interactive control over the frequency, damping, and complex amplitude of each mode. As an effects processor, the modal processor provides pitch shifting and distortion by simple manipulations of the mode output sinusoids.
US10199021B2 Musical instrument sound generating system with feedback
A system for remotely generating sound from a musical instrument includes a calibration system to improve the quality of the sound produced by the musical instrument. In one embodiment, the system includes an input configured to receive a signal representative of the sound of a first musical instrument, an exciter for converting the signal to mechanical vibrations, a coupling interface for coupling the mechanical vibrations into a second musical instrument, and a calibration system for altering the signal sent to the exciter.
US10199014B2 Method and apparatus for managing image data for presentation on a display
An apparatus may include a memory and graphics logic operative to render a set of one or more data frames for storage in the memory using a received set of data of a digital medium, and output one or more control signals at a first interval. The apparatus may also include a display engine operative to receive the one or more control signals from the graphics logic, retrieve the set of one or more data frames from the memory, and send the one or more data frames to a display device for visual presentation. The one or more data frames may be sent periodically in succession at a second interval corresponding to a native frame rate of the digital medium.
US10199006B2 Semiconductor device, display module, and electronic device
A first flipflop outputs a first signal synchronized with a first clock signal, a second flipflop outputs a second signal synchronized with a second clock signal, and a third flipflop outputs a third signal synchronized with a third clock signal. The second flipflop includes first to third transistors. In the first transistor, the second clock signal is input to a first terminal and the second signal is output from a second terminal. In the second transistor, a first signal is input to a first terminal, a second terminal is electrically connected to a gate of the first transistor, and the first clock signal is input to a gate. In the third transistor, the third signal is input to a first terminal, a second terminal is electrically connected to the gate of the first transistor, and the third clock signal is input to a gate.
US10199005B2 Display driving circuit configured to secure sufficient time to stabilize channel amplifiers and display device comprising the same
A display driving circuit and a display device including the display driving circuit are disclosed. The display driving circuit includes: a data driver including a first channel amplifier operating based on first pixel data and a second channel amplifier operating based on second pixel data and configured to drive first and second pixels of a display panel based on the first pixel data and the second pixel data of a first line; and a data comparator configured to compare the first pixel data with the second pixel data and determine operation states of the first channel amplifier and the second channel amplifier on a comparison result, before a first horizontal period in which the first pixel and the second pixel are driven.
US10199001B2 Electrooptical device, control method of electrooptical device, and electronic device
An increase in power consumption is suppressed even in a case of applying a precharge signal to all data lines at the same time. A voltage output selection circuit that is connected to a data line drive circuit in an input stage and is connected to data lines in an output stage is provided. The voltage output selection circuit selects connection and non-connection between the data lines and the data line drive circuit when a precharge voltage is applied. A control circuit controls the voltage output selection circuit such that connection between the data lines and the data line drive circuit is selected in a first region in which an image is displayed, and non-connection between the data lines and the data line drive circuit is selected in a second region covered with a light shielding layer.
US10199000B2 Source driver IC chip
A source driver IC chip, designed to prevent flicker in images displayed on a display panel while suppressing power consumption and heat generation, includes: a reference gradation voltage generating part (220) configured to generate a reference gradation voltage based on a first or second gamma characteristic of the display panel, using first and second power supply voltages (VH) and (VL) inputted through first and second external terminals (PA2, PA3); and a third external terminal (PA4) for externally outputting said reference gradation voltage. The source driver IC chip further includes first and second gradation voltage generating parts configured to generate first and second gradation voltages respectively, using a reference gradation voltage based on a first gamma characteristic inputted through a fourth external terminal and a reference gradation voltage having a second gamma characteristic inputted through a fifth external terminal respectively.
US10198998B2 Gate driver shift register and mask circuit and display device using the same
There is provided a gate driver including a plurality of gate sub-drivers electrically connected to a plurality of gate lines, wherein an (n)th gate sub-driver, of the gate sub-drivers includes a shift register configured to receive an (n−1)th carry signal from an (n−1)th gate sub-driver of the gate sub-drivers adjacent to the (n)th gate sub-driver, to synchronize the (n−1)th carry signal with a first clock signal, and to output an (n)th carry signal based on the synchronized (n−1)th carry signal, and a mask configured to output a gate signal based on the synchronized (n−1)th carry signal and a mask signal, wherein n is an integer greater than or equal to 2.
US10198996B2 Organic light emitting diode display device and method for driving the same
An organic light emitting diode display device and a method for driving the same are provided. The organic light emitting diode display device includes an organic light emitting diode disposed on each of a plurality of pixels, and a pixel driving circuit configured to drive the organic light emitting diode.
US10198993B2 EL display apparatus
An electroluminescent (EL) display apparatus and method of control are provided. A display screen includes gate signal lines which intersect source signal lines. A pixel provided with an EL device corresponds to each intersection of the gate and source signal lines. A driving transistor is provided for each pixel to supply a current to the EL device. A first switch transistor is provided on a current path through which the current is supplied to the EL device. A gate driver circuit is connected to the gate signal lines. The gate driver circuit includes a shift register circuit, and outputs a select or non-select signal for the gate signal lines. The gate driver circuit turns the first switch transistor on and off to control a duty ratio of the display screen. The duty ratio is controlled by a start pulse fed to the shift register circuit.
US10198990B2 Device for temperature detection and device for compensating for temperature of display panel
A device and method for temperature detection, a device and method for compensating for temperature of display panel, and a display device are disclosed. The device for temperature detection includes: a first inverter, inverting a voltage signal at an input terminal thereof to output an inverted signal; a delay assembly, delaying the inverted signal and outputting a delayed inverted signal as an output signal; a switching transistor, applying a first voltage signal to the input terminal of the first inverter from a first voltage signal terminal based on the output signal; a first capacitor, including a first terminal coupled to a first electrode of the switching transistor and a second terminal coupled to the input terminal of the first inverter; and a temperature sensing transistor, configured so that a channel current of the temperature sensing transistor is proportional to a temperature at the sub-threshold bias voltage.
US10198989B2 Display device, electronic apparatus, and method of driving display device
A display device includes an image display panel and a control unit that outputs an output signal to the image display panel and causes an image to be displayed. The control unit includes an input signal acquisition unit that acquires a correction input signal including a control input signal in which a part of data is input signal data including information of an input signal value for causing a pixel to display a predetermined color, and another part of data is a display control code, a processing content determination unit that determine processing content for processing the input signal data to generate an output signal value of the output signal based on the display control code, and an output signal generation unit that generates the output signal based on the processing content determined by the processing content determination unit and the input signal data.
US10198987B2 Gate driving circuit
The gate driving circuit includes a shift register including a plurality of stages. An n-th stage among the plurality of stages includes: a pull-up switching element outputting a first clock to an output node in accordance with a voltage in a Q node, a pull-down switching element outputting a gate low voltage VGL to the output node in accordance with a voltage in a QB node, and a logic unit inverting and outputting a voltage in the Q node and a voltage in the QB node. The logic unit includes a first switching element including a gate to which a fourth clock is input and being between a start voltage line which supplies a start voltage and the Q node, a second switching element including a gate connected to the Q node and being connected to the QB node, a third switching element being between the second switching element and a gate low voltage line which supplies the gate low voltage, a fourth switching element including a gate to which a third clock is input and being between a gate high voltage line which supplies a gate high voltage and the QB node, a fifth switching element including a gate connected to the QB node and being between the Q node and the gate low voltage line, a first capacitor between the Q node and the output node, and a second capacitor between the gate low voltage line and the gate of the pull-down switching element.
US10198986B2 Information processing device and information processing method
An information processing device is an information processing device that receives a stream for outputting image information from another information processing device through wireless communication, and includes a wireless communication unit and a control unit. The wireless communication unit performs communication with another information processing device so as to exchange the capability information about the information processing device and the capability information about the other information processing device. The control unit sets a power consumption mode in the other information processing device based on the capability information about the other information processing device.
US10198983B2 Apparatus for driving displays
An apparatus (100) for use in driving a display, especially a color electrophoretic display comprising frame generating means generating a succession of frame pulses at regular intervals; frame blanking generating means generating a succession of frame blanking pulses at the same intervals; a plurality of input lines each arranged to receive one of a plurality of differing input voltages (Vin1, . . . VinN), all of the same polarity; an output line capable of being connected to a device driver (106); and switching means (102A, . . . 102N) connecting the output line to one of the input lines when no frame blanking pulse is present, the switching means (102A, . . . 102N) being capable of changing the input line to which the output line is connected during successive frame periods, the switching means (102A, . . . 102N) being arranged to drain charge from the output line when a frame blanking pulse is present.
US10198982B2 Image processing apparatus, method thereof, and image display apparatus
A plurality of sub-frame images are generated from an input frame image. Lightness of one or more sub-frame image included in the plurality of sub-frame images is adjusted to generate a light image and a dark image. Color-non-uniformity correction processing is performed on the light image and the dark image to reduce color non-uniformity of a display device using a correction value in accordance with an adjustment degree of the lightness.
US10198972B2 Lightguide tamper seal
A tamper seal includes an optical waveguide arranged to guide a propagating light-beam along a propagation direction. First and second portions of the tamper seal are configured to be arranged on first and second parts, respectively, which are movable relative to each other. The first portion has an input coupler arranged to couple incident light into the optical waveguide, and the second portion has at least one output coupler arranged to couple out of the optical waveguide at least partially light guided in the optical waveguide. The input coupler, the optical waveguide, and the output coupler are configured to transmit light from the input coupler to the output coupler. The waveguide is configured to be disruptable and includes a layer having a distinctive appearance that is changed in response to an at least partial disruption of said optical waveguide.
US10198970B2 Growing spine model
A spinal surgery modeling system includes a spine model and a spine movement device. The spinal surgery modeling system provides a three-dimensional hands-on model that can be configured to have any desired variation of spinal alignment of the spine model by hydraulic actuation of the spine movement device to simulate the biomechanical feel and behavior of a patient's spine. The spine model may include various vertebral body or disc conditions and allows a clinician to examine and/or adjust the model and observe the three-dimensional outcome of such adjustments.
US10198969B2 Surgical simulation system and associated methods
A surgical simulation device may include a support structure, a tray carried by the support structure, and animal tissue carried by the tray. A simulated human skeleton portion may be carried by the support structure above the animal tissue, and simulated human skin covers the simulated human skeleton portion. The support structure may permit selective horizontal and vertical positioning of the tray relative to the support structure to thereby permit selective horizontal and vertical positioning of the animal tissue relative to the simulated human skeleton portion and simulated human skin.
US10198968B2 Method for creating a computer model of a joint for treatment planning
The present invention provides a method for creating a computer model of a patient specific joint for treatment planning. The method includes identifying a ligament of a joint of a patient under a load at a predefined position of the joint. The method further includes constructing, with the use of a computer, a computer model of the joint of the patient having: a first bone model, a second bone model, and a ligament model connecting the first and second bone models corresponding to the identified ligament, wherein the ligament model is constructed as at least one fiber based on a predefined slack length.
US10198967B1 Enabling a dynamic intelligent training functionality of an automated external defibrillator with an integrated medical kit
A portable medical kit can be identified. The portable medical kit can include one or more medical consumables including bandages, an automated external defibrillator (AED), a sensor for monitoring a quantity of the consumables present in the portable medical kit and for monitoring a charge state and power level of the AED, and a wireless transceiver for communicating the quantity of consumables present in the kit, the charge state, and power level of the AED to a remotely located computing device. A proximate medical training equipment can be detected. The equipment can facilitate the training of a user with the AED or the medical training equipment. A training functionality of the portable medical kit can be activated to enable safe practice with the kit and the equipment. The training functionality can include selectable training content that specifically instructs the user on the use of the kit and the equipment.
US10198965B2 Simulated stapling and energy based ligation for surgical training
An inexpensive and practical surgical training system to train practitioners in the use of surgical stapling and energy-based ligation instruments and procedures is provided. The system comprises a modified or simulated surgical instrument such as linear surgical stapling device having a fixed anvil and an opposed, movable jaw sized and configured to be closed upon a simulated tissue structure. A marking or inking element is associated with the jaw and anvil of the stapling device and configured to impose a visible pattern on the surfaces of simulated tissue placed between the anvil and jaw. A pressure sensitive adhesive or other adhesive is associated with the inner surfaces of the simulated tissue that is activated upon compression between the anvil and jaw to simulate surgical occlusion.
US10198964B2 Individualized rehabilitation training of a hearing prosthesis recipient
Presented herein are techniques for increasing the user experience of implantable hearing prostheses through improvements in post-implantation clinical care.
US10198960B1 Computer implemented method for providing feedback of harmonic content relating to music track
A computer implemented method for providing feedback of harmonic content relating to a music track, includes receiving music track information; generating harmonic music track parameters based on the received music track information; displaying notation information for a user for performing the music track at a given time for the music track based on the harmonic music track parameters; receiving harmonic user content generated by an instrument performed by the user, using at least one capturing device; generating real-time performance feedback for the user based on comparison of the harmonic user content and the harmonic music track parameters according to predefined settings; receiving reference harmonic user content from a plurality of reference users over a public network; adjusting, based on the reference harmonic user content, at least one of the following: the predefined settings; and the harmonic music track parameters.
US10198954B2 Method and apparatus for positioning an unmanned robotic vehicle
A method and apparatus are provided for positioning an unmanned robotic vehicle (URV). The URV captures a set of one or more of image and non-image information of an object while positioned at a first position, provides the set of image/non-image information to a server entity, in response to providing the set of image/non-image information, receives a three-dimensional (3D) model associated with the object, autonomously determines a second position based on the 3D model, and autonomously navigates to the second position. At the second position, the URV may capture further image and/or non-image information and, based on the further captured image/non-image information, autonomously determine, and navigate to, a third position. The steps of capturing further image and/or non-image information and, based on the captured image and/or non-image information, autonomously determining and navigating to further positions may be repeated indefinitely, or until otherwise instructed.
US10198953B2 Obstruction detection in air traffic control systems for unmanned aerial vehicles
Obstruction detection and management systems and methods are performed through an Air Traffic Control (ATC) system for Unmanned Aerial Vehicles (UAVs). The obstruction detection and management method includes receiving UAV data from a plurality of UAVs, wherein the UAV data includes operational data for the plurality of UAVs and obstruction data from one or more UAVs; updating an obstruction database based on the obstruction data; monitoring a flight plan for the plurality of UAVs based on the operational data; and transmitting obstruction instructions to the plurality of UAVs based on analyzing the obstruction database with their flight plan.
US10198946B2 Traffic monitoring
The present application relates to road traffic monitoring to detect the number, speed and/or type of vehicles travelling on a road. Noise features (104) are deployed on, or formed in, the surface of a road (101). The noise feature (104) is arranged to generate a characteristic acoustic signature when traversed by the wheels of a vehicle (105) travelling within a lane of the road. A distributed acoustic sensor (102, 103) is deployed to detect occurrences of the characteristic acoustic signature. In some embodiments the noise element may comprise at least two distinct elements (104a, 104b), for instance rumble strips arranged transversely to the road, which are a known distance apart along the road. The acoustic signals from a wheel crossing both elements can be detected and used to determine the vehicle speed. The number of vehicle axles and axle separation can also be determined to categorize the type of vehicle. A plurality of noise features may be located in different lanes of a multi-lane road with noise features in different lanes arranged to generate different characteristic acoustic signatures.
US10198945B2 Camera system
A traffic monitoring system is provided. The traffic monitoring system comprises: a camera system configured to capture images of vehicles, the camera system comprising a first wireless time receiver configured to receive a wirelessly transmitted time signal; and a light system configured to selectively illuminate the vehicles, the light system being spaced apart from the camera system, wherein the light system comprises a second wireless time receiver configured to receive the wirelessly transmitted time signal such that the image capture by the camera system and the illumination by the light system is synchronized.
US10198941B2 Method and apparatus for evaluating traffic approaching a junction at a lane level
A method, apparatus and computer program product are provided to analyze the vehicular speeds along a link that approaches a junction at the lane level. In the context of a method, a plurality of clusters of vehicular speeds are identified from probe data along a first multi-lane link that approaches a junction. For a respective lane of traffic of the first link, the method determines a value associated with the traffic having a respective state of traffic flow from among the different states of traffic flow associated with the clusters of vehicular speeds along the respective lane of traffic of the first link. The method further includes repeatedly determining the value associated with the traffic having a respective state of traffic flow from among the different states of traffic flow associated with the clusters of vehicular speeds for each different lane of traffic of the first link.
US10198940B2 Method and system for using intersecting electronic horizons
A method and system for using data associated with a first vehicle and a given road segment defined for a road network and using data associated with a second vehicle and the given road segment to determine a multi-vehicle probability value that indicates a probability that the first vehicle and the second vehicle will arrive at a common position of the given road segment simultaneously. The multi-vehicle probability value can be compared to a threshold probability value to determine whether the first vehicle and/or the second vehicle should take a responsive measure to avoid those vehicles arriving at the common position of the given road segment simultaneously. The data associated the first vehicle and the data associated with the second vehicle can each include a respective electronic horizon for that vehicle, and time parameters and probability values associated with those vehicles being on the given road segment.
US10198934B2 Facsimile aware alarm monitoring station and method
A method and security system arrangement are disclosed for processing incoming signals at an alarm monitoring station. The method includes analyzing the incoming signals to assess if any particular incoming signal includes characteristics of a facsimile signal to thereby identify whether or not a given incoming signal is a facsimile signal. If the analyzing identifies that a given incoming signal includes characteristics of a facsimile signal, thus identifying that the given incoming signal is likely a facsimile signal, the alarm monitoring station refrains from initiating an alarm handling procedure to handle the given incoming signal. Caller ID information may be extracted from the facsimile signals received by the alarm monitoring station, and added to a call block list. Calls originating from caller IDs on the call block list may be blocked by the alarm monitoring station.
US10198925B2 Home automation communication system
A method for security and/or automation systems is described. In one embodiment, the method may include receiving occupancy data associated with a home. The method may further include automatically selectively broadcasting an audio stream to at least one of a plurality of speakers in the home based, at least in part, on the received occupancy data.
US10198923B2 Wireless video surveillance system and method with input capture and data transmission prioritization and adjustment
A surveillance system and method with at least one wireless input capture device ICD(s) and a corresponding digital input recorder (DIR) and/or another ICD, including the steps of providing the base system; at least one user accessing the DIR via user interface either directly or remotely; the DIR and/or ICD searching for signal from the ICD(s) and establishing communication with them, and the system providing for input capture and data transmission prioritization, thereby providing a secure surveillance system having wireless communication for monitoring a target environment with prioritization capabilities.
US10198918B2 Pointing device for showcases
A pointing device (1) for generating light spots on a ware that is arranged in a showcase includes a part (3) that is arranged on the outside of the showcase panel (2), on which a light source (8) with an activating switch (11) is mounted. The device (1) also includes a part (4) that is arranged on the inside of the showcase panel (2) and has a hole (10) for the passage of the light beam (9), which is generated by the light source (8). The parts (3) and (4) of the device (1) are held together by magnetic forces and rest on the showcase panel (2) via sliding surfaces (6).
US10198916B2 Checkout system
In a checkout system, a registration apparatus is set to be capable of executing data communication with any one of a plurality of checkout apparatuses before data input of a commodity purchased by a customer at the registration apparatus is started or during a period from the start to the termination thereof. Details of the commodity of which the data is input in the registration apparatus capable of executing data communication with any one of the checkout apparatuses capable of executing the data communication are displayed on a display of the corresponding checkout apparatus before the data input of all commodities purchased by the customer is terminated. Settlement is executed based on input payment data at any one of the checkout apparatuses capable of executing the data communication if the data input of all the commodities purchased by the customer in the registration apparatus is terminated.
US10198913B1 Card-based electronic gaming systems and techniques for five-card draw poker
In one implementation, an electronic five-card draw poker gaming system using common physical cards includes a plurality of physical playing cards; a scanner that is configured to identify each of the plurality of physical playing cards as they are dealt; a plurality of player computing equipment with graphical displays that are programmed to provide individualized gaming interfaces for a plurality of players; and a gaming computing system that is communicably connected to the scanner and the plurality of player computing equipment to determine five-card draw poker gaming outcomes for each of the plurality of players based on commonly dealt cards and player actions.
US10198910B2 Tournament style in-play sports betting with real time leaderboard tracking
The disclosure discloses an improved online betting system platform for making in-play sports betting wages. In accordance with an exemplary embodiment, the platform is configured to identify a request by a player to join a tournament with a predefined entry fee and compete for rewards derived as a function of predefined entry fees by a wager pool of players betting on the same tournament. Once the request to join is acknowledged by the platform, the player is automatically added to the list alongside all the other wager pool of players registered for the tournament. Thereafter, the platform displays sporting event information including different bet types that can be waged on the basis of the predefined entry fee, and updates the sporting event information in real time in response to in-play activities associated with the live sporting event. The platform recognizes and records player bets up to the limit of the predefined entry fee and tracks winning and losing bets in real time. A leaderboard automatically calculates the winnings of the wager pool of players and displays, in real time fashion, the current leaders, in terms of winnings, during the tournament. The leaderboard updates the leaderboard automatically during the tournament to reflect changes in leaderboard standings in response to placed bets settling and clearing, as well as in response to real time changes in odds of still pending bets.
US10198904B2 Enhanced electronic gaming machine with dynamic gaze display
A method of operating an electronic gaming machine includes generating an interactive game environment in accordance with game data, the interactive game environment having a viewing area may include a plurality of visible game components as a subset of the interactive game environment, displaying the viewing area with the plurality of visible game components, monitoring eye gaze of a player to collect player eye gaze data, determining a location of the eye gaze of the player relative to the viewing area using the player eye gaze data, and in response to the location of the eye gaze of the player relative to the viewing area, changing a resolution of a portion of the viewing area other than a portion of the viewing area corresponding to location of the eye gaze of the player on the viewing area. Related electronic gaming machines are also disclosed.
US10198903B2 Wagering on event outcomes during the event
Methods and systems are provided for managing a wagering system. In one exemplary embodiment, state information of a live event such as a sports game may be received in real time. During the event, a plurality of possible future states of the event and their associated probabilities (and odds) may be determined based on the state information, historical information, and current in-game information. A betting market is created for betting on the possible future states at determined odds. The betting market is closed, and winning and losing bets are resolved based on updated state information.
US10198896B2 System and method of accumulating and recording outcomes generated by a gaming device
A game is provided that may include a plurality of reels, each of the reels comprising a plurality of symbol positions; a plurality of symbols, at least one of the plurality of symbols positioned in least one of the plurality of symbol positions; at least one processor for executing instructions stored in a memory to play a slot machine game comprising the steps: accepting a wager; receiving an instruction to initiate play of the game; determining a game outcome including a stopping point of the plurality of reels; displaying a portion of the plurality of reels in a play matrix; issuing a first award if the play matrix comprises a winning symbol combination; and accumulating a player element total based on gameplay, the player element total transferrable to a second game.
US10198893B2 Methods and systems for playing baccarat jackpot
A method and system for playing jackpot and live baccarat games are provided. One feature of the jackpot method involves the use of card combinations that may include, e.g., at least one zero-point card. Another feature of the jackpot method involves initial jackpot contribution from the banker who operates the baccarat game. It is also provided a software program or a set of software program for carrying out any or all the steps of the disclosed gaming method.
US10198888B2 System and apparatus for storing objects
The modular asset storage system includes a main panel, the main panel including a computer command module and one or more asset containment modules. The asset containment modules are in data communication with the computer command module.
US10198885B2 Pairable secure-access facilities
Systems and methods are provided for providing access to secure-access facilities based on pairing of the secure-access facilities with a user device such as a wearable device. A pairable secure-access facility may be a public storage facility or device such as a locker that includes communications circuitry for pairing with the user device. Once paired with the user device, the locker may operate a locking mechanism to lock the locker when the user device is away from the locker and to unlock the locker when the user device is in the vicinity of the locker. The locker may include a beacon for detecting and pairing with the user devices. Pairing the user device and the locker may include entering a locker identifier into the user device to ensure that the intended user device is paired with the intended locker.
US10198884B2 Intelligent door lock system with accelerometer
An intelligent door lock and remote access system includes a mobile device with a controller that transmits a first signal. A lock device has a controller and an accelerometer. In response to a receipt of the first signal the mobile device begins a process for locking and unlocking a door where the lock is located. The lock device includes a controller and an accelerator, with the accelerator acting upon processing of the first signal and in response causing a rotation of an element coupled to the accelerator to unlock the door.
US10198883B2 Access monitoring system for compliance
The present invention provides a system for compliance monitoring of vehicles and users of hydrocarbon wellsites and method of use. The system includes at least one portable access control station located in the monitored hydrocarbon wellsite and a system server at a monitoring center. The system server is configured to be in communication with the portable access control station via a network. The portable access control station includes a checkpoint monitor and an access control unit. The portable access control station is configured to monitor vehicle and personnel access related events in the hydrocarbon wellsite and send data related to the events to the system server.
US10198881B2 Diagnostic device for checking throttle valve of vehicle
A diagnostic device includes a body with a circuit board located therein. The body includes a display screen and a function button unit located on the outside thereof. A connection port and an insertion hole are respectively located to the body. An information cassette is inserted in the insertion hole and electrically connected to the circuit board. A cable unit has a first end and a second end, wherein the first end of the cable unit is connected to the connection port, and the second end of the cable unit is connected to a power source and an output port of a cleaning device which is connected to the throttle valve. When the diagnostic device detects abnormal information of the throttle valve via the cable unit, the display screen displays the abnormal information, the cleaning device cleans the throttle valve. The diagnostic device diagnoses the throttle valve afterward.
US10198879B2 Method and system for logging vehicle behaviour
Methods and systems for logging driving information associated with a vehicle when driven are disclosed. In one aspect, a mobile telecommunications device is provided that is adapted for installation to a vehicle and configured to log driving information associated with the vehicle when driven. The mobile device is arranged to register the start of a driving period during which the mobile device is installed to the vehicle and the vehicle is being driven by a driver. The mobile device is also arranged to process sensor data during the driving period to derive driving information associated with how the vehicle is driven. The mobile device is also arranged to store a selection of the driving information to a memory.
US10198876B2 Systems and methods for visualizing and analyzing cardiac arrhythmias using 2-D planar projection and partially unfolded surface mapping processes
A method for projecting a 3D surface geometry onto a planar projection comprises: obtaining a 3D geometry of a chamber surface using an algorithm that generates angles and distances between points on the chamber surface that represent mapping information; applying a cutting curve to at least two points on the chamber surface; and at least partially unfolding at least a portion of the chamber surface along the cutting curve to form a planar projection that optimally preserves the angles and distances between points on the chamber surface.
US10198875B2 Mapping image display control device, method, and program
A mapping image display control device includes an organ region extraction unit that extracts an organ region from a three-dimensional-image, a tubular-structure-extraction unit that extracts a tubular structure in the organ region, a reaching-position-information-estimation unit that estimates pieces of reaching position information each of a position at which an extended line of a branch in the tubular structure reaches a surface of the organ region, a resection-region-information-acquisition unit that acquires information of a resection region in the organ region, a boundary-identifying-reaching-position-information-determination unit that determines pieces of boundary-identifying reaching position information used to identify a boundary of the resection region from among the pieces of reaching position information based on the information of the resection region, and a display-control unit that causes a mapping image in which the pieces of boundary-identifying reaching position information are mapped to the surface of the organ region to be displayed.
US10198871B1 Systems and methods for generating and facilitating access to a personalized augmented rendering of a user
Systems and methods for generating and facilitating access to a personalized augmented rendering of a user to be presented in an augmented reality environment are discussed herein. The augmented rendering of a user may be personalized by the user to comprise a desired representation of the user in an augmented reality environment. When a second user is detected within the field of view of a first user, the second user may be identified and virtual content (e.g., an augmented rendering) for the second user may be obtained. The virtual content obtained may differ based on one or more subscriptions of the first user and/or permissions associated with the virtual content of the second user. The virtual content obtained may be rendered and appear superimposed over or in conjunction with a view of the second in the augmented reality environment.
US10198866B2 Head-mountable apparatus and systems
A head mountable display (HMD) includes a camera operable to capture images of a peripheral and/or control device in use by a wearer of the HMD. A detector of the HMD is configured to detect occlusions in a captured image of the peripheral and/or control device. And an image renderer of the HMD is configured to render a virtual version of the peripheral and/or control device for display to the HMD wearer and to render a representation of a user's hand at a position of a detected occlusion.
US10198864B2 Running object recognizers in a passable world model for augmented or virtual reality
An augmented reality system comprises one or more databases storing a passable world model data comprising a set of points pertaining to real objects of the physical world, and one or more object recognizers configured for running on the passable world model data. Each of the object recognizer(s) is programmed to recognize a predetermined object of the real world based on a known geometry of a corresponding set of points. The augmented reality system further comprises a head-worn augmented reality display system configured for displaying virtual content to a user based at least in part on the recognized object.
US10198862B2 Methods and apparatus for providing rotated spherical viewpoints
Apparatus and methods for providing a rotated spherical viewpoint (RSV). In one or more embodiments, the RSV is implemented using equirectangular projections (ERPs). The RSV methodologies described herein are particularly suitable for panning within virtual reality (VR) or 360° panoramic content as there is minimal, if any, geometric distortions at the edge of a given viewport. Moreover, the RSV methodologies described herein may reduce the bandwidth requirements of, for example, devices operating in a client-server architecture. Additionally, the computation requirements for providing RSV are minimal and can be provided using relatively simple rotation transforms.
US10198856B2 Method and system of anti-aliasing shading decoupled from rasterization
A method and system for rendering a graphic object is disclosed. The method includes selecting a set of points of a graphic object for shading. At least one shading parameter is determined for application to the selected set of points of the graphic object. A shading parameter image is precalculated based on the determined at least one shading parameter. The shading parameter image is stored in a memory. The selected points are shaded using the shading parameter image to produce a shaded graphic object image via a graphic processor. The shaded graphic object image is rasterized into a frame image.
US10198854B2 Manipulation of 3-dimensional graphical objects for view in a multi-touch display
A system described herein provides six degrees of freedom with respect to a three-dimensional object rendered on a multi-touch display through utilization of three touch points. Multiple axes of rotation are established based at least in part upon location of a first touch point and a second touch point on a multi-touch display. Movement of a third touch point controls appearance of rotation of the three-dimensional object about two axes, and rotational movement of the first touch point relative to the second touch point controls appearance of rotation of the three-dimensional object about a third axis.
US10198848B2 Apparatus and method of image rendering
A method of image rendering includes representing a height map of terrain elevation data as a virtual texture; sampling a portion of the height map terrain elevation data on a uniform grid corresponding to render nodes used for rendering a terrain mesh, where a correspondence of the grid to the render nodes results in the sampled terrain elevation data for a render node being entirely contained within one physical page of memory, and where the equivalent position of a heightmap virtual co-ordinate in a page of physical memory is obtained based upon an offset to a physical page co-ordinate, rather than by reference to an indirection texture; and rendering terrain mesh for a render node according to terrain elevation data obtained from a single physical page of memory corresponding to respective virtual co-ordinates.
US10198847B2 Physically based simulation methods for modeling and animating two-and three-dimensional deformable objects
The present disclosure relates generally to computer graphics applications, and more particularly to systems and methods for implementing two- and three-dimensional computer graphics modeling and animation of deformable objects in a simulated environment. More preferably, the present disclosure relates to computer or visual graphics applications using finite-element based and other physically based modeling or simulation methods.
US10198845B1 Methods and systems for animating facial expressions
Systems and methods for animating expressions of 3D models from captured images of a user's face in accordance with various embodiments of the invention are disclosed. In many embodiments, expressions are identified based on landmarks from images of a user's face. In certain embodiments, weights for morph targets of a 3D model are calculated based on identified landmarks and/or weights for predefined facial expressions to animate expressions for the 3D model.
US10198834B2 Graph partitioning for massive scale graphs
Graph partitioning for massive scale graphs is described, such as for graphs having vertices representing people and edges representing connections between people in a social networking system; or for graphs where the vertices represent other items and the edges represent relationships between the items. In various embodiments a graph data allocator receives a graph vertex and its edges and allocates the vertex to one of a plurality of clusters each associated with one or more computing devices. In various embodiments the allocation is made by optimizing an objective function which takes into account both a cost of edges between clusters and a cost related to sizes of the clusters. In some examples the cost related to sizes of the clusters comprises a convex function applied to each of the cluster sizes. In examples, computations on the graph data are carried out with reduced runtimes and communications cost.
US10198831B2 Method, apparatus and system for rendering virtual content
A method of rendering virtual content is disclosed. A position to render each of a first and a second portion of virtual content on an augmented reality device is determined. Each of the first and second portion of virtual content is linked to a corresponding physical document. The position for rendering each of the first and second portions of virtual content is determined according to a position of the corresponding physical documents with the position of the first portion of virtual content being adjacent to the position of the second portion of virtual content. Viewing zones for each of the first and second portions of virtual content are determined, based on the determined positions. Each of the viewing zones is defined as a physical region where an augmentation of the corresponding portion of virtual content is visible on the augmented reality device. The viewing zone of the second portion of virtual content is modified to reduce any overlap with the viewing zone of the first portion of virtual content. The first and the second portions of virtual content are rendered on the augmented reality device according to the determined viewing zones.
US10198828B2 Image processing method and electronic device supporting the same
An electronic device is provided. The electronic device includes a camera, a communication circuit configured to communicate with an external electronic device, and a processor. The processor is configured to obtain an image using the camera, verify location information of the image, obtain identification information of the external electronic device from the external electronic device if the location information of the image is not verified, and determine the location information of the image based on the identification information of the external electronic device.
US10198826B2 Method for measuring blade width of grooving tool
The present invention provides a method for accurately and simply measuring a blade width (W) of a blade tip section (1) of a grooving tool mounted on a machine tool. The blade tip section (1) is divided vertically or laterally and imaged so as to capture, one side at a time, a first-side corner section (2) formed on a first blade-width-direction side and a second-side corner section (4) formed on a second blade-width-direction side, of the corner sections formed at both ends of the blade tip section (1), the terminal end of each corner section of an imaged picture (3) of the first side of the blade tip section in which the first side of the blade tip section (1) is imaged and an imaged picture (5) of the second side of the blade tip section in which the second side is imaged is acquired, and, on the basis thereof, a blade width (W1) of the imaged picture of the first side of the blade tip section is measured from the imaged picture (3) of the first side of the blade tip section and a blade width (W2) of the imaged picture of the second side of the blade tip section is measured from the imaged picture (5) of the second side of the blade tip section to carry out computational processing on the basis of these values and determine the blade width (W).
US10198824B2 Pose estimation method and apparatus
A pose estimation method and apparatus are provided. The method includes determining, as a rotation component, an output value of a motion sensor configured to sense a motion of the pose estimation apparatus, determining a change amount of a translation component based on the rotation component, and the translation component extracted from images photographed by a vision sensor included in the pose estimation apparatus, optimizing the translation component based on the change amount, and outputting the rotation component and the optimized translation components a pose estimation value of the pose estimation apparatus.
US10198820B1 Object oriented image editing
Implementations generally relate to object based image editing. In some implementations, a method includes segmenting an image into object data by identifying one or more object classifications in the image and storing at least one locator for one or more regions of the image corresponding to each instance of the object classification. The method further includes receiving a selection of a representative portion of the segmented image from a user, and matching the representative portion with the object data to determine at least one matched object classification associated with the representative portion. The method further includes presenting the user with one or more of the matched object classifications for the user to instruct one or more edit operations to be applied to at least one object represented by the matched object classification.
US10198818B2 Complexity reduction of human interacted object recognition
In one example, a system for recognizing an object includes a processor to select from a plurality of image frames an image frame in which a view of the object is not blocked, and to estimate a location of the object in the selected image frame.
US10198817B2 Technologies for diagnosing neurological or psychiatric illnesses
A technology which enables identifying, via a computer, a vessel in a third image. The third image is obtained from a subtraction of a second image from a first image. The second image and the first image are aligned on an imaging space. The first image is post-contrast. The second image is pre-contrast. The technology enables determining, via the computer, a voxel intensity mean value of a segment of the vessel in the third image. The technology enables obtaining, via the computer, a fourth image from a division of the third image by the voxel intensity mean value. The technology enables applying, via the computer, a filter onto the fourth image. The technology enables generating, via the computer, a filter mask based on the fourth image.
US10198815B2 Method and system for analyzing image data
A method of analyzing image data comprises: obtaining a first image of a first part of an object; obtaining a second image of a second part of the object having overlap with the first part; obtaining a mapping between the first and second images; segmenting the second image to obtain a segmentation; detecting outliers in the first image by identifying extreme intensity values of elements within one or more classes of elements on the basis of the segmentation; replacing elements of the second image that correspond to at least some outliers of the first image, with replacement values, to obtain a corrected second image; and updating the segmentation by performing the segmenting on the corrected second image. The detecting outliers, the replacing, and the updating are performed iteratively until a predetermined convergence criterion is met, which represents a point where there is no significant change in the tissue and lesion segmentations.
US10198810B2 Free-breathing parameter mapping with high-contrast image registration
In one aspect, the disclosed technology relates to a method which, in one example embodiment, includes acquiring magnetic resonance imaging data for a plurality of images of the heart of a subject during free breathing of the subject. The method also includes generating an additional plurality of images with high tissue-blood contrast over the region of interest, and selecting a subset of images from the plurality of images, based upon a pre-determined quality metric of image similarity, to be used for non-rigid image registration. The method also includes aligning the subset of images by non-rigid image registration using a combination of the plurality of images and the additional plurality of images, and creating a parametric map from the aligned images.
US10198809B2 System and method for defect detection in a print system
A system for detecting defects in a print system may include a print engine to print an electronic document (a reference image) and yield a printed document. The system may also include an image sensor to scan the printed document into a scanned electronic document (a target image). The system may include a processing device to detect defects in the printed document by analyzing the activity level in the reference and target image. The system may identify a quiet area/pixel in the reference image based on the activity level, check the activity level of the corresponding pixel in the target image, and classify the pixel in the target image as defective if the activity level of the pixel in the target image exceeds a noise threshold. The system may additionally swap the reference and target image, repeat the detection steps and combine the detection results with those before the swap.
US10198806B2 Methods and systems for inspecting plants for contamination
A method of inspecting plants for contamination includes generating a first series of images of a plant using a camera mounted to a frame being moved along a planting bed by a harvester, identifying a region of interest displayed in the first series of images as a region of contamination on the plant based on a color criterion and a morphological criterion applied to the region of interest, and transmitting data including an instruction to increase a vertical distance between the plant and a cutter of the harvester to avoid harvesting the plant in response to identifying the region of interest as the region of contamination. The method further includes generating a second series of images of an additional plant as the frame continues to be moved along the planting bed by the harvester while the vertical distance between the plant and the cutter is being increased.
US10198805B2 Method for detecting objects in a warehouse and/or for spatial orientation in a warehouse
A method for detecting objects in a warehouse and/or for spatial orientation in a warehouse includes: acquiring image data with a 3-D camera which is fastened to an industrial truck so that a viewing direction of the 3-D camera has a defined horizontal angle, wherein the 3-D camera has an image sensor with sensor elements arranged matrix-like and the image data comprises a plurality of pixels, wherein distance information is assigned to each pixel, calculating angle information for a plurality of image elements, which each specify an angle between a surface represented by the image element and a vertical reference plane, determining a predominant direction based on the frequency of the calculated angle information, calculating the positions of the of the acquired pixels along the predominant direction, detecting at least one main plane of the warehouse based on a frequency distribution of the calculated positions.
US10198800B2 Representing a structure of a body region by digital subtraction angiography
A method is provided for representing a first structure of a body region by digital subtraction angiography. The method includes: receiving a filler image of the body region created by an angiography apparatus, which represents a second structure of the body region and the first structure with a first contrast medium concentration in the first structure; determining a mask image of the body region representing the second structure; determining a subtraction image by editing out of the second structure from the filler image by the mask image; determining a guidance image representing the first structure based on the subtraction image; reducing image noise of the subtraction image by the guidance image; and representing the first structure based on the noise-reduced subtraction image.
US10198797B2 Apparatus correcting shading without taking optical characteristics into consideration and method thereof
An image processor has a gap amount detector which detects an amount of gap between a reference image and a comparative image, a first shading change rate detector which detects a shading change rate on a circumference which is away from a center of the reference image or comparative image by the gap amount, a second shading change rate detector which detects shading change rates within each area increased by the gap amount from the center of the reference image or comparative image until shading change rates within an area up to an edge of the reference image or comparative image are detected, and a shading corrector which generates a pixel value corrected in shading with respect to each pixel in the reference image based on the shading change rates detected by the first shading change rate detector and second shading change rate detector.
US10198792B2 Method and devices for depth map processing
Several implementations relate, for example, to depth encoding and/or filtering for 3D video (3DV) coding formats. A sparse dyadic mode for partitioning macroblocks (MBs) along edges in a depth map is provided as well as techniques for trilateral (or bilateral) filtering of depth maps that may include adaptive selection between filters sensitive to changes in video intensity and/or changes in depth. One implementation partitions a depth picture, and then refines the partitions based on a corresponding image picture. Another implementation filters a portion of a depth picture based on values for a range of pixels in the portion. For a given pixel in the portion that is being filtered, the filter weights a value of a particular pixel in the range by a weight that is based on one or more of location distance, depth difference, and image difference.
US10198785B2 Graphics processing method, apparatus, and system
A graphics processing method, apparatus, and system are presented. The method includes receiving a command queue input by a current frame which includes multiple drawing commands; splitting each irregular drawing command into at least one first-class drawing command and at least one second-class drawing command; grouping, into multiple drawing command sets, a regular drawing command in the multiple drawing commands, and the first-class drawing command and the second-class drawing command that are obtained after the splitting, so that drawing commands that belong to different drawing command sets do not intersect with each other; separately performing intersection detection on the multiple drawing command sets; separately performing drawing command combining on the multiple drawing command sets on which the intersection detection is performed; and executing a drawing command obtained after combining is performed on each drawing command set.
US10198784B2 Capturing commands in a multi-engine graphics processing unit
The techniques and systems described herein are directed to capturing commands in a multi-engine graphics processing unit (GPU). Captured commands can be played back by a developer to optimize software, hardware, and drivers. To accurately capture commands and memory associated with the commands during execution, dependencies between command buffer segments associated with the various GPU engines may be determined and used to divide a command buffer segment into atomic elements (which may also be referred to as seglets). Command buffer segments are analyzed to identify synchronization commands, which may represent a point in a command buffer segment that relies on an operation to be completed in another command buffer segment. The command buffer segment can be recursively divided into seglets based on the synchronization commands. The resulting seglets represent command segments that, upon execution, operate without synchronization interference from other command buffer segments.
US10198780B2 Virtual home safety assessment framework
Disclosed herein is a framework for facilitating virtual safety assessment. In accordance with one aspect, the framework receives image data of an environment to be assessed for safety from an agent support system. The framework sends such image data to an expert support system and receives safety assessment information from the expert support system determined based on the image data. The framework then provides a report based at least in part on such safety assessment information.
US10198778B2 Processing data to replicate lifecycle threads in the development of a structural product
A method is provided for processing data to replicate lifecycle threads in the development of a structural product. The method includes defining a source lifecycle thread from process-related information for development of the structural product, and defining and matching a target lifecycle thread to the source lifecycle thread. The process, and source and target lifecycle thread are expressible as respectively a network and sub-networks of tasks described by a plurality of attributes. Defining and matching the target lifecycle thread includes selecting a plurality of candidate target tasks from the plurality of tasks; matching a candidate target task to a particular source task using a distance map for an attribute of the plurality of attributes, with the distance map including only unique values of the attribute and distances between the unique values; and back-chaining through the source lifecycle thread to match candidate target tasks with respective source tasks.
US10198776B2 System and method for delivering an open profile personalization system through social media based on profile data structures that contain interest nodes or channels
A data processing system and method delivers an open profile personalization system based on profile data structures that contain one or more interest nodes or channels. The channels can be created or subscribed to by the user, provided by social media friends of the user, and/or suggested by editors of the system. The interest nodes include respective sets of targets and qualifiers, where the targets and qualifiers comprise types of attributes to be used in the filtering of information files for delivery as a result set for the interest nodes. Targets and qualifiers are applied to the types of attributes and available information files to produce a filtered set. Web pages showing personalized results include tools based on content analysis to assist the user in creation and editing of the open profile.
US10198770B2 Computerized system and method for classifying payments to health care practitioner and identifying violations
Systems, methods, and other embodiments associated with spend monitoring for pharmaceutical and life science concerns are described. In one embodiment, a method includes receiving transaction data describing a payment made to a health care practitioner. A practitioner identifier that uniquely identifies the practitioner and a transaction type identifier that classifies the transaction as one of several predefined transaction types are associated with the transaction data. The method includes storing a spend record that includes the transaction data, the practitioner identifier, and the transaction type identifier in a spend record database.
US10198759B2 System and method for coordination of remote inspectors
A method and a system to automatically coordinate remote inspectors are provided. Initially, a listing is identified for remote inspection in an online publication system. The listing may describe an item for sale that is, in turn, associated with a geographical location and a category. One or more remote inspectors are identified based on the geographical location and the category associated with the item for sale. The listing and respective profiles of each of the one or more remote inspectors is published to a buyer. A selection of a selected remote inspector is received from the buyer. A template inspection report is provided to the selected remote inspector. Once the remote inspector has inspected the item for sale, the buyer is provided a completed inspection report received from the selected remote inspector.
US10198757B2 Mobile solution for purchase orders
Embodiments include methods and devices for creating an electronic invoice file using a baseline electronic purchase order file. The methods and devices can receive data representing an electronic purchase order file, comprising a plurality of fields of information. The methods and devices can also confirm that the received electronic purchase order file, was received from a valid retail trading partner, the format of the received electronic purchase order file is consistent with the format of the baseline electronic purchase order file, and the fields of the received electronic purchase order file are consistent with the fields in the baseline electronic purchase order file, in a single step, by applying a hashing function to the data representing the baseline electronic purchase order file and received electronic purchase order file. The methods and devices can also create an electronic invoice file, using a plurality of fields from the electronic purchase order file.
US10198755B2 System and method for determining and acting upon a user's association to a zone of relevance
A computer-implemented method for determining a zone of relevance for locating a wireless end-user and making a user notification decision including: storing information related to the enterprise in an enterprise database; storing information related to the end-user in an end-user database; accessing said enterprise and user end databases to extract enterprise and end-user related information; accessing a geographical database to extract geographic information, based on information obtained from the enterprise database; extracting relevant dynamic inputs from external sources via a predefined application programming interface; determining a value for the user notification based on weighting of said extracted information and historical use information; determining a zone of relevance for the wireless end-user; and notifying a user, wherein notifying the user meets predetermined criteria for the determined value of notification.
US10198753B2 Privacy-aware in-network personalization system
A personalization system includes a preprocessing component configured to receive a request from a user over a communications network and generate a request key using predefined attributes of the request. A categorization component is configured to map the request key to a subset of domain-dependent vocabulary. An augmentation and buffer component is configured to augment the request with the subset of domain-dependent vocabulary mapped to the request key by the categorization component and to buffer request sequences in queues according to sequence identifiers. An embedding model component is configured to update an embedding model using the buffered request sequences. A personalization component is configured to provide a personalization using the updated embedding model.
US10198749B1 Providing recommended items
Techniques for providing a number of items may be described. For example, a request for a delivery of an item within a time frame may be received. An additional item may be determined based at least in part on the item and the time frame. Both items may be scheduled for delivery based at least in part on the time frame. Information associated with the items and including an option to accept a delivery of the additional item may be provided. If the option may have been selected, a delivery of the additional item may be caused.
US10198746B2 Methods and apparatus for serving relevant advertisements
The relevance of advertisements to a user's interests is improved. In one implementation, the content of a web page is analyzed to determine a list of one or more topics associated with that web page. An advertisement is considered to be relevant to that web page if it is associated with keywords belonging to the list of one or more topics. One or more of these relevant advertisements may be provided for rendering in conjunction with the web page or related web pages.
US10198742B2 Inbox management system
Electronic correspondence that includes one or more promotions may be generated for presenting to a consumer. In order to determine whether to present the electronic correspondence to the consumer, the promotions included in the electronic correspondences may be analyzed in terms of a probability the consumer will accept the promotions, a relevance level between the promotions and attributes of the consumer, a relevance level between the promotions and the consumer, a relevance level between the promotions and a set of goals or rules, among other similar terms. After the analysis, a determination may be made whether to send the electronic correspondence to the consumer. Similarly, the analysis may compare multiple electronic correspondences, and determine, based on the comparison, which of the multiple electronic correspondences to send to the consumer.
US10198740B2 Enhanced payment transactions leveraging a pre-existing network
Technologies for enhancing payment transactions include an acquirer computing system. The acquirer computing system receives a payment authorization request message for a payment transaction associated with a purchase event and event-specific data corresponding to the purchase event. An offer identification query is transmitted to a promotion management computing system via an out-of-band communications channel. Offer redemption instructions corresponding to a matched offer are received from the promotion management computing system via the out-of-band communications channel. Based on the redemption value of the matched offer, a net transaction amount for the purchase event is determined. The payment authorization request message is modified based on the determined net transaction amount. The modified payment authorization request message is transmitted to an issuer computing system via an in-band communications channel. A payment authorization response message is received from the issuer computing system via the in-band communications channel. Other embodiments are described and claimed.
US10198739B2 Assigning achievement designations in a network
Systems and methods configured to award achievement designations to users connected by a network are described, wherein users are automatically granted these achievement designations based on their user profiles and activity. An achievement creation module formulates a plurality of achievement designations based on predefined criteria and a user profile creation/retrieval module obtains one or more user profiles for users of the network. A user activity determination module is configured to determine user activities relating to the one or more user profiles and an achievement designation module awards an appropriate one of the plurality of achievement designations to a particular user based on the particular user's activities. A notification module is configured to notify the one or more user profiles of the achievement designations and a user interface module of the system is configured to provide the achievement designations to a user interface associated with the users for display.
US10198738B2 System architecture for customer genome construction and analysis
A computer system constructs a robust recipient profile. The system receives data associated with recipient digital interactions from, e.g., streaming and/or batch sources. The recipient data may include digital transactional data, social media data, or other recipient-specific information. The system may employ heuristic data ingestion processing to derive further data based on the data inputs and attributization, and thereby may develop a robust recipient profile by aggregating the processed and derived data. The system may implement production rules to determine recipient-specific custom metadata based on the robust recipient profile to transmit to the recipient.
US10198734B2 Creative quality validation
A computer-implemented method includes generating an emulated view of an advertisement; determining, based on the emulated view, one or more elements associated with the advertisement; comparing the one or more elements to one or more criteria associated with an advertisement marketplace; and determining, based on comparing, whether the advertisement complies with the one or more criteria.
US10198732B2 Interactive error user interface
In various example embodiments, a system and method for a proactive customer support system are provided. In some example embodiments, outgoing communications from an application server to a client device are monitored for error messages, outgoing error messages are detected, an error type for an error message is determined, an issue ticket including the error message and the error type is generated, and instructions are transmitted that cause a customer service device to display the issue ticket. In some example embodiments, the system additionally assigns a priority score and ranks open error tickets based on their respective error messages. In some example embodiments, the system provides a help message to the client device based on the error message, receives an information request from the client device, determines a reply message based on the information request, and transmits instructions to the client device to display the reply message.
US10198730B2 Wireless devices for storing a financial account card and methods for storing card data in a wireless device
A non-transitory computer-readable medium stores instructions causing a processor to authorize a second party to use a financial account card. The instructions comprise instructions to receive, from a first wireless device associated with a first party, a selection of a financial account card from a user input device of the first wireless device; assign, to the selected financial account card, an identity of a second party that is authorized to use the selected financial account card; receive, from a second wireless device, a request to authorize a transaction using the selected financial account card; receive an indicator of an identity of a user of the second wireless device; and authorize the transaction, based on the received indicator, when the identity of the user of the second wireless device is the authorized second party.
US10198727B1 Modulation of a near-field communication signal
A communication device has a processing unit, a transmit circuit, and an antenna. The processing unit generates a carrier signal and modifies the carrier signal based on a notch modulation procedure having notch delay and a notch width. The notch width is selected based on a desired modulation index. The resulting modulation signal is provided to the transmit circuit, which generates a wireless data signal that is transmitted by the antenna.
US10198726B2 Low power mode for payment transactions
This application relates to systems, methods, and apparatus for using a computing device to perform payment transactions while the computing device is operating in a low power wallet mode during a low battery state of the computing device. During a low power wallet mode, various subsystems are prevented from receiving current from a battery of the computing device, while a near field communication (NFC) system of the computing device is provided with an operating current for detecting target systems. A target system and the NFC system can communicate during the low power wallet mode of the computing device, thereby allowing a user of the computing device to conduct payment transactions when the computing device is in a low power wallet mode. Such payment transactions can be useful if the user is ever stranded without enough power to fully operate the computing device and needs to pay for transportation.
US10198722B2 Commodity-sales-data processing apparatus, commodity-sales-data processing method, and computer-readable storage medium
According to one embodiment, a commodity-sales-data processing apparatus includes a display section, an image pickup section, an identifying section, a price-information acquiring section, and an amount calculating section. The image pickup section picks up images of commodities placed in a predetermined image pickup region on a display region of the display section. The identifying section identifies the commodities disposed in the predetermined image pickup region on the basis of the images picked up by the image pickup section. The price-information acquiring section acquires price information concerning prices of the commodities identified by the identifying section. The amount calculating section calculates a payment amount for the commodities on the basis of the price information acquired by the price-information acquiring section.
US10198720B2 Mobile device stand
A mobile device camera stand includes a flat, planar base comprising a platform for receiving a document, an adjustable shaft projecting from the base at a first end of the shaft, and a flat, planar cradle having a top surface and a bottom surface, the bottom surface connected to a second end of the shaft. The top surface of the cradle receives a mobile device having a camera, and the cradle includes a cutout such that the camera is placed on the cutout such that the cutout does not obstruct the camera, thereby enabling the camera to image the document.
US10198719B2 Software, systems, and methods for processing digital bearer instruments
Methods and apparatus are described which enable flexible and secure processing of digital bearer instruments. An architecture is provided that enables provision of an extensible applications framework that flexibly supports a variety of features and functionality supporting title-based rights processing operations. A wide range of methods of defining and assuring rights processing operating environments extend the capabilities of rights processing operating environments in a variety of ways.
US10198716B2 User availability awareness
One or more techniques and/or systems are disclosed for providing awareness of user availability. A user may activate a device, and a request to manage an availability status can be sent from the device to a communication service. The communication service may resultantly set up monitoring of the user status, and the availability status of the user can be set to available. If an active status update is not received from the user device, the availability status of the user can be changed from available to away. If an active status update for the user continues not to be received (e.g., for a few hours) and/or device connectivity seems lost, the availability status of the user can be changed from away to offline. This can be done in a resource/power efficient manner by not requiring continual execution of an associated application and/or continual network connectivity of the device.
US10198709B2 Managing assets using at least one policy and asset locations
Assets are managed using policies. Locations of the assets are also determined. A policy may apply to an asset as determined based on the location of the asset. If a policy applies to the asset, a control function is performed.
US10198704B2 Methods for dynamically identifying loads for a trucker
Systems and methods are disclosed for truck load fulfillment by tracking geographical location of a device of a truck driver relative to a point of interest for each truck load; matching the geographical location of the device to a category of interest associated with the truck driver; sending a notification to the device of a nearby position of the load, the nearby position of the load related to the category of interest, the notification sent in response to proximity of the geographical location of the device relative to the position of the load.
US10198703B2 Method and system for prioritizing control strategies minimizing real time energy consumption of built environment
The present disclosure provides a computer-implemented method for prioritizing one or more instructional control strategies to reduce time-variant energy demand of a built environment associated with renewable energy sources. The computer-implemented method includes collection of a first set of statistical data, fetching of a second set of statistical data, accumulation of a third set of statistical data, reception of a fourth set of statistical data and gathering of fifth set of statistical data. Further, the computer-implemented method includes parsing and comparison of the first set of statistical data, the second set of statistical data, the third set of statistical data, the fourth set of statistical data and the fifth set of statistical data. In addition, the computer-implemented method includes identification and prioritization of one or more instructional control strategies to reduce the time-variant energy demand associated with the built environment.
US10198695B2 Manifold-aware ranking kernel for information retrieval
A manifold-aware ranking kernel (MARK) for information retrieval is described herein. The MARK is implemented by using supervised and unsupervised learning. MARK is ranking-oriented such that the relative comparison formulation directly targets on the ranking problem, making the approach optimal for information retrieval. MARK is also manifold-aware such that the algorithm is able to exploit information from ample unlabeled data, which helps to improve generalization performance, particularly when there are limited number of labeled constraints. MARK is nonlinear: as a kernel-based approach, the algorithm is able to lead to a highly non-linear metric which is able to model complicated data distribution.
US10198693B2 Method of effective driving behavior extraction using deep learning
Systems and methods for obtaining vehicle operational data and driving context data from one or more monitoring systems, including converting the obtained vehicle operational data and driving context data into sequential vehicle operational feature data and sequential driving context feature data, calibrating the sequential vehicle operational feature data and the sequential driving context feature data temporally to form calibrated sequential vehicle operational feature data and calibrated sequential driving context feature data, constructing a sequence table of temporal sample points based on the calibrated sequential vehicle operational feature data and the calibrated sequential driving context feature data, feeding the sequence table into a deep neural network model for applying network learning to form a trained deep neural network model, extracting driving behavior features from the trained deep neural network model and analyzing the extracted driving behavior features to determine driving behavior characteristics of the driver.
US10198691B2 Memristive nanofiber neural networks
Disclosed are various embodiments of memristive neural networks comprising neural nodes. Memristive nanofibers are used to form artificial synapses in the neural networks. Each memristive nanofiber may couple one or more neural nodes to one or more other neural nodes. In one case, a memristive neural network includes a first neural node, a second neural node, and a memristive fiber that couples the first neural node to the second neural node. The memristive fiber comprises a conductive core and a memristive shell, where the conductive core forms a communications path between the first neural node and the second neural node and the memristive shell forms a memristor synapse between the first neural node and the second neural node.
US10198689B2 Method for object detection in digital image and video using spiking neural networks
Described is a system for object detection in images or videos using spiking neural networks. An intensity saliency map is generated from an intensity of an input image having color components using a spiking neural network. Additionally, a color saliency map is generated from a plurality of colors in the input image using a spiking neural network. An object detection model is generated by combining the intensity saliency map and multiple color saliency maps. The object detection model is used to detect multiple objects of interest in the input image.
US10198687B2 Cards and devices with multifunction magnetic emulators and methods for using same
A payment card (e.g., credit and/or debit card) is provided with a magnetic emulator operable of communicating information to a magnetic stripe reader. Information used in validating a financial transaction is encrypted based on time such that a validating server requires receipt of the appropriate encrypted information for a period of time to validate a transaction for that period of time. Such dynamic information may be communicated using such an emulator such that a card may be swiped through a magnetic stripe reader—yet communicate different information based on time. An emulator may receive information as well as communicate information to a variety of receivers (e.g., an RFID receiver).
US10198685B2 Electronic badge to authenticate and track industrial vehicle operator
A system for controlling an industrial vehicle comprises an information linking device, a badge communicator, an operator badge, and a controller. The controller controls the industrial vehicle operating state by identifying that an operator possessing the operator badge has approached the industrial vehicle, communicating with the server via the information linking device to authenticate the operator as authorized to operate the industrial vehicle, and pairing the operator badge with the industrial vehicle upon determining that the operator is authorized to operate the industrial vehicle. Moreover, the controller controls the industrial vehicle operating state by controlling the industrial vehicle based upon a location of the operator badge relative to the industrial vehicle.
US10198683B2 Device and method for managing the current consumption of an integrated module
An electronic device randomly modifies a current profile of a logic circuit by using an auxiliary circuit. The logic circuit includes a first terminal coupled to a supply voltage terminal, a second terminal coupled to a reference voltage terminal and an output terminal configured to deliver a signal in a high state or a low state. The auxiliary circuit is coupled between the first terminal and the second terminal and is configured to randomly generate or not generate an additional current between the first terminal and the second terminal on each change of state of the signal on the output terminal.
US10198678B2 Power receiving-type information acquisition and transmission device, and information acquisition system
This power receiving-type information acquisition and transmission device 101 is provided with one or more power receiving means 110 which receive power supply waves that can supply power, one or more power storage means 120 which store power obtained by the power receiving means, one or more information acquisition means 130 which acquire information by expending at least part of the aforementioned power of the power receiving means 110 and/or the power storage means 120, and one or more information transmission means 140 which utilize the power from the power storage means 120 to transmit information externally. This enables regular or steady information collection, and enables transmitting said information stably, on a permanent basis and remotely, i.e., either over a short or long distance externally.
US10198675B2 Image forming apparatus that accepts a designation of an insertion position of an insertion sheet after obtaining image data of a bundle of sheets, and related control method and storage medium
An image forming apparatus includes a display, and a scanner that reads one or more originals to obtain image data of the originals and a number of the originals. A memory device stores a set of instructions, and at least one processor executes the instructions to, among other things, display a first screen including an item for accepting a designation, by a user, of an insertion position of an insertion sheet. If a designation for insertion of the insertion sheet is made, the item includes an initial value of the insertion position that is determined based on the number of the originals that have been read by the reader. The at least one processor also executes the instructions to display a second screen including information related to the insertion sheet in accordance with receiving the designation by the user via the first screen.
US10198674B2 Method, apparatus and system for rendering a graphical representation within limited memory
A method of controlling memory usage in a graphics rendering system. The method comprises converting a plurality of layers of graphical objects to an intermediate format representation, the layers being formed by grouping the graphical objects into a plurality of layers based on a first complexity threshold; and in response to detecting a memory shortage condition in execution of the graphics rendering system, determining a second complexity threshold based on the detected memory shortage condition, the second complexity threshold being lower than the first complexity threshold. The method also comprises identifying a layer of the plurality of layers based on the second complexity threshold, the identified layer being different to a layer which triggered the memory shortage condition, and converting the identified layer of graphical objects to the intermediate format representation to release memory occupied by graphical objects of the identified layer.
US10198673B2 Camera system
A camera system mounted on a vehicle includes a first substrate including an image sensor that generates image information by photoelectric conversion and a first communication unit, and a second substrate including a second communication unit for performing wireless communication with the first communication unit and a first information processing section at least capable of recognition processing for recognizing a situation outside the vehicle based on the image information acquired via the second communication unit.
US10198670B2 Blood vessel extraction in two-dimensional thermography
What is disclosed is a system and method for isolating blood vessels in a thermographic image of a patient's breast or any other muscular region of the body. A thermographic image of a patient is received. A temperature-based analysis is performed on the image to detect vessel pixels. An intensity-based method analysis is performed on the image. A shape-based analysis is also performed to detect pixels of vessel-like structures. Candidate pixels which satisfy one or more of intensity-based or temperature-based or shaped-based criterion are identified. A constraint of local maximallity is thereafter imposed on each candidate pixel that satisfies both criterion to eliminate spurious non-vessel pixels. Candidate pixels which satisfy both criterion are then marked with a different color such that the vessel structures in the breast tissue can be visually differentiated. The vessel structures are provided to a classifier system which classifies the tissue in the thermal image as malignant and non-malignant otherwise, based on a tortuosity of the vessel structures.
US10198667B2 System and method of detecting offensive content sent or received on a portable electronic device
The present invention is directed at a system, method and device for detecting offensive content on a portable electronic device, by monitoring communications sent, received or stored on the portable electronic device, and wherein monitoring comprises collecting content data, classifying content data by calculating an alert score for content data wherein an alert score corresponds to offensive content detected, and sending an alert notification to a second portable electronic device to alert the detection of offensive content on the first portable electronic device.
US10198664B2 Auxiliary observing method and auxiliary observing apparatus
The present application discloses an auxiliary observation method and an auxiliary observation apparatus, and relates to the field of multimedia information processing technologies. The method comprises the following steps: determining at least one comparison object according to a feature of an observation target; and determining a part of or all differences between the observation target and the at least one comparison object. The method and the apparatus in embodiments of the present application can prevent a case in which important information is overlooked or redundant unimportant information is highlighted, and also improve efficiency of observing information, in particular important information.
US10198660B2 Method and apparatus for event sampling of dynamic vision sensor on image formation
An apparatus and a method. The apparatus includes a dynamic vision sensor (DVS) configured to generate a stream of events, where an event includes a location and a binary value indicating a positive or a negative change in luminance; a sampling unit connected to the DVS and configured to sample the stream of events; and an image formation unit connected to the sampling unit and configured to form an image for each sample of the stream of events, wherein a manner of sampling by the sampling unit is adjusted to reduce variations between images formed by the image formation unit.
US10198657B2 All-weather thermal-image pedestrian detection method
An all-weather thermal-image pedestrian detection method includes (a) capturing diurnal thermal images and nocturnal thermal images of a same pedestrian and non-pedestrian object in a same defined block to create a sample database of thermal images, wherein the sample database comprises pedestrian samples and non-pedestrian samples; (b) performing LBP encoding on the pedestrian samples and the non-pedestrian samples, wherein complementary LBP codes in the same defined block are treated as identical LBP codes; (c) expressing the LBP codes in the same defined block as features by a gradient direction histogram (HOG) to obtain feature training samples of the pedestrian samples and the non-pedestrian samples; (d) entering the feature training samples into a SVM to undergo training by Adaboost so as to form a strong classifier; and (e) effectuating pedestrian detection by searching the strong classifiers in thermal images with sliding window technique to detect for presence of pedestrians.
US10198651B2 Article recognition apparatus, settlement apparatus and article recognition method
According to one embodiment, an article recognition apparatus includes a first interface, a second interface, and a processor. The first interface acquires an image captured by photographing a photography range including an area where articles that are recognition targets are arranged. The second interface acquires depth information from a predetermined position relative to an area corresponding to the photography range. The processor extracts image areas of all products existing in the image by using the depth information, and determines whether an unidentified area due to overlapping of a plurality of the products exists in the image, based on the image areas of the products extracted from the image.
US10198645B2 Preventing face-based authentication spoofing
System and techniques for preventing face-based authentication spoofing are described herein. A visible light emitter may be controlled to project a pattern into a camera's field of view during an authentication attempt. An image may be obtained from the camera for the authentication attempt. A potential spoofing region on image may be identified by finding the pattern. An authentication attempt based on a face found in the potential spoofing region may be prevented.
US10198644B2 Optical coherence tomography array based subdermal imaging device
The invention teaches a multiple reference optical coherence tomography scanner that provides a subdermal fingerprint scan, covers an area of approximately 16 mm-17 mm×10 mm in less than a second, and fits into a slim profile of less than 6 mm in thickness, thereby fitting within the slim consumer electronics such as the iPhone and similar consumer electronics. Various embodiments are taught.
US10198639B2 System and method for providing image information around vehicle
A system for providing image information around a vehicle includes: an outside left camera and an outside right camera configured to photograph rear sides of the vehicle from a left outside position and a right outside position of the vehicle, respectively; a top view left camera, a top view right camera, a top view front camera, and a top view rear camera configured to photograph an outside area of the vehicle including a ground; and a controller configured to provide image data deriving from the outside left camera and the outside right camera to a outside left display and a outside right display, respectively, and to provide image data deriving from the top view left camera, the top view right camera, the top view front camera, and the top view rear camera to a head unit display-mirror.
US10198638B2 Systems and methods for generating bookmark video fingerprints
Systems and methods for replacing original media bookmarks of at least a portion of a digital media file with replacement bookmarks is described. A media fingerprint engine detects the location of the original fingerprints associated with the portion of the digital media file and a region analysis algorithm characterizes regions of media file spanning the location of the original bookmarks by data class types. The replacement bookmarks are associated with the data class types and are overwritten or otherwise are substituted for the original bookmarks. The replacement bookmarks then are subjected to a fingerprint matching algorithm that incorporates media timeline and media related metadata.
US10198637B2 Systems and methods for determining video feature descriptors based on convolutional neural networks
Systems, methods, and non-transitory computer-readable media can acquire video content for which video feature descriptors are to be determined. The video content can be processed based at least in part on a convolutional neural network including a set of two-dimensional convolutional layers and a set of three-dimensional convolutional layers. One or more outputs can be generated from the convolutional neural network. A plurality of video feature descriptors for the video content can be determined based at least in part on the one or more outputs from the convolutional neural network.
US10198633B2 Solar photovoltaic measurement
A solar power measurement method is provided. A method may include determining an azimuth of a reference roof edge relative to an orientation of an aerial image of a structure. The method may include capturing at least one spherical image at at least one determined measurement location proximate the structure. Further, the method may include determining a relative azimuth of the reference roof edge from a downward view of a lower hemisphere of the at least one image. In addition, the method may include determining an orientation of an upper hemisphere of the at least one image based on the azimuth of the reference roof edge, the relative azimuth of the reference roof edge, and a known tilt of a roof edge of the structure. Furthermore, the method may include calculating shading conditions for a time period for known sun positions during the time period based on the orientation of the upper hemisphere of the at least one spherical image.